
This paper describes the design and implementation of
mechanisms for latency tolerance in the remote memory
access communication on clusters equipped with high-
performance networks such as Myrinet. It discusses
strategies that bridge the gap between user-level
requirements and network-specific communication
interfaces while attempting to increase opportunities for
latency hiding. Mechanisms for overlapping
communication with computation and coalescing small
messages (trading latency for bandwidth) are explored.
The effectiveness of these techniques is evaluated using
microbenchmarks and application kernels including the
NAS parallel benchmark suite. The microbenchmark
results showed a better degree of overlap for nonblocking
operations in ARMCI as compared to MPI. Application
results showed up 30% to 45% improvement over MPI on
using nonblocking operations. The aggregation of small
messages yielded performance improvement of up to 78%
over non-aggregated communication.

1. Introduction
Despite the impressive progress in high performance
interconnect technology achieved during the last decade,
the gap between processor and interprocessor
communication performance (especially with respect to
latency) has been growing. For example, in 1990 on the
NCUBE/2 massively parallel system employing a
1MFLOP/s processor, the message-passing latency was
80� s. Today, the 1GHz Itanium-2 processor is rated at
4GFLOP/s and is employed in Linux clusters connected
with networks (e.g., Myrinet) that support ~10� s latency
at the MPI layer. This growing gap is not specific to the
commodity clusters. For example, the Cray X1 processor
is rated at 12.8GFLOP/s (MSP mode), while the MPI
latency is roughly the same as on the Pentium-4 based
Linux clusters with Myrinet. Therefore, the growing gap
between CPU and communication latency is a
fundamental problem that requires attention in the design
of all layers of communication protocol stacks as well as
scalable parallel algorithms. Only by combining quality
implementation of the communication interfaces with
algorithms capable of exploiting available mechanisms
for latency tolerance we can hope to address this issue.

Remote memory access (RMA) operations facilitate an
intermediate programming model between message

passing and shared memory. This model combines some
advantages of shared memory, such as direct access to
shared/global data, and the message-passing model,
namely the control over locality and data distribution.
Certain types of shared memory applications can be
implemented using this approach. In some other cases,
remote memory operations can be used as a high-
performance alternative to message passing. On many
modern platforms, RMA is directly supported by
hardware and is the lowest-level and often most efficient
communication paradigm available. In the context of this
model, latency hiding can be accomplished through
different techniques, including overlapping
communication with computation [11] by the use of
nonblocking communication (e.g., [5, 17]). Another
technique is coalescing small put/get messages [13] into
larger ones to eliminate startup cost [14] for as many
messages as possible and to improve network utilization.

We are working on advancing Aggregate Remote
Memory Copy Interface (ARMCI), a portable RMA
library used as a part of the run-time system developed by
the Center for Programming Models for Scalable Parallel
Computing project (www.pmodels.org) sponsored by the
U.S. Department of Energy. The current goal is to
provide efficient communication capabilities that could
be used for latency hiding and reducing communication
overhead in language- and library- based programming
models. The major contributions of this paper are 1) the
design of efficient nonblocking RMA implementation
allowing a high level of overlap between communication
and computation; 2) the concept and development of
aggregate handle interfaces for coalescing multiple small
RMA messages; and 3) demonstration of effectiveness of
the nonblocking communication and aggregation in the
context of microbenchmarks and application kernels. For
both nonblocking communication and aggregation, we
investigate various design issues with respect to request
handle data structure and management and the buffer
management layers. For each of these issues, we analyze
the trade-off between performance advantages while
exploiting native communication protocols, opportunities
for overlapping communication and computations, and
portability across different platforms. Based on these
trade-offs, we present efficient designs and
implementation strategies for the new mechanisms.

Optimizing Mechanisms for Latency Tolerance in Remote Memory Access
Communication on Clusters

J. Nieplocha V. Tipparaju M. Krishnan
{ j_nieplocha,vinod.tipparaju, manojkumar.krishnan} @pnl.gov

G. Santhanaraman D.K. Panda
{ gopal,panda} @cis.ohio-state.edu

Pacific Northwest National Laboratory Ohio State University

2

The effectiveness of these mechanisms is evaluated
across different platforms for microbenchmarks and
application kernels. For example, the experimental results
on Myrinet demonstrate that nonblocking operations in
ARMCI offer a substantially better degree of overlapping
communication with computation than MPI. The NAS
MG benchmark using nonblocking ARMCI operations
achieved 30% to 45% (class C) improvement over the
reference MPI implementation. In addition, the
aggregated handle nonblocking communication when
incorporated into the sparse matrix vector multiplication
improved performance by 78% over the version based on
non-aggregated get communication on 32 Itanium-2
processors connected with Myrinet.

The paper is organized as follows: Section 2 describes the
nonblocking and aggregated RMA functionality that is
instrumental for reducing communication overhead.
Section 3 discusses issues involved in designing portable
and efficient implementation of these capabilities on
modern networks. Section 4 presents experimental results
that evaluate effectiveness of our design in the context of
microbenchmarks as well as application kernels. Finally,
conclusions are given in Section 5.

2. Nonblocking and Aggregated RMA
Communication
Aggregate Remote Memory Copy Interface (ARMCI) [3]
is a portable RMA communication library compatible
with message-passing libraries such as MPI or PVM. It
has been used for implementing distributed array libraries
such as Global Arrays, other communication libraries
such as Generalized Portable SHMEM [15], and compiler
run-time systems such as PCRC Adlib [3] or the portable
Co-Array Fortran compiler at Rice University. ARMCI
offers an extensive set of functionality in the area of
RMA communication: 1) data transfer operations; 2)
atomic operations; 3) memory management and
synchronization operations; and 4) locks. In scientific
computing, applications often require transfers of
noncontiguous data that corresponds to fragments of
multidimensional arrays, sparse matrices, or other more
complex data structures. With remote memory
communication APIs that support only contiguous data
transfers, it is necessary to transfer noncontiguous data
using multiple communication operations. This often
leads to inefficient network utilization and involves
increased overhead. ARMCI, however, offers explicit
noncontiguous data interfaces: strided and generalized
I/O vector that allow description of the data layout so that
it could, in principle, be transferred in a single message.
Of course, the effectiveness of actual transfers depends
on the ability of underlying networks to deal with
noncontiguous data (e.g., scatter/gather operations).
However, even when scatter/gather operations are not
supported by the network, the ARMCI strided and vector

operations take advantage of the information -- for
example, at level of data packing/unpacking -- so that the
overall number of messages and network packets is
reduced. Although the explicit message aggregation
accomplished through the use of strided and vector
interfaces is an effective mechanism for reducing
communication overhead, it does not exploit all the
available opportunities for optimization. Our work
focuses on developing techniques that could help for
latency tolerance -- nonblocking RMA and implicit
communication aggregation.

2.1 Nonblocking Operations
Nonblocking operations initiate a communication call and
then return control to the application. The user who
wishes to exploit nonblocking communication as a
technique for latency hiding by overlapping
communication with computation implicitly assumes that
progress in communication can be made in a purely
computational phase of the program execution when no
communication calls are made. Unfortunately, that
assumption is often not satisfied in practice -- the
availability of nonblocking API does not guarantee that
overlapping communication with computation is always
possible [6]. Because the RMA model is simpler than
MPI (e.g., does not involve message tag matching or
dealing with early arrival of messages), in principle more
opportunities for overlapping communication with
computation are available. However, we found that these
opportunities are not automatically exploited by deriving
implementations of nonblocking APIs from their
blocking counterparts. For example, the communication
protocols used to optimize blocking transfers of data from
non-registered memory by pipelined copy and network
communication through a set of registered memory
buffers [1] can achieve very good performance by tuning
the message fragmentation in the pipeline [8]. However,
the memory copy requires the active host CPU
involvement and therefore reduces the potential for
effective overlapping communication with computation.
To increase the overlap, we expanded the use of direct
(zero-copy) protocols on networks that require memory
registration, such as Myrinet.

In ARMCI, a return from a nonblocking operation call
indicates a mere initiation of the data transfer process,
and the operation can be completed locally by making a
call to the wait routine. Waiting on a nonblocking put or
an accumulate operation ensures that data was injected
into the network and the user buffer can be now be
reused. Completing a get operation ensures that data has
arrived into the user memory and is ready for use. A wait
operation ensures only local completion. The library
imposes a limit on the number of outstanding requests
allowed (if necessary, it can transparently complete an
old request and free up the resources for a new request).

3

For performance reasons [12], ARMCI supports only a
weak consistency for operations targeting remote
memory. Unlike their blocking counterparts, the
nonblocking operations are not ordered with respect to
the destination. Performance is one reason; the other is
that by ensuring ordering, we incur additional and
possibly unnecessary overhead on applications that do not
require ordered operations. When necessary, ordering can
be done by calling a fence operation. The fence operation
is provided to the user to confirm remote completion if
needed.

2.2 Request handle
The request handle structure is central to the APIs
associated with the latency hiding mechanisms in
ARMCI. This opaque object is stored in the application
memory and is used to 1) assign a unique identity to a
nonblocking RMA operation, 2) facilitate aggregation of
multiple operations, and 3) optionally store certain
control information. Before the handle is used, it must be
initialized with the ARMCI_INIT_HANDLE macro and
can be reused after the associated nonblocking operation
completes. The user passes a reference to a request handle
structure. As a convenience to the user, a NULL value for
the handle address can be specified. The library keeps
track of these so-called “ implicit handle requests” and
assigns a handle to them from an internal pool of handles.
This type of requests can be completed using either the
wait operation associated with a particular remote
processor (see Figure 1) or another wait operation to
complete all pending implicit handle requests.

2.3 Implicit and Explicit Aggregation
Aggregation of requests is another mechanism for
improving latency tolerance. Multiple nonblocking data
transfer (put/get) requests can be aggregated into a single
data transfer operation in order to improve the data

transfer rate. Especially if there are multiple data transfer
requests of small message sizes, aggregating those
requests into a single large request reduces the latency,
thus improving performance. This technique is unique in
its ability to sustain high bandwidth utilization and
enables high throughput. Each of these requests can be of
a different size and independent of data type. The
aggregate data transfer operation is independent also of
the type of put/get operation; that is, it can be a
combination of regular, strided, or vector put/get
operations. There are two types of aggregation available:
1) explicit aggregation, where the multiple requests are
combined by the user through the use of the strided or
generalized I/O vector data descriptor, and 2) implicit
aggregation, where the combining of individual requests
is performed by ARMCI. The implicit aggregation
involves the nonblocking request handle that is marked as
“aggregate handle” using the
ARMCI_SET_AGGREGATE_HANDLE macro.

Users can rely on a single aggregate handle to represent
multiple requests. Any number of operations to/from the
same processor can use the same aggregate handle. A
wait on such a handle completes all the aggregated
requests. For multiple small sends, aggregating is usually
much faster and gives better performance. Figure 2
illustrates the aggregate data transfer. It shows that the
descriptors of multiple put requests are stored in an
aggregate buffer and, once the wait call is issued, the data
transfer is completed.

3. Design and Implementation Approach
Designing a portable RMA communication layer involves
addressing multiple issues: 1) the functionality must be
implementable across a wide variety of platforms; 2)
performance advantages of the native communication
protocols must be exploited; 3) opportunities for

Process
A

Non-blocking
request

h2
h1

h3

get_handle

Implicit
Handle
Queue

ARMCI_WaitProc(B) Process
B

Notification of
completion

 If
SET

1

0

0

0

h1

h2

ARMCI_Wait

implicit
handle
bit
fields

Yes

Complete
Data Transfer

Figure 1: Nonblocking transfer with implicit handle

Process

A

Process

B

Aggregate
Buffer

multiple
requests

Notification of Completion

Put request

Put request

Put request

Figure 2: Implicit aggregate data transfer

Complete
Data Transfer

ARMCI_Wait

4

overlapping communication and computations should be
provided; and 4) as much of the code as possible must be
shared to minimize the maintenance efforts across
different platforms. On networks like the IBM SP
interconnect and Quadrics, the underlying RMA layer
provides most of the required capabilities. Hence, on
these systems, most of the nonblocking calls can be
implemented as thin wrappers to the native protocols. We
are referring to these protocols as direct. In the case of
some networks, direct protocols are zero-copy (GM, VIA,
Quadrics Elan), but others where the native
communication interface involves copying the data (IBM
LAPI) internally are not. Some networks like GM, VIA,
and Infiniband require data to be transmitted from/to
special memory. This can be accomplished either by 1)
copying the data into a set of special registered/pinned
buffers for transmission; 2) allocating registered memory
for the user; or 3) by on-demand registration of the user’s
memory. ARMCI uses all three schemes, depending on
the platform, operation type, or size of the data transfer.
Protocols that use memory copy scheme are referred to as
buffered. Although the goal is to generalize most of the
design, doing so should not adversely affect the
performance in cases where an underling network
provides direct support.

Multiple requirements can be satisfied by a buffer
management layer. First, on networks that allow data
transfers between registered buffers, the data can be
copied in, sent, received, and copied out from the internal
set of buffers allocated in registered memory. In this
manner, data can be transferred between nonregistered
memory locations. Note that on-demand memory

registration of user buffers might not always be available
or can be very costly (e.g. GM) [1], [16]. Second, buffers
are useful for packing/unpacking noncontiguous data
transfers when the underlying network has support only
for contiguous data transfers (for example, GM) [1].
Third, in the case of nonblocking communication, data
descriptors might be required to be stored in persistent
memory. For example, the data descriptors in the I/O
vector format for IBM LAPI vector interfaces can be very
large, and they must be saved in persistent memory until
the request is completed.

One of the design goals is to make most of the handle
management code and buffer management code platform-
independent, thus making the architecture portable while
avoid the unnecessary overhead. This is accomplished, as
seen in Figure 3, by switching to a direct protocol when
possible at the very beginning of the request processing.
Interaction between the platform-independent layer and
platform/network-specific layer is only to either inject the
data into the network or check for the completion of an
operation.

3.1 Handle Management

Every nonblocking call is associated with a nonblocking
request handle. For explicit handle nonblocking calls and
aggregate handle nonblocking calls, this handle is passed
by the user as a parameter. An implicit handle call is
associated with a handle from a static list of handles,
maintained internally. The handle provided by the user is
internally mapped to a data structure that in turn carries
all the information required to identify and complete, or
test completion of a nonblocking operation.

Figure 3: Nonblocking request transition

ARMCI_NbGet(src/dst

info, handle1)

Handle Management
and

Protocol Selection

Fill Handle

Buffer Management

Request
for Buffer

Pool of Buffers Buffer - 1

OpType = GET
Request ID = rid

Protocol =dscr_in_p
Proc = p1

descriptor info = dst

Space
For
Data

Send request

For data

Platform Specific LayerPlatform Independent Layer

I_Handle1

OpType = GET
request ID = rid

Bufid = Buffer-1
Proc = P1

Req Completion
Info = INFO
Aggregate Flag =

Recv data into buffer

N
E
T
W
O
R
K

Return to user

I_Handle1

OpType = GET
request ID = rid

Bufid = ?
Proc = P1

Req Completion
Info = ?

Aggregate Flag =

I_Handle1

OpType = GET
request ID = rid

Bufid = None
Proc = P1

Req Completion
Info = INFO
Aggregate Flag =

Send request

For data

Return to user

Buffered Protocol

Direct Protocol
Fill completion info

Fill Completon info

Protocol
Sellector

Recv data into destination

I_Handle1

OpType = GET
request ID = rid

Bufid = Buffer-1
Proc = P1

Req Completion
Info = ?
Aggregate Flag =

5

Because a common handle is used to represent a request
on all platforms, for portability reasons it stores only the
most generic information, including unique identifier of
the request, the type of operation, and the remote
processor number. Other fields include completion
information required by the underlying network for
request completion. For example, on IBM SP when using
LAPI as the communication protocol, “Req completion
information” field carries a LAPI counter that is updated
by LAPI on request completion. For buffered client-
server protocols [1] or protocols based on Active
Messages, “bufid” field in the handle carries the identifier
of the buffer used for this request. This field can be used
also to indicate use of multiple buffers.

3.2 Communication buffers

The communication buffer is represented by a data
structure that stores information about the associated
request. In nonblocking operations, it also carries a
unique request identifier for the request, see Figure 3. For
the buffered implementation of the get operation, it stores
the destination address for the data. For strided and vector
operations, the destination information is represented by a
more complex descriptor of variable size. The buffer data
structure has a fixed space allocated to store destination
data descriptors. For a larger descriptor, extra memory is
allocated, and the corresponding address is stored in the
buffer. That memory is freed when the operation
associated with this buffer is completed. The “protocol”
field in the buffer structure carries more detailed
information. For example, the “protocol” field in the
buffer management phase of Figure 4 carries the value
“sdescr_in_p” , which indicates that this buffer is being
used for a strided data transfer and the destination data
descriptor is in place (sdescr_in_p) inside the buffer data
structure. This information is needed to complete a
request.

ARMCI does not impose a limit on the number of
outstanding operations. Hence, when the buffer

management layer runs out of buffers, it completes an old
request associated with a buffer currently in use to free a
buffer. Because a request can be using more than one
buffer, freeing a buffer might complete only a part of the
request. A communication buffer is also freed as a part of
the wait operation on the request using that buffer.

3.3 Nonblocking request processing
The goal of the design was to make the algorithms for
operation processing as generic as possible without
compromising the performance. In the first step, a
protocol selector (Figure 3) decides which protocol to use
for that particular request. If the protocol to be used is
direct, then the request is sent via a thin wrapper directly
to the platform-dependent code and is thereby injected
into the network without any additional overhead. For
example, the protocol selector for GM checks if the
source and destination memories used in that request are
in registered memory. If they are, then the protocol
selector indicates that the request is a direct request, and
it is thus sent directly to the platform-specific layer. The
platform-specific layer, after updating the request
completion information, injects the request in to the
network. Similarly, with LAPI, depending on the
operation and the size of data involved, the protocol
selector decides if the request will go via the active
message/buffered protocol or the direct protocol. The
request handle passed by the user carries no information.
Information is filled in and updated as the handle transits
through the various phases of protocol processing, as
shown in Figure 3. If the request needs a buffer, the
information in the request handle is passed to the buffer
management layer, where the information about the
buffer associated with the request is recorded in the
handle.

If there are no free buffers available as described in
Section 3.2, a request associated with the least recently
used buffer from the buffer pool is completed, and the
buffer is reassigned. The buffer management phase fills
the buffer with the information obtained from the request

Handle Management Buffer Management

Platform Specific Layer Platform Independent Layer
N
E
T
W
O
R
K

ARMCI_Wait(&handle1)

Check Handle

Wait for
Completion Were buffers

used for req?

Use destination
descriptor in buffer
to copy data into
destination area

no

Return to User

Has buffer(s)
already been
completed?

no
yes

Figure 4: Waiting on a request

yes

OpType=GET
Proc = P1

RequestID=71
rid

Req Completion
Info = INFO**

Aggregate= 0

OpType=GET
Proc = P1

RequestID =71
rid

Req Completion
Info = INFO**

Aggregate= 0

Bufid = b3

Bufid= b3

handle1

handle1

6

handle (e.g., request identifier) for this request.
Correspondingly, the identifier of the buffer allocated for
this request is filled in the request handle to represent the
association between a request handle and a buffer used
for it. When a wait operation is called on a request
handle, the associated buffer(s) is identified.

The request completion information in the handle is also
updated in the platform-specific layer. For direct
protocol, the request bypasses the buffer management and
directly transitions into the platform-specific layer, where
the platform-specific request information inside the
handle is updated. The control returns to the user program
once the platform-specific layer issues the request.

3.4 Waiting on a request

The wait on a request handle completes the request.
Whether the request used buffers or not can be
determined by looking at the value stored in the bufid
field of the request handle. In Figure 4, this is shown in
the handle management phase. For the direct protocol, the
platform-specific layer verifies request completion based
on the information it stored in the “Req completion info”
field. If buffers were used for the request (buffered
protocol or for storing a data descriptor), then the buffer
management layer checks to see if the buffers used for
this request were completed already as a part of freeing
resources. If they have not yet been completed, then the
data from the buffer is copied into the appropriate
destination based on the destination descriptor
information stored in the buffer. To be able to verify if
the data has already arrived in the buffer, the buffer
management layer may check for data arrival via the
platform-specific layer.

3.5 Aggregation
The implicit aggregation of data transfers is implemented
using the generalized I/O vector operations available in
ARMCI [3]. This interface enables the representation of a
data transfer as a combination of multiple sets of equally
sized contiguous data segments. When the first call
involving aggregate nonblocking handle is executed, the
library starts building a vector descriptor stored in one of
the preallocated internal buffers. The actual data transfer
takes place when the user calls wait operation or the
buffer storing the vector descriptor fills up.

3.6 Optimizing Overhead and Overlap
As discussed in Section 2, the overhead introduced due to
the additional processing and resource management
incurred by a nonblocking call should be minimized. In
our implementation, this goal is achieved in multiple
ways:

• Before returning, all nonblocking operations always
initiate data transfer so that the network interface

card (NIC) can process a request while the host CPU
is available to carry out the computations.

• When a nonblocking GET operation returns, either
the buffered or direct protocols ensure that all the
requested data will be received without explicit
involvement of the host CPU. In the buffered
protocol, the request is broken into pieces that fit the
available buffer space. For very large buffered
requests, some initial portion of the data might be
received before the nonblocking operation returns.

• The direct protocol is switched to when possible, as
described in section 3.3.

• The platform-specific protocols that involve
extensive blocking time are avoided. For example, on
the IBM SP for larger messages, the nonblocking
vector get operation LAPI_Getv blocks for up to
90% of the data transfer time. Therefore, this
operation is used by ARMCI for only the blocking
operations. The nonblocking operations that need
vector or strided format are implemented by
executing LAPI_Putv (vector put) from the active
message handler so that the nonblocking call returns
to the application in the shortest time possible.

4. Performance Evaluation
The primary platform for the experiments was a Linux
cluster with dual 2.4GHz Pentium-4 nodes and Myrinet-
2000 (M3F-PCI64C-2 Myrinet interface) located at the
State University of New York at Buffalo. It employs the
most recent versions of GM (1.6.4) and MPICH-GM
libraries provided by Myricom. The experiments included
several microbenchmarks to evaluate different parameters
of the communication operations. In addition, two of the
NAS benchmarks and sparse matrix vector multiplication
code were used to determine the effectiveness of
nonblocking and aggregated communication in the
application contexts.

4.1 Microbenchmarks
The motivation for the experiments described in this
section was to demonstrate the performance of the
implementation at the system level. The next section
shows how much of these gains can be leveraged at the
application level. Experiments discussed in the current
section have been conducted for the nonblocking get
operation since they explicitly demonstrate the overhead
and overlap factors.

Overhead test
The first experiment demonstrates the efficiency of the
implementation as compared with a base case GM
implementation. For this purpose, a nonblocking
operation is simulated at the GM level in the following
fashion. The client issues a gm_send_with_callback (with

7

the details of the required data) and then polls on a flag
set when the data reaches this node. On the other end, the
server does a GM_receive, processes the request, and
issues the RDMA put operation with the data using the
gm_directed_send_with_callback function. The ARMCI
layer is actually built on this basic scheme to implement
the nonblocking get. This experiment tries to evaluate the
efficiency of the implementation. Figure 5 shows the
latency at the base GM and ARMCI levels. The timings
have been averaged over 1000 iterations. They show that
the ARMCI layer adds very little overhead to the base
level and thus provides a very efficient interface to the
applications.

Overlap Test
The second experiment deals with overlapping
communication with computation, and it was performed
in the context of ARMCI and MPI. In the ARMCI
version, the computation is incorporated in the program
in the form of a delay. Increasing computation is
gradually inserted between the initiating nonblocking get
call and the wait completion call. As we keep increasing
the computation, at some point the sum of the
nonblocking call issue overhead and computation would
exceed the idle CPU time, so the total benchmark running
time would increase. This point gives us the maximum
possible overlap. We performed this experiment on two
nodes, with one node issuing the nonblocking get for data
located on the other and then waiting for the transfer to be
completed in the ARMCI_Wait call. The timings were
averaged over 1000 iterations. We have developed
versions of this microbenchmark for direct and buffered
protocols. We also implemented an MPI version of the
above benchmark because our motivation was to compare
the overlap in ARMCI and in the MPI nonblocking
send/receive operations. In MPI, if the node needs a
portion of data from another node, it sends a request and
waits on a nonblocking receive for the response. We can
overlap the time duration between these two calls with

computation. We measured the computation overlap for
both the ARMCI and MPI versions of the benchmark,
and results are plotted in Figure 6. The percentage
overlap is measured as the amount of time of a
nonblocking (data transfer) call that can be overlapped
with useful computation without increasing the overall
benchmark time.

We observe that ARMCI offers a higher level of overlap
than MPI. The buffered protocol is able to achieve about
90% overlap. For large messages, this percentage drops
because of time involved in copying to the destination
buffer. In the direct protocol, we are able to overlap
almost the entire time (greater than 99%). The exception
(1%) was the time involved in issuing the nonblocking
get. The MPI version does reasonably well up to message
size 16kb. At 16kb and beyond, the MPI implementation
switches to the rendezvous protocol. This has a serious
impact on the computation overlap because the
handshake involved in the protocol occurs in MPI_Wait.
Consequently, the only part that can be overlapped is till
the receipt of ‘ request to send’ and not until the actual
data transfer is completed. Several studies have tried to
analyze and benchmark the MPI overlap. Paper [7]
describes some experiments to analyze and test the
overlap for basic asynchronous MPI calls for MPI
implementations on different platforms. Another related
paper [8] provides a portable benchmark suite for
assessing overlap. One of the methods relies on polling to
advance progress, and they use another metric
(‘availability’) for their assessment. Our benchmark does
not introduce additional MPI library calls for making
progress, looks for plain overlap performance gains, and
is probably more representative of how real applications
use nonblocking communication.

Aggregation Test
A simple benchmark test was written to compare the
performance of regular, vector, and implicit aggregate

0

20

40

60

80

100

120

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

Message size(bytes)

pe
rc

en
ta

ge
 o

ve
rl

ap

MPI
ARMCI (buffered)
ARMCI (direct)

Figure 6: Percentage computation overlap for
increasing message sizes for MPI and ARMCI
direct and server- based protocols

15

40

65

90

115

140

165

190

256 512 1024 2048 4096 8192 16384 32768

Message size (bytes)

la
te

nc
y

[µ
s] GM

ARMCI

Figure 5: Comparison of latency of ARMCI get
operation (nonblocking get followed by Wait) with
GM version

8

Figure 9: Time spent on communication on each
processor in the sparse matrix-vector multiplication
in the 32-processor case

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Processor

C
om

m
un

ic
at

io
n

T
im

e
[s

].

 Regular

Aggregate

put/get operations. In the test, 1000 values of type
double- located in nonadjacent memory locations were
transferred using 1000 calls to regular put and get calls,
with and without enabling aggregation. Also, 1000
doubles were stored in a vector descriptor and transferred
in a single vector operation to show that aggregation of
1000 calls is as good as a single vector call. The
experiments were performed on the 500MHz Pentium-III
Linux cluster with Giganet cLAN (VIA) at PNNL, a
Power-3 IBM-SP at NERSC, and a 2.4GHz Pentium-4
Linux cluster with Myrinet at SUNY Buffalo. Figure 7
shows that enabling aggregation significantly
outperforms the regular put/get operation. The figure also
indicates that aggregating multiple data transfer requests
performs almost as well as a single vector operation.

4.2 Sparse Matrix-Vector Multiplication
Sparse matrix-vector multiplication is one of the common
computational kernels, for example in solving linear
systems using conjugate gradient method. It is described
as Ax = b, where A is an nxn nonsingular sparse matrix, b
is an n-dimensional vector, and x is an n-dimensional
vector of unknowns. In this benchmark, one of the sparse
matrices (Figure 8a) from the Harwell-Boeing collection
is used [9] to test the matrix-vector multiplication. The
sparse matrix size is 41092 and has 1683902 (~.1%) non-
zero elements. The experiments were conducted on the
Linux cluster (dual node, 1GHz Itanium-2, Myrinet-2000
interconnect) at PNNL. Sparse matrix-vector
multiplication was done with aggregation enabled and
disabled. The sparse matrix and the vector are distributed
among processors. Instead of gathering the entire vector,
each process caches the vector elements corresponding to
the non-zero element columns of its locally owned part of
the matrix. When aggregation is enabled, all the get calls
corresponding to a single processor are aggregated into a
single request, thus reducing the overall latency and
improving the data transfer rate. Figure 8b shows that
aggregation outperforms the regular put/get version of the
code in all cases and scales well. Figure 9 provides

explanation of the performance gaps resulting from the
large and nonuniform communication overhead
effectively addressed by aggregation.

4.3 NAS benchmarks
The Numerical Aerodynamic Simulation (NAS) parallel
benchmarks (NPB) are a set of programs designed at
NASA. Our starting point was NPB 2.3 [4]

0.00

0.01

0.02

0.03

0.04

0.05

Linux-VIA
put

Linux-VIA
get

IBM -SP
put

IBM -SP
get

Linux-GM
put

Linux-GM
get

ti
m

e
[s

]

Regular
Vector
Aggregate

Figure 7: Performance of aggregate, vector, and regular
(multiple calls) operations in transfer of 1000 doubles

0

0.04

0.08

0.12

0.16

0.2

4 8 16 32
Procs

T
im

e
[s

]

Regular
Aggregate

Figure-8: (a) Harwell-Boeing Sparse Matrix – a finite
element problem. (b) Sparse matrix-vector

9

implementation written in MPI and distributed by NASA.
We modified two of the five NAS kernels, MultiGrid
(MG) and Conjugate Gradient (CG), to replace point-to-
point blocking and nonblocking message-passing
communication calls with first blocking and then
nonblocking RMA communication. This is just a mere
replacement of the point-to-point message passing
communications part of the current message-passing
version of CG and MG NAS kernels using ARMCI RMA
blocking and nonblocking operations [18]. Other
benchmarks (e.g., FFT, IS) rely on collective
communication thus limiting appropriateness of RMA
(point-to-point) communication without reformulating the
underlying mathematical algorithms. We ran our MG
tests for classes A, B, and C. They are three production-
grade problem sizes for the MG benchmark: Class A
(grid 256x256x256, 4 iterations), Class B (grid
256x256x256, 20 iterations), and Class C (grid
512x512x512, 20 iterations).

For Class A, a smaller problem size with the fewest
iterations, the ARMCI blocking code outperforms the
reference MPI implementation by 7% to 30%. ARMCI
nonblocking version achieves an additional improvement
of 10% to 23% over the ARMCI blocking
implementation and a 28% to 46% improvement over the
reference MPI implementation. Most of the improvement
achieved over the blocking implementation is just by
mere issue of the update in the next dimension while
working on the current one. For Class B, with the same
problem size as class A but more iterations, ARMCI
blocking implementation outperforms MPI by 10% to
37% (see Figure 10 (left)). The ARMCI nonblocking
implementation achieves an additional improvement of
5% to 20% over the blocking version and shows a 30% to
45% improvement over the reference MPI
implementation. For Class C, the ARMCI blocking
implementation outperforms MPI by 10% to 32%.
ARMCI nonblocking implementation achieves an
additional improvement of 2% to 21% over the blocking

implementation and shows a 30% to 40% improvement
over MPI. Since coarser levels of multi grid do not carry
enough work to hide all the communication, for small
processor configurations any improvement achieved by
using a nonblocking over blocking API is limited. With
an increased processor count for the fixed problem size,
the improvement is amplified.

Due to the synchronous nature of data transfers in the CG
algorithm, the performance improvement over MPI,
although consistent is rather limited (see Figure 11). As
expected, the main source of performance improvement is
the increased efficiency of RMA operations over the
message passing (e.g., due to overheads associated with
tag-matching, early message arrival that MPI must do).
However, the nonblocking RMA offers an additional
performance improvement. For example, for 128
processors, it exceeds 10% over MPI.

7. Summary and Conclusions
This paper describes design and implementation of
mechanisms for latency tolerance in the context of remote
memory access communication on clusters equipped with
high-performance networks. They include nonblocking
RMA communication and aggregation of small messages.
The design maximizes the potential for overlapping
communication with computations and minimizes the
overhead while preserving the portability. The
experimental results showed that nonblocking operations
in ARMCI show a better degree of overlap in comparison
to MPI. Application kernels using nonblocking ARMCI
operations showed 30%-45% improvement over MPI. In
addition, aggregation has been shown to be an effective
technique for latency tolerance, giving as much as 78%
improvement over non-aggregated communication.

Acknowledgments
This work was performed under the auspices of the U.S.
Department of Energy (DOE) at Pacific Northwest
National Laboratory (PNNL) and Ohio State University.

0

10

20

30

40

50

8 16 32 64 128

Procs

%
 im

pr
ov

em
en

t

block ing

nonblock ing

0
5

10
15
20
25
30
35
40
45

8 16 32 64 128

Procs

%
 im

pr
ov

em
en

t bl ocking

nonblocking

Figure 10: Performance improvement in NAS MG for class B (left) and class C (right)

10

PNNL is operated for DOE by Battelle. This work was
supported by the Center for Programming Models for
Scalable Parallel Computing project sponsored by the
MICS/ASCR program in the DOE Office of Science.

References
1) J. Nieplocha, V. Tipparaju, A. Saify, D. Panda,
Protocols and Strategies for Optimizing Remote Memory
Operations on Clusters, CAC/IPDPS, 2002.
2) J. Nieplocha, V. Tipparaju, J. Ju, and E. Apra, “One-
sided communication on Myrinet” , Cluster Computing, 6,
115-124, 2003.
3) J. Nieplocha and B. Carpenter, “ARMCI: A Portable
Remote Memory Copy Library for Distributed Array
Libraries and Compiler Run-time Systems” , Proc. RTSPP
IPPS/SDP, 1999.
4) D. Bailey, E. Barszcz, J. Barton, D. Browning, R.
Carter, L. Dagum, R. Fatoohi, S. Fineberg, P.
Frederickson, T. Lasinski, R. Schreiber, H. Simon, V.
Venkatakrishnan, and S. Weeratunga, The NAS parallel
benchmarks, RNR-94-007, NASA 1994.
5) S. B. Baden and S. J. Fink, “Communication overlap
in multi-tier parallel algorithms” , Proceedings of
Supercomputing, Orlando, FL, November 1998.
6) J. B. White and S. W. Bova, “Where’s the overlap?
Overlapping communication and computation in several
popular MPI implementations” , Proceedings of the Third
MPI Developers’ and Users’ Conference, March 1999.
7) B. Lawry, R. Wilson, A. B. Maccabe, and R.
Brightwell, “COMB: A Portable Benchmark Suite for
Assessing MPI Overlap” , IEEE Cluster, 2002.
8) R. Y. Wang, A. Krishnamurthy, R. P. Martin, T. E.
Anderson, and D. E. Culler, Modeling and Optimizing
Communication Pipelines, ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, 1998.

9) T. Davis, University of Florida Sparse Matrix
Collection, http://www.cise.ufl.edu/research/sparse/matrices,
NA Digest, vol. 92, no. 42, October 16, 1994, NA Digest,
vol. 96, no. 28, July 23, 1996
10) Afsahi, N. Dimoppolous, Hiding Communication
Latency in Reconfigrable Message-Passing
Environments, Proc. IPPS/SPDP 1999.
11) V. Strumpen, T. L. Casavant, Exploiting
communication latency hiding for parallel network
computing: model and analysis” , Proc. PDS’94, 1994.
12) S. Kim and A. V. Veidenbaum, The effect of limited
network bandwidth and its utilization by latency hiding
techniques in large-scale shared memory systems, Proc.
PACT’97, 1997.
13) D. Pham and C. Albrecht, “ Optimizing Message
Aggregation for Parallel Simulation on High Performance
Clusters” , 7th Intern. Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems, 1999.
14) Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P.
Husbands, C. Iancu, M. Welcome, and K. Yelick, “An
evaluation of current high-performance networks” , in
Proc. 17th IPDPS, 2003.
15) K. Parzyszek, J. Nieplocha, and R.A. Kendall, “A
generalized portable SHMEM library for high
performance computing” , Proc. PDCS, 2000.
16) Bell and D. Bonachea, “A New DMA Registration
Strategy for Pinning-Based High Performance
Networks” , Proc. CAC’03, 2003.
17) E. Culler, A. Dusseau, S. Goldstein, A. Krishna-
murthy, S. Lumetta, T. Eicken, K. Yelick, Parallel
programming in Split C, Proc. Supercomputing, 1993.
18) V. Tipparaju, M. Kumar, J. Nieplocha,
Santhanaraman, D.K. Panda, Exploiting nonblocking
remote memory access communication in scientific
benchmarks, Proc. HiPC’03, 2003.

0

2

4

6
8

10

12

14

16

8 16 32 64 128

Procs

%
 Im

pr
ov

em
en

t blocking

nonblocking

0

2

4

6

8

10

12

14

16

8 16 32 64 128

Procs

%
 Im

pr
ov

em
en

t

blocking

nonblock ing

Figure 11: Performance improvement in NAS CG class B (left) and class C (right)

