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Abstract— Efficient implementations of synchro-
nization operations such as locks and semaphores
is important in parallel and distributed systems.
These operations can be efficiently implemented us-
ing hardware atomic Read-Modify-Write (RMW)
memory operations on shared memory machines,
however such primitives have not been available
for SAN-connected clusters. Separate lock man-
ager processes have typically been used in such an
environment which can negatively impact CPU and
network utilization. In this paper we describe a
novel implementation and evaluation of NIC-based
atomic remote memory operations which allow the
implementation of locks without the use of lock
manager processes.

We modified the GM message passing system
to support the NIC-based atomic remote mem-
ory operations. Qur implementation gave us up
to a 15.7% improvement over a host-based imple-
mentation of these operations. Furthermore, we
saw up to a 62.3% improvement using the NIC-
based atomic remote memory operations to imple-
ment locks when compared to implementing the
locks using atomic remote memory operations im-
plemented using a separate server process.

Keywords— Atomic remote memory operations,
Atomic operations, Remote memory access, GM,
Myrinet

I. INTRODUCTION

__ﬂFFICIENT implementations of synchroniza-
A_Jtion operations such as locks and semaphores
is important in parallel and distributed sys-
tems. These operations can be efficiently im-
plemented using hardware atomic Read-Modify-
Write (RMW) memory operations, such as
test&set, compare&swap, etc., on shared mem-
ory machines [1]. As system area network (SAN)

This research is supported in part by a DOE grant #DE-
F002-01ER25506 and a NSF grant #EIA-9986052.

Darius Buntinas and Dhabaleswar K. Panda are with the
Network-Based Computing Laboratory, Department of Com-
puter and Information Science at The Ohio State University,
Columbus, OH 43210, ({buntinas, panda}@cis.ohio-state.edu).

William Gropp is with the Mathematics and Computer Sci-
ence Division of Argonne National Laboratory, Argonne, IL
60439, (gropp@mcs.anl.gov).

connected clusters are becoming more cost effec-
tive and popular, other methods for implement-
ing locks are necessary, since such atomic RMW
operations have not been available which operate
across SANs. Synchronization operations for clus-
ters are typically implemented with lock manager
process running on one or more nodes which per-
forms the operation. Such a process serves only to
handle the synchronization operations and does
not directly contribute to the computation. In
fact, because it uses computational resources at
the node it is running on, it negatively impacts
the computation because it reduces the processor
utilization at that node.

By using remote atomic memory operations
which are supported by the communication layer,
such as those described in the InfiniBand Archi-
tecture (IBA) standard|2], locks can be performed
without the intervention of the remote host. This
means that lock manager processes need not be
used leading to higher CPU utilization. Further-
more, because context switches at the host pro-
cessor are not needed to handle the lock requests,
locks implemented using communication layer re-
mote atomic memory operations can lead to better
lock performance.

In this paper we describe our implementation
and evaluation of network interface card based
(NIC-based) remote atomic memory operations.
We implemented these operations by modifying
the GM message passing system[3] which uses pro-
grammable Myrinet[4] network cards. Using pro-
grammable NICs to support collective communi-
cation operations has been previously described
in [5], [6], [7], [8], [9] and [10]. This paper takes
this concept further and uses the programmable
NICs to support atomic remote memory opera-
tions. We found a 15.7% improvement for per-
forming a remote atomic operation using our NIC-
based approach over using the best host-based
implementation. When we implemented a dis-



tributed lock algorithm using the remote atomic
operations our NIC-based implementation gave up
to a 62.3% improvement over the host-based im-
plementation. Furthermore, we found that locks
implemented with host-based atomic operations
had a significant impact on host CPU utilization
and network utilization, while locks implemented
with NIC-based atomic operations had little to no
impact.

The rest of the paper is organized as follows.
In Section II we describe the basic concept of the
NIC-based atomic remote memory operation. Sec-
tion IIT describes the implementation of the NIC-
based atomic remote memory operation, and Sec-
tion IV describes how to implement distributed
locks using these operations. In Section V we
present our experimental results, and conclude in
Section VI.

II. NIC-BAseD AToMIC REMOTE MEMORY
OPERATIONS

The basic idea of the NIC-based remote atomic
operations is to have the NIC perform the op-
eration directly rather than dedicate a separate
thread at the host to perform the operation. The
application initiating the remote atomic operation
would send a message to the NIC at the remote
node indicating which operation to perform along
with the operands. The remote NIC, upon re-
ceiving the message, would perform the operation
atomically on the memory at the host. The atom-
icity of an operation is guaranteed by ensuring
that the NIC does not perform any other oper-
ations on that memory region until that operation
has completed, and that any modifications on that
memory region are performed by the NIC, not the
host. Figure 1(a) shows an example of an atomic
operation being performed by a thread running on
the host processor (host-based atomic operation)
and Figure 1(b) shows an example of an atomic
operation being performed by the NIC (NIC-based
atomic operation).

In order to perform an atomic operation on a
remote memory region without using NIC-based
atomic operations, the remote node would need
to have a thread which receives the requests, per-
forms the operations and returns the result. This
is shown in Figure 1(a). Here, an application at
node 0 sends a request for an atomic operation to

a thread at node 1 which performs the operation.
This is performed in seven steps:

1. A message is generated by the application at
the host of node 0 and is sent to the NIC.

2. The NIC then transmits it to the NIC at
node 1.

3. The NIC at node 1 receives the message and
forwards it to the thread which is handling
the atomic operations.

4. Upon receiving the message, the thread at
node 1 performs the operation specified in the
message on the host’s memory.

5. This thread then sends a reply message to the
NIC.

6. The NIC at node 1 then transmits it back to
node 0.

7. This reply is received by the NIC at node 0
and is forwarded to the application.

Using NIC-based atomic operations, no thread
is needed at the remote host to handle the atomic
operations. Instead, the operations are performed
directly by the NIC. Figure 1(b) shows a NIC-
based atomic operation on remote memory. This
operations is performed as follows:

1. An application at host 0 sends a special

atomic operation message to the NIC.

2. This NIC transmits it to the NIC at node 1.

3. Upon receiving the message, the NIC copies
the value stored at the memory location spec-
ified in the message using DMA.

4. The NIC then performs the operation using
this value.

5. If necessary, the NIC copies the new value
back to the memory location, again using
DMA.

6. The NIC transmits the result back to the NIC
at node 0. Note that this step can be per-
formed concurrently with the previous step.

7. The NIC at node 0, upon receiving the result
message, forwards it to the application.

The main advantage of using the NIC-based ap-
proach is that the operation can be performed
without the intervention of a host thread. With
the host-based approach, the atomic operation re-
quests need to be handled at the host. This can
be done by having the main application period-
ically poll for these messages, however, this can
lead to poor response time for the operation if the
main application polls infrequently. Another op-
tion for the host-based approach is to have a sepa-



(a) Host-based

(b) NIC-based

Fig. 1. Steps required to perform host-based and NIC-based atomic remote memory operations. See text for a detailed

description of the steps in Section II.

rate server thread to handle these requests. When
using a server thread, unless a separate proces-
sor at the host can be dedicated to this thread,
the thread should block while waiting for the re-
quests. The main thread is then interrupted when
an incoming request is received so that the server
thread can process the request. When the server
thread and main thread share a CPU, blocking
the server thread while it is idle will lead to better
utilization of the CPU by the main thread. How-
ever, when there are many such requests, the re-
peated interrupts can lead to poor performance of
the main application. By using the NIC-based ap-
proach atomic operations can be performed with-
out interfering with any processes at the host. The
application process can be running on the host
CPU, while the NIC is performing the atomic op-
erations directly on host memory.

Just about any atomic operation can be imple-
mented using this scheme. The only constraint is
the processing power of the NIC processor. Typ-
ically, the NIC processor is much slower than the
host processor. For instance, the LANai proces-
sors on the Myrinet NICs range from 33MHz to
200MHz, while host processors may range from
300MHz to 2GHz. Furthermore, NIC processors
may not have floating point units, so any float-
ing point operation would have to be simulated
using integer operations. For this reason it would
probably not be beneficial to perform complex op-
erations. Another constraint is the NIC proces-
sor’s access to the host memory. Most NICs do

not support PIO access to the host memory from
the NIC. Rather any transfers of data from host
memory initiated by the NIC must be done using
DMA. While DMA performs well for transferring
large data, there is an overhead to setting up the
DMA which makes it less efficient for performing
small data transfers. So the number of data trans-
fers between the NIC and host memory should be
limited.

We implemented the following three atomic
primitives: fetch&add, fetch&write and com-
pare&swap. The fetch&add and fetch&write op-
erations take four parameters: the target node id,
the target port id, the remote virtual memory ad-
dress, and a 32-bit data word. The compare&swap
operation takes one additional 32-bit parameter
which is used for the compare part of the opera-
tion. Table I describes the semantics of the op-
erations. For each operation, the table shows the
value of the memory location before the opera-
tion and after, as well as the value returned to
the caller. The data value in the table represents
the data that is to be written to the memory loca-
tion and the compare value in the table represents
what the value stored in the target memory loca-
tion is compared to.

ITI. MYRINET/GM IMPLEMENTATION

In this section we describe our implementation
of the NIC-based remote atomic operations as a
modification of Myricom’s message passing sys-
tem GM][3] version 1.5. We will first give a brief



TABLE I
SEMANTICS OF ATOMIC MEMORY OPERATIONS

Memory Contents
Operation Before Op | After Op Return Value
fetch&add (data) X X + data X
fetch&write (data) X data X
compare&swap (data, compare) X if compare = X then data else X X
overview of Myrinet[4] and GM, then describe our
implementation. %ﬁ / Process
A. Overview of Myrinet and GM
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The Myrinet NIC consists of a programmable
LANai processor, memory, one DMA engine for
transferring data between the NIC memory and
the host memory, one DMA engine for transmit-
ting data from the NIC memory and the network
and another DMA engine for receiving data from
the network to the NIC memory. Depending on
the revision of the card, the LANai processor runs
at either 33, 66, 133, or 200MHz, and has between
1 and 4 MB of SRAM. The programmable proces-
sor runs a control program which allows host pro-
cesses to directly interact with the NIC bypassing
the operating system (OS-bypass) for low latency
communication.

GM is a user-level message passing system that
uses the Myrinet network. GM consists of a kernel
module, a library and a Myrinet control program
(MCP). The driver loads the MCP on to the NIC
when it is loaded. During the execution of a pro-
gram, the driver is used mainly for opening ports,
pinning and unpinning memory, and to put a pro-
cess to sleep for blocking functions. A port is a
data structure through which a process can com-
municate with the NIC. Once a port is opened,
the process can communicate with the NIC, by-
passing the operating system and avoiding system
call overhead.

Figure 2 is a block diagram of GM where a
process has two ports through which send tokens
and receive tokens are transferred to and from

Fig. 2. Block diagram showing the components of GM.

the MCP without going through the kernel. The
figure also shows DMA operations which transfer
data directly to and from memory regions of the
process.

At the host level GM is connectionless, but it
provides reliability by maintaining reliable connec-
tions between NICs of different nodes. When a
packet is sent by the NIC, the NIC keeps a send
record with enough information to reconstruct the
packet. The send record also has a timestamp of
when the packet was sent. Until the packet is ac-
knowledged, the NIC checks the timestamp of each
send record to determine if a packet needs to be re-
sent. If a packet times-out, using the information
in the send record, the NIC DMAs the data for
the packet again from host memory, reconstructs
the packet and transmits it. Upon receiving an
acknowledgment for a packet, the corresponding
send record is deleted. Packets also have sequence
numbers which are used to ensure correct packet
ordering. If a packet is received out of order, or if a
duplicate packet is received, it is dropped and an
acknowledgment packet is sent re-acknowledging
the last packet correctly received.

Flow control is used between the NIC and the
host to avoid buffer overflows. To provide this flow



control GM uses the concept of tokens. When a
process opens a port, it has a certain number of
send tokens and receive tokens. Each send token
corresponds to a send event. For sending a mes-
sage the process fills-in a send token describing the
send event and passes it to the NIC. The message
may consist of several packets. The NIC takes
care of packetizing the data. Once the NIC has
finished sending the message and all of the pack-
ets have been acknowledged, the NIC returns the
send token to the process in a callback function.

Data can only be sent from or received into
pinned memory regions. This is necessary so that
the pages that contain the data are not paged
out by the operating system while the data is
being transmitted by the NIC. GM provides spe-
cial functions which pin memory and inform the
NIC of the physical address and virtual address of
the pages to be used for address translation when
DMAing the data. This is known as registering
memory.

In order to send or receive a message, the pro-
cess must pass a receive token describing the buffer
to the NIC. Once the NIC has DMAed the data
into the buffer, the receive token is returned to
the process. The process can either poll to detect
returned receive tokens, or block and wait for the
receive tokens.

B. Design Challenges and Qur Implementation

We added two functions to the GM API,
and modified the MCP. The gm provide atomic_
buffer() function passes a receive token to the
NIC. This receive token will be used by the NIC
to pass the return value of an atomic operation to
the application. The application must ensure that
the NIC has sufficient receive tokens to receive the
return values for any atomic remote memory op-
eration. The gm_atomic_send with_callback()
function builds a send token and passes it to the
NIC initiating the atomic remote memory opera-
tion. The send token describes the atomic opera-
tion and includes all of the necessary parameters
plus a tag value which the application will use to
match the atomic operation request with the re-
turn value. The application checks for the com-
pletion of the operation using the gm receive()
function or one of its variants. When the op-
eration is completed, the gm receive() function

returns a receive token with the return value of
the operation along with the tag value which was
provided in the corresponding call to gm_atomic_
send_with_callback().

When the NIC receives the send event, it trans-
mits an atomic operation packet to the destination
node with all relevant parameters. Upon receiv-
ing the packet, the NIC at the destination node
checks for packet corruption and correct packet
sequence, and when the DMA engine to the host
is free, performs the operation.

The operation is performed in the following
manner. The NIC DMAs the data from the tar-
get host memory location to a temporary loca-
tion. The NIC then calculates the new value of
the target memory location (as described in Table
I), and DMAs the new value to the host mem-
ory. Because the NIC performs this operation
without interruption, the atomicity of the oper-
ation is guaranteed. The return value is stored in
a table and a reply packet is sent back to the ini-
tiating node. The reply packet also serves as an
acknowledgment for the atomic operation packet.
Upon receiving the reply packet, the NIC checks
for packet corruption, processes the acknowledg-
ment and sends a receive token to the application.
The NIC performs each of the operations using
one or two DMASs. In order to ensure that the op-
erations are atomic, the process must not directly
modify any memory region onto which an atomic
operation may be performed. Instead, the process
should issue the operations to the NIC.

In our implementation, we had to address the
following challenges: how to inform the NIC that
a particular memory region should be used for
atomic operations, how to notify the calling pro-
cess of the return value, and how to provide relia-
bility.

We addressed the first challenge of how to in-
form the NIC that a particular memory region
should be used for atomic operations by using the
same method that GM uses to provide directed
sends. In GM, directed sends are messages where
the data is written directly to the receiver’s mem-
ory without the receiver calling gm receive().
The sender of the message provides the address of
the buffer at the receiver. This type of communi-
cation is sometimes called RMA (for remote mem-
ory access) or RDMA (for remote direct memory



access). With directed sends, the sender can spec-
ify any registered memory region at the receiver as
the destination address. We used the same idea.
Atomic operations can be performed on any 32-
bit word in any registered memory region at the
target node.

The number of memory locations that can be
used by the atomic remote memory operations is
limited only by the amount of memory that a pro-
cess can register in GM, which, for GM version
1.5 on Linux, is 7/8 of the physical memory of
the host. We can specify a remote memory loca-
tion by a triple: a node id, to identify a particular
machine on the network; a port id, to identify a
particular process on that machine; and the vir-
tual address of the memory location in the address
space of that process. The method of distributing
this triple to other nodes in the system is left up
to the programmer (e.g., by simply sending the
triple in a message).

The second challenge was how to notify the call-
ing process of the return value. Atomic remote
memory operations produce a return value which
the calling process must receive. We needed a
mechanism by which the calling process can re-
ceive the value. Since the receive token had space
for small message data to be sent to the host, we
decided to use the receive token to provide the re-
turn value to the process. When the NIC receives
the return value from the NIC at the remote node,
it passes the process a receive token containing
the return value. In order for the calling process
to match the call to the atomic operation with the
return value, the process specifies a tag value when
the operation is initiated which is then included in
the receive token along with the return value.

The third implementation challenge was to pro-
vide reliability for the atomic operations messages.
To do this, we used mechanisms similar to the ones
used by GM with two differences. First the re-
ply packet doubles as an acknowledgment packet
to the atomic operation packet, so a separate
packet is not needed. Second, we handle duplicate
atomic operation packets differently. A duplicate
atomic operation packet cannot be dropped be-
cause the initiating node needs the return value of
the atomic operation. Furthermore, because the
operations are not idempotent we cannot repeat
the operation to get the return value. Instead, the

NIC keeps a table of return values and sequence
numbers. Upon receiving a duplicate atomic op-
eration packet, the NIC looks up the return value
and re-sends a reply packet. Because there are a
limited number of entries in the table of return
values, each NIC must limit the number of unac-
knowledged atomic operations it sends, otherwise
it is possible that some of the return values for out-
standing packets will not be stored. This method
of using a table to record return values is similar to
the one described in the InfiniBand Architecture
standard[2].

IV. IMPLEMENTING DISTRIBUTED LOCKS
WITH ATOMIC REMOTE OPERATIONS

One use of remote atomic memory operations
is in distributed locks. We implemented a soft-
ware queuing lock using atomic remote memory
operations similar to the MCS[11] lock. The MCS
lock is intended for shared memory machines, but
we extended the idea for distributed memory ma-
chines using atomic remote memory operations.
The algorithm creates a distributed linked list of
processes waiting for the lock. The process at the
head of the queue holds the lock. In this algo-
rithm, each process has a next variable which
points to the process which has requested the
lock immediately after this process, and a boolean
locked variable which indicates whether the node
is waiting for the lock. These two variables should
be stored so that atomic remote memory opera-
tions can be performed on them. The lock itself
is a variable which points to the last node to re-
quest the lock. The lock variable is stored at the
home node of the lock.

When a process, p, requests a lock, it first
sets its next variable to NIL. Next, it performs
a fetch&write(p) operation on the lock variable
to determine which process is currently last on
the queue (i.e., its predecessor. If the queue is
empty (i.e., the predecessor is NIL), then this node
has acquired the lock. Otherwise, it sets its own
locked variable to true, then performs a remote
write to write p to its predecessor’s next variable,
thereby inserting itself in the queue. It then polls
on its own locked variable until it becomes false.

To release a lock, a process, p, first checks if its
own next variable is NIL. If it is not, then it per-
forms a remote write operation on its successor’s



locked variable setting it to false thereby success-
fully releasing the lock. Otherwise, it performs
a compare&swap(NIL, p) operation on the lock
variable. If this succeeds, (i.e., operation wrote a
NIL to the locked variable) then process p was
the last node on the queue, and has successfully
released the lock. If the operation failed, this in-
dicates that another process has begun request-
ing the lock, and has updated the lock variable,
but has not yet updated process p’s next variable.
Process p should then poll on its next variable
until that process updates it, at which point pro-
cess p should perform a remote write setting the
locked variable at that process to false.

Figure 3 gives an example of how the lock al-
gorithm works. In the figure, the circle with the
L in it represents the lock variable stored at the
home node. The boxes with the numbers in them
represent the processes requesting the lock. The
arrows coming out of the boxes represent the next
variable, and the squares in the boxes represent
the boolean locked variable. A filled in square
indicates that locked is set to true and that the
process is waiting on the lock. Step (a) shows
the initial state where there are no processes re-
questing the lock. Step (b) shows the state after
process 1 acquires the lock. In (c) we see the state
after processes 2 and 3 have requested the lock,
but before process 1 has released the lock. Notice
that the locked variables for processes 2 and 3 are
shown as true. When process 1 releases the lock, it
will notice that its next variable points to process
2. It will then change process 2’s locked variable
to false, so that process 2 can acquire the lock, as
shown in step (d). Step (e) shows the state where
only process 3 is left in the queue and has acquired
the lock. If process 3 releases the lock before an-
other process requests it, the 1ock variable will be
set to NIL, and the state will be the same as in

step (a).

Because we implemented the lock algorithm for
distributed memory, we cannot use simple memory
pointers for the next and lock variables as used
in the original MCS algorithm. As we described in
Section III-B, a remote memory location is speci-
fied as a triple of the node id, port id, and virtual
memory address. Instead of using memory point-
ers, our lock implementation uses process ranks.
Each process then has an array where the ith el-

@ @
(b)

© m\ LR}
@ m LB
© ®/P_\ Eh

Fig. 3. Example of a distributed lock

ement stores the remote memory triple describing
the location of the ith process’ next and locked
variables. For example, when a process releases a
lock, and reads a value of 4 in its next variable,
it gets the remote address triple for its successors
locked variable by looking up the 4th entry in the
array.

V. EXPERIMENTAL RESULTS

In this section, we evaluate our implementa-
tion of NIC-based atomic remote memory opera-
tions. We first evaluate the individual operations
and compare them to host-based implementations.
Next we implement a distributed lock using atomic
remote memory operations and evaluate the per-
formance of the locks using our NIC-based imple-
mentation and the host-based implementations.
Finally, we evaluate impact of using NIC-based
versus host-based atomic remote memory opera-
tion on CPU and network utilization.

The performance results were run on two clus-
ters. One cluster consists of 16' dual 300MHz
Pentium II machines each with 128MB of RAM,
running Linux kernel version 2.2.5. The machines
are connected by a Myrinet[4] LAN network using
NICs with 33MHz LANai 4.3 processors. These
are connected to a 16 port switch. The second
cluster consists of eight quad 700MHz Pentium ITI
machines each with 1GB of RAM, running Linux
kernel version 2.2.17. These machines are con-
nected by another Myrinet LAN network using
NICs with 66MHz LANai 7.2 processors. These
are connected to an eight port switch.

! At the time when we ran the experiments only 10 of these
machines were available.
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A. Atomic Remote Memory Operations

We tested the performance of the NIC-based
atomic operations and compared it to host-based
implementations. A host-based test consists of a
process which sends atomic operation request mes-
sages to a server process on another node. The
server process receives the request messages, per-
forms the operations and returns reply messages.
Because a host-based implementation would most
likely to be on a separate thread which would be
interrupt driven, we tested three different methods
that the server could use for checking for incom-
ing messages. In the first case, poll, the server
process is polling for the reception of new re-
quest messages. In the second case, spin-block,
the server process polls for a short while, then
blocks waiting for the message. In the last case,
block no-spin, the server process blocks immedi-
ately waiting for a new message without polling.
These three cases correspond to the GM functions
gm receive(), gm blocking receive() and gm_
blocking receive_no_spin(), respectively.

The tests consist of taking the average time of
10,000 iterations of each atomic operation. The
compare&swap operation was evaluated in two
ways, once where the compare failed (miss) so
that the swap was not performed, and once there
the compare succeeded (hit). Figures 4(a) and
4(b) show the results of these tests for 300MHz
host processors with 33MHz LANai 4.3 NICs,
and 700MHz host processors with 66 MHz LANai

7.2 NICs, respectively. Notice that in all cases
the NIC-based atomic operations perform better
than any of the host-based operations. Using the
300MHz hosts and 33MHz LANai 4.3 NICs, the
NIC-based compare&swap (hit) operation took
an average of 42.1us as compared to the best
host-based implementation, polling, which took
an average of 49.9us. This is a 15.7% improve-
ment. The spin-block host-based implementation
took an average of 50.2us. The NIC-based im-
plementation showed a 16.1% improvement over
this host-based implementation. The blocking-
no-spin host-based implementation took an av-
erage of 94.3us. The NIC-based implementation
showed a 55.4% improvement over this host-based
implementation. When we used the 700MHz hosts
with the 66 MHz LANai 7.3 NICs the NIC-based
compare&swap (hit) operation took an average of
29.7us while the host-based polling implementa-
tion took 32.2us, the host-based spin-block took
32.4us and the host-based blocking-no-spin imple-
mentation took 45.4us. This is a 7.6%, 8.3% and
34.5% improvement respectively.

One should note, that these tests represent the
best-case configurations. At each node there is
only one process running. In this situation, for
the host-based implementation, the polling and
spin-block versions of the server thread perform
much better than the block-no-spin version. How-
ever, these versions would typically not be used in
a situation where the server thread was sharing a



single processor with another thread. In such a sit-
uation, if a server thread uses polling receives, the
CPU will be under-utilized whenever the server
thread is scheduled and no messages are coming
in. Using blocking-no-spin receives releases the
CPU when no messages are waiting to be received,
and will not schedule the process until a message
comes in. This leads to better performance of the
main thread because it get scheduled more often.
Using spin-block receives works in a similar man-
ner as using blocking-no-spin receives, except that
when there are no messages to receive, the opera-
tion polls for a while before blocking. This works
well when incoming messages are bursty, so that
many messages can be handled with one interrupt.
Otherwise, if no new message is received, the time
that the server thread spends polling is wasted.
This again would lead to poor main thread per-
formance.

B. Distributed Locks

The lock test for our host-based implementation
consists of the main thread, a server thread and
a shared memory region which both threads can
read from and write to. The main thread requests
and releases locks by sending remote atomic oper-
ation requests to the server threads at the target
node. The server thread performs the operations
on the target memory location in the shared mem-
ory region. The NIC-based implementation con-
sists of just a single thread which requests and re-
leases locks using NIC-based remote atomic mem-
ory operations.

In this test we took the average time it takes
for one process at one particular node to repeat-
edly acquire and release a remote lock. To vary
the load, we added more nodes also repeatedly
locking and unlocking the same lock. The tests
were run using both an SMP enabled kernel, so
that one CPU was available for each thread, and
using a uniprocessor kernel (UP), in which case
both threads shared the same processor. For the
tests run on the SMP kernel, the server thread
for the host-based implementation used polling re-
ceives, since this performed better than the other
receive methods when there was no other thread
contending for the CPU. While for the tests run
on the uniprocessor kernel, the server thread used
polling-no-spin receives, because this performed
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Fig. 5. Latency of locking and unlocking with multiple
nodes contending

better than the other receive methods when the
server thread was sharing the processor with the
main thread.

Figures 5(a) and 5(b) show the results of this
test. We show the results for the host-based
blocking-no-spin using the uniprocessor (UP) ker-
nel, and the host-based polling using the SMP
kernel and compare them to the NIC-based im-
plementations on each kernel. Notice that in
both graphs the NIC-based implementation out-
performs the host-based implementations. Notice
also that because there is only one process neces-
sary for the NIC-based implementation, the NIC-
based implementation gives the same performance
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Fig. 6. Percentage improvement of lock benchmark

using either kernel. As expected the host-based
polling implementation on the SMP kernel out-
performs the host-based blocking implementation
using the uniprocessor kernel because of the lack
of context switching overhead in the SMP case.

Figures 6(a) and 6(b) show the percentage im-
provement of the NIC-based implementation over
the host-based implementation for the SMP and
uniprocessor (UP) kernels. Notice that for the
300MHz machines, we see up to a 62.3% improve-
ment for the UP case and up to a 61.4% improve-
ment for the SMP case. For the 700MHz ma-
chines, we see up to a 57.8% improvement for the
UP case and up to a 54.0% improvement for the
SMP case.

C. CPU and Network Utilization

To test the impact of using the atomic oper-
ations on CPU utilization we performed a test
where a process (the counter process) at the home
node of a lock performs a loop for 1,000us and
counts how many iterations of the loop it was able
to perform. While the counter process is doing
that a process at another node repeatedly locks
and unlocks the lock. We inserted a delay just af-
ter the lock operation and another just after the
unlock operation. By varying these delays, we can
alter the rate at which the lock-unlocks are per-
formed. We also performed the test where no lock
or unlock operations were performed to serve as a
baseline (idle case). When running a uniprocessor
kernel, the number of iterations that the counter

process is able to perform in the alloted time gives
an indication of the amount of CPU time that is
used in processing incoming atomic operation re-
quests. The more time that the CPU is spend-
ing processing incoming requests, the fewer iter-
ations the counter process is able to complete.
In this test we used the uniprocessor (UP) ker-
nel and the blocking-no-spin version of the server
thread for the host-based implementation. This
way, when atomic operation requests are received,
the counter process will be interrupted by the
server process, and the impact can be measured.

Figure 7 shows the results of this test. The
figure shows the number of iterations that the
counter process was able to complete while lock-
unlock operations were happening at a certain
rate. As expected, for both the 700MHz and
300MHz machines, the NIC-based implementation
is unaffected by the number of atomic operations
being performed, because the operations are per-
formed completely by the NIC and require no in-
tervention of the host processor. However, for the
host-based implementation we see that the CPU
utilization of the counter thread at the home node
decreases as the number of atomic operations the
server node is processing increases. In the host-
based implementation, the main thread must be
interrupted so that the server thread can process
the incoming request leading to decreased CPU
utilization by the counter process.

We also evaluated the impact of handling
atomic remote memory operations on communi-
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home node of a lock can perform in 1,000us while a
process at another node is locking and unlocking the
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LANai 4.3 NICs (300 L4), and 700MHz hosts with
66MHz LANai 7.2 NICs (700 L7).

cation bandwidth. This test is similar to the CPU
utilization test except that the process at the lock
home node is performing a bandwidth test with a
process at a third node. The process at the lock
home node measures the bandwidth by timing how
long it takes to send 1,000 16MB messages to the
process at the third node and receive a reply from
it. Figure 8 shows the bandwidth achievable by
the process at the home node in the presence of
lock-unlock operations. Notice that for both clus-
ters, the impact of handling the atomic operations
is greater on the host-based implementation than
on the NIC-based implementation. In both NIC-
based and host-based implementations, atomic op-
eration request and reply messages need to be sent
and received which affect the bandwidth at the
home node. However, in addition to this, in the
host-based implementation, the process perform-
ing the bandwidth test is being interrupted to han-
dle the incoming atomic operation requests. This
has an effect on the rate at which the bandwidth
process can pass the send commands to the NIC.

VI. CONCLUSIONS

In this paper, we presented an implementation
of NIC-based atomic remote memory operations.
We added support for atomic remote memory op-
erations to GM version 1.5. We then evaluated
the performance of the NIC-based atomic oper-
ations and compared them with atomic opera-
tions implemented at the host level. We found a

Lock-unlocks per second

Fig. 8. The send bandwidth achievable by a process
at the home node of a lock while a process at another
node is locking and unlocking the lock at a certain
rate for 300MHz hosts with 33MHz LANai 4.3 NICs
(300 L4), and 700MHz hosts with 66MHz LANai 7.2
NICs (700 L7).

15.7% improvement for the compare&swap opera-
tion when comparing the NIC-based implementa-
tion to the best host-based implementation. Us-
ing these atomic operations to implement a dis-
tributed lock, we saw up to a 62.3% improvement
when using NIC-based atomic operations. Be-
cause the NIC-based atomic operations do not use
the host processor they gave us better CPU uti-
lization and a smaller impact on communication
bandwidth than when using the host-based imple-
mentations.

By using the NIC-based remote atomic mem-
ory operations along with remote memory access
methods provided by some communication layers
such as VIA and GM, applications can reduce the
number of messages that need to be handled by
the application. This means that for applications
which currently use server threads, the number
of interrupts can be reduced, or that the server
thread can be eliminated altogether. This would
lead to better CPU utilization and performance
of the main thread. Such an approach demon-
strates potential for designing high performance
system area networks for next generation clusters
and servers.

ADDITIONAL INFORMATION

Additional papers related to this research can
be obtained from the following Web pages:
Network-Based Computing Laboratory (http://
nowlab.cis.ohio-state.edu) and Parallel Architec-



ture and Communication Group (http://www.cis.
ohio-state.edu/~panda/pac.html). If you are in-
terested in using this software, please contact Dr.
D. K. Panda at panda@Qdcis.ohio-state.edu.
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