
ENHANCING MPI POINT-TO-POINT AND

COLLECTIVES FOR CLUSTERS WITH

ONLOADED/OFFLOADED INFINIBAND ADAPTERS

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Rahul Kumar, B.Tech.

* * * * *

The Ohio State University

2008

Master’s Examination Committee:

Prof. Dhabaleswar K. Panda, Adviser

Prof. P. Sadayappan

Approved by

Adviser

Graduate Program in
Computer Science and

Engineering

c© Copyright by

Rahul Kumar

2008

ABSTRACT

Many applications from various fields such as life sciences, weather forecasting,

financial services require massive amounts of computational power. Supercomput-

ers built using commodity components, called clusters, are a very cost effective way

of providing such huge computational power. Recently, the supercomputing arena

has witnessed phenomenal growth of commodity clusters built using InfiniBand in-

terconnects and multi-core systems. InfiniBand is a high performance interconnect

providing low latency and high bandwidth. Message Passing Interface (MPI) is a

popular model to write applications for such machines. Therefore, it is important to

optimize MPI for these emerging clusters.

InfiniBand architecture allows for varying implementations of the network proto-

col stack. For example, the protocol can be totally on-loaded to the host processing

core or it can be off-loaded onto the NIC processor or can use a combination of the

two. Understanding the characteristics of these different implementations is critical

in optimizing MPI. In this thesis, we systematically study some of these architec-

tures which are commercially available. Based on their characteristics, we propose

communication algorithms for one of the most extensively used collective operation,

MPI Alltoall. We also redesign the point-to-point rendezvous protocol for offload

network interfaces to allow for overlap of communication and computation. The de-

signs developed as part of this thesis are available in MVAPICH, which is a popular

ii

open-source implementation of MPI over InfiniBand and is used by several hundred

top computing sites all around the world.

iii

This is dedicated to my parents

iv

ACKNOWLEDGMENTS

I would like to thank my adviser, Prof. D. K. Panda for guiding me throughout

the duration of my M.S. study. I am thankful for all the efforts he took for my thesis.

I would like to thank him for all his advices during my stay here. I am thankful to

Prof. P. Sadayappan for agreeing to serve on my Masters examination committee.

I am grateful for the financial support by Qlogic and Mellanox. I am especially

thankful to Dr. Amith Mamidala, who was not only a great mentor, but a close

friend. I am grateful to have had Dr. Sayantan Sur as a mentor during my first

year of graduate study. I am also thankful to Matthew Koop for his guidance and

discussions.

I would like to thank all my senior Nowlab members Gopal Santhanaraman, Dr.

Karthik Vaidyanathan, Sundeep Narravula, Ranjit Noronha, Wei Huang and Lei Chai

for their patience and guidance. I would also like to thank all my colleagues Ping Lai,

Debraj De, Xiangyong Ouyang, Karthik Gopalakrishnan, Jaidev Sridhar and Tejus

Gangadharappa. I would also like to thank Jonathan for helping me in solving my

equipment problems.

I would also like to thank all the people who made my stay at Ohio State memo-

rable especially Sagar and Jatin.

I would like to thank my family members, Renuka(my mom), Dilip (my dad),

Rohit (my brother), Rohini and Ragini (my sisters) for their love and support. Finally,

v

I would also like to thank my uncles Ganga Sah and Shambhu Sah without them I

would not be what I am today.

vi

VITA

September 12, 1981 .Born - Madhubani, India

2004 .B.Tech. Electrical Engineering,
Indian Institute of Technology (IIT)
Roorkee, India

2004-2006 . Applications Engineer,
Oracle Corporation.

2006-present .Graduate Research Associate,
The Ohio State University.

PUBLICATIONS

Research Publications

R. Kumar, A. Mamidala, M. Koop, G. Santhanaraman and D. K. Panda “Lock-free
Asynchronous Rendezvous Design for MPI Point-to-point Communication”. Eu-
roPVM/MPI, Dublin, Ireland, September, 2008.

M. Koop, R. Kumar and D. K. Panda “Can Software Reliability Outperform Hard-
ware Reliability on High Performance Interconnects? A Case Study with MPI over
InfiniBand”. 22nd ACM International Conference on Supercomputing (ICS) , Island
of Kos, Greece, June, 2008.

R. Kumar, A. Mamidala and D. K. Panda “Scaling Alltoall Collective on Multi-
core Systems”. Workshop on Communication Architecture for Clusters (CAC); in
conjunction with the International Parallel and Distributed Processing Symposium
(IPDPS), Miami, Florida, April, 2008.

vii

A. Mamidala, R. Kumar, Debraj De and D. K. Panda “MPI Collectives on Mod-
ern Multicore Clusters: Performance Optimizations and Communication Character-
istics”. Int.l Symposium on the Cluster Computing and the Grid (CCGrid), Lyon,
France, May, 2008.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Studies in High Performance Computing Prof. D. K. Panda

viii

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Figures . xi

Chapters:

1. Introduction . 1

1.1 Overview of InfiniBand Architecture 2
1.1.1 Offload InfiniBand Interfaces 4
1.1.2 Onload InfiniBand Interfaces 6

1.2 Overview of MPI . 7
1.2.1 Point-to-point . 7
1.2.2 Collective . 8

1.3 Problem Statement . 8
1.4 Our Approach . 10

2. Asynchronous Progress for Offload Interfaces 13

2.1 Background . 14
2.1.1 Point-to-Point Communication Protocols 14
2.1.2 Progress . 16

2.2 Related Work . 17
2.3 Design of Asynchronous Progress 19

ix

2.4 Evaluation . 21
2.4.1 Comparison with existing design 21
2.4.2 Overlap Microbenchmark Performance 23
2.4.3 Application Performance . 25

2.5 Summary . 28

3. Alltoall Collective for Onload and Offload Interfaces 29

3.1 Background . 30
3.1.1 Alltoall Algorithms . 30
3.1.2 CPMD . 31

3.2 Motivation . 32
3.2.1 Performance of bi-directional bandwidth 33

3.3 Related Work . 35
3.4 Proposed Design . 36
3.5 Evaluation . 39

3.5.1 Alltoall Performance . 40
3.5.2 Application Performance . 43

3.6 Summary . 45

4. Contributions and Future Work . 46

4.1 Summary of Research Contributions and Future Work 46
4.1.1 Providing Asynchronous Progress in Rendezvous Protocol . 46
4.1.2 Improving Performance of Alltoall Collective 47

Appendices:

A. Scheduling Policies . 49

Bibliography . 52

x

LIST OF FIGURES

Figure Page

2.1 Rendezvous protocols . 15

2.2 Overlap capability of rendezvous protocols 17

2.3 Asynchronous Rendezvous Protocol Implementations 19

2.4 Bandwidth for large messages . 21

2.5 NAS-SP Normalized Execution Time 21

2.6 Application availability at Receiver 23

2.7 Application availability at Sender . 23

2.8 Effect of scheduling algorithm . 24

2.9 Matrix Multiplication: MPI + OpenMP configuration 26

2.10 Matrix Multiplication: MPI x1 configuration 26

2.11 Matrix Multiplication: MPI x4 configuration 27

3.1 Performance of alltoall on multi-core systems 32

3.2 InfiniPath SDR: Multi-pair Bidirectional Bandwidth. 33

3.3 ConnectX DDR: Multi-pair Bidirectional Bandwidth. 34

3.4 InfiniHost III DDR: Multi-pair Bidirectional Bandwidth. 35

xi

3.5 Communication steps of the proposed design 37

3.6 InfiniPath: Alltoall time on 64X8 system 40

3.7 InfiniPath: Alltoall time of 512Byte message 42

3.8 Infinihost III: Performance of different schemes on 64X8 system . . . 42

3.9 ConnectX: Performance of different schemes on 4X8 system 43

3.10 CPMD Application Benchmark Performance on InfiniPath: Different
Input Files . 44

3.11 CPMD Application Benchmark Performance on InfiniPath: Varying
System Sizes . 45

xii

CHAPTER 1

INTRODUCTION

Large computing power is required to solve many applications in different fields

such as life sciences, financial services, engineering and biotechnology. Due to its

cost effectiveness, building a supercomputer from commercially available hardware

components has never been as popular as today. The current fastest supercomputer,

codenamed Roadrunner[1], is a paramount example to it. This is the first time that

a cluster is the fastest supercomputer in the world and in fact, it is twice as fast

as the next fastest supercomputer. A cluster is a machine built out of commodity

components taken off-the-shelf.

Cluster computing is also observing a dramatic increase in size due to the advent of

multi-core architecture. Multi-core architecture is a growing industry trend as single

core processors are reaching the physical limits in terms of complexity, speed and

thermal limit. Many new deployments in high-end computing systems are multi-core

based, employing InfiniBand[13] as the cluster interconnect.

InfiniBand is a high-performance cluster interconnect based on open standards. It

offers several features to achieve very low communication latency and high bandwidth

required by many applications. It has gained widespread acceptance in high perfor-

mance computing over the last few years. This is evident by the increase in number

1

of top 500[5] supercomputers using InfiniBand as the interconnect. Also, over the

past few years there has been a surge in network interface based processing (offload)

networks. But with change in processor architectures to multi-core processor, host

based NICs have re-emerged to take advantage of faster processing power of on-board

cores. This has renewed the discussion on offload and onload[29] network processing.

Message Passing Interface (MPI)[19] is the most commonly used method for pro-

gramming high performance computing (HPC) systems. MVAPICH[21] is a popular

MPI implementation over InfiniBand. It is used by many organizations and powers

several of the top 500 supercomputers.

In this chapter we provide an overview of InfiniBand interconnect and message

passing interface (MPI).

1.1 Overview of InfiniBand Architecture

Many HPC applications are latency and/or bandwidth sensitive. Traditional net-

works like Ethernet were not able to match the tremendous increase in computing

speed of modern processors. This caused communication as the bottleneck in scal-

ing to larger systems. There was a need for high-performance network. InfiniBand

(IB) was originally proposed as a general I/O technology, allowing for a single fabric

to replace all existing fabrics. However, currently InfiniBand is mainly used as an

Inter Process Communication (IPC) and Storage Area Network (SAN) interconnect

technology.

The main reasons for high latency and low bandwidth of traditional networks

were unnecessary intermediate buffer copies and context switches between user and

kernel mode during each communication. In order to avoid multiple context switches

2

and buffer copies, InfiniBand provides Operating System (OS) bypass facility. In

InfiniBand, unlike traditional stack based protocols, the OS is not involved in seg-

mentation or processing of other protocol specific messages. To enable OS bypass,

InfiniBand defines the concept of Queue Pair (QP). The Queue Pair model provides

user level processes direct access to the IB Host Channel Adapter (HCA). Each queue

pair consists of both send and receive work queue, and is additionally associated with

a Completion Queue (CQ). Work Queue Entries (WQEs) are posted from the user

level for processing by the HCA. Upon completion of a WQE, the HCA posts an entry

to the completion queue, allowing the user level process to poll and/or wait on the

completion queue for events related to the queue pair.

In addition to send/receive communication semantics, InfiniBand also provides

Remote Direct Memory Access (RDMA) capability. RDMA enables data transfer

from the address space of an application process to another process across the network

fabric without requiring involvement of the host CPU. This removes unnecessary

storage of data in intermediate buffers.

Two-sided send/receive operations are initiated by enqueueing a send WQE on a

QP send queue. The WQE specifies only the senders local buffer. The remote process

must pre-post a receive WQE on the corresponding receive queue which specifies a

local buffer address to be used as the destination of the receive. Send completion

indicates the send WQE is completed locally and results in a sender side CQ entry.

When the transfer actually completes a CQ entry will be posted to the receivers CQ.

One-sided RDMA operations are likewise initiated by enqueueing a RDMA WQE on

the Send Queue. However, this WQE specifies both the source and target virtual

addresses along with a protection key for the remote buffer. Both the protection key

3

and remote buffer address must be obtained by the initiator of the RDMA read/write

prior to submitting the WQE. Completion of the RDMA operation is local and results

in a CQ entry at the initiator. The operation is one sided in the sense that the

remote application does not receive notification of its completion. However, this

places some additional constraints on the source/destination buffers involved in the

transfer. As data is moved directly between the host channel adapter (HCA) and

user level source/destination buffers, these buffers must be registered with the HCA

in advance of their use. Registration is a relatively expensive operation which locks the

memory pages associated with the request, thereby preserving the virtual to physical

mappings.

Additionally, when supporting send/receive semantics, preposted receive buffers

are consumed in order as data arrives on the host channel adapter (HCA). Since

no attempt is made to match available buffers to the incoming message size, the

maximum size of a message is constrained to the minimum size of the posted receive

buffers. The network processing, such as segmentation, assembly, reliability, transfer

of data from main memory to NIC, can either be offloaded to the NIC or handled by

the host processor itself.

1.1.1 Offload InfiniBand Interfaces

Offload interfaces relieve the host processor of network processing. This enables

concurrent processing of computation and network. These devices feature an HCA

core that is capable of performing various network tasks such as:

4

• Remote Direct Memory Access (RDMA): Direct access to remote memory elim-

inates the need to copy data, which reduces CPU overhead as well as latency

and saves host memory bandwidth.

• Operating System Bypass: This feature enables applications to eliminate kernel

calls to the operating system, which greatly reduces CPU overhead, context

switching overhead and latencies.

• Transport Offload Hardware: Enables reduced CPU overhead.

There are many such adapters commercially available. The most popular are In-

finiHost III[2] and ConnectX[18] architectures provided by Mellanox Technologies[4].

InfiniHost III is the third generation of InfiniBand Host Channel Adapter (HCA) from

Mellanox. It features a full hardware implementation of the InfiniBand architecture

with Hardware Transport Engine that drastically reduces the host CPU overhead on

communication. ConnectX is the fourth generation InfiniBand HCA from Mellanox.

The ConnectX architecture is designed to improve the processing rate of incoming

packets. Compared to the previous InfiniHost III architecture, it has more advanced

packet processing capabilities. In order to effectively use these capabilities, ConnectX

has advanced scheduling engines which can assign processing duties (like protocol pro-

cessing, data integrity checks, etc.) to idle processing elements. The scheduling of

packet processing is done directly in hardware, without firmware involvement in the

critical path. These enhancements to the ConnectX architecture are expected to im-

prove its performance on multi-core nodes when multiple processes are communicating

at the same time, generating many simultaneous network messages. For very small

message sizes (less than around 512Bytes), Programmed I/O (PIO) is used to send

5

data to the network interface. This is different from the InfiniHost III architecture

which uses DMA for all message sizes.

1.1.2 Onload InfiniBand Interfaces

Onload interfaces do not contain an embedded processor and all control and pro-

tocol stack operations are performed on the host processor. The advantage of this

architecture is the host processor is much more powerful computationally and hence

makes it possible to handle protocol computations much faster than an embedded

processor. The disadvantage is that while the host is processing communication pro-

tocols it is not available to perform application processing. There can be various

levels of onloading depending on the kind of network tasks performed by the host

processor instead of NIC. Higher increase in core counts relative to the improvements

in adapter clock frequency may provide justification for a higher ratio of host-based

to adapter-based protocol handling.

Currently there is only one InfiniBand adapter available, called InfiniPath[27],

which uses this principle. InfiniPath does not use DMA engines to transfer data

from the memory to NIC, but rather accesses interface memory via programmed

I/O. This means that the interface does not need to explicitly validate and map

memory for transmits. Therefore it does not require memory used for data transmits

to be registered or pinned with the network interface. Unlike traditional InfiniBand

adapters, InfiniPath is stateless. Traditional IB adapters not only require an explicit

connection, but they also require that some application memory be committed to a

connection in order to transfer data. In order to support a model like MPI, this can

lead to an extremely large amount of memory. This makes InfiniPath more scalable.

6

1.2 Overview of MPI

MPI[19] has established itself as the de-facto standard of parallel computing.

Nearly all scientific computation applications are written using MPI, and many higher-

level communication libraries require MPI. MPI is very portable and has been ported

to nearly all parallel computer architectures. There is a wide variety of quality MPI

implementations available as open-source: MPICH [15], MPICH2 [27], MVAPICH,

MVAPICH2 [34] and OpenMPI [13]. MPI provides two major modes of communica-

tion, point-to-point and collective. In point-to-point communication, individual pairs

of processes are involved in sending and receiving messages. In collective commu-

nication operations, groups of processes are involved in the data exchange. In this

section, we describe the major communication modes offered by MPI in detail, their

semantics and issues in designing high-performance MPI.

1.2.1 Point-to-point

In an MPI program, two processes can exchange messages using point-to-point

communication primitives. The process wishing to send a message, can send it using a

function MPI Send. The receiving process may retrieve this message with a matching

MPI Recv. Messages are matched by a three-tuple source, tag and context. The

source indicates the process where the message originated. The tag is a user supplied

integer value and can be used to separate different messages. The context is the

group of the processes the sending process belongs to. MPI Send and MPI Recv

are the most commonly used MPI functions. However, there are variations of these

calls. MPI Send and MPI Recv are often called as the blocking mode calls, i.e. the

sending and receiving processes block on these calls until the corresponding operations

7

complete, or the message buffers can be reclaimed by the application. MPI Isend and

MPI Irecv are the asynchronous versions of the send and receive calls. Using these,

the application can initiate send and receive operations while continuing to perform its

own computation. The MPI library will attempt to make progress in the meanwhile

and can complete these operations. In order to finish the asynchronous operations,

the application then needs to call MPI Wait.

1.2.2 Collective

In addition to the point-to-point communication primitives, MPI offers collective

communication operations. These functions allow a group of processes to perform

communication in a coordinated fashion. Based on the physical network and sys-

tem topology, these operations can be then highly optimized by the MPI library. The

application using these MPI functions then need not be aware of specific platform spe-

cific parameters in order to optimize these communication patterns. Examples of col-

lective communication are: MPI Alltoall, MPI Allgather, MPI Bcast, MPI Reduce,

MPI Barrier, etc. Thus, the collective operations not only provide a simple and in-

tuitive interface to the application programmers but also give MPI implementers a

greater opportunity to optimize them.

1.3 Problem Statement

Different applications exhibit different characteristics. Just as one size does not fit

all, a single MPI design for different architectures of InfiniBand interconnect does not

achieve the maximum performance or scalability. Onload and offload interconnect

architectures offer many benefits which can help certain applications. It is necessary

for the MPI designer to provide these benefits to the applications.

8

Offload interfaces are capable of handling communication without the interven-

tion of CPU. Applications can take benefit of this by overlapping communication with

computation. However, this ability needs to be provided by the MPI implementa-

tion. MPI does provide non-blocking semantics so that the application can benefit

from computation and communication overlap. However, it requires some support

from hardware in order to achieve this overlap. Certain offload adapters, such as

Quadrics[28], have the hardware capability to provide this without help from MPI.

However, most of the InfiniBand adapters do not have this capability due to hardware

complexity. Typical MPI implementations use eager protocol for short messages and

provide for good amount of overlap. For large messages, typically rendezvous protocol

is used. The rendezvous protocol involves a handshake to negotiate buffer availability

and then the message transfer takes place. Although this protocol provides for good

buffer utilization, it hinders the ability to overlap communication with computation.

MPI must provide for asynchronous progress of the rendezvous protocol, in order to

enable overlap of large message communication. Thus it is important to address this

issue in MPI implementation for offload adapters. In particular, we aim to provide

answers to the following questions:

• What are the drawbacks of current asynchronous progress designs?

• Can a better asynchronous progress be designed?

• Can asynchronous progress provide overlap without performance degradation?

In addition to point-to-point communication, collectives are extensively used in

applications. Among them complete data exchange collective, MPI Alltoall, is one

of the most intensive communication patterns used in various applications including

9

molecular dynamics applications like CPMD [3], NAMD [26], LU-factorization, FFT

and matrix transpose. MPI Alltoall is known to suffer from performance scaling

problems. With the increase in the number of processing elements, owing to multi-core

systems, it is highly desirable to optimize this data intensive communication primitive.

Several algorithms have been proposed to optimize this collective in the past. With

the introduction of new architectural concepts such as multi-core processors, these

algorithms need renewed attention. In multi-core systems, the processes within a

node have a very low latency communication between them compared to inter-node

latency. This gives scope for improved algorithms. The problem also requires study

with respect to different network architectures such as offloading and onloading of

network protocol.

In this work, we aim to provide answers to the following questions:

• How do the current multi-core aware algorithms for other collectives suit for

alltoall?

• What are the characteristics of offload and onload InfiniBand NICs?

• Are collectives algorithms affected by offload/onload architecture?

• Are there better alltoall collective algorithms for these NICs?

1.4 Our Approach

There are several designs that have been proposed previously to provide asyn-

chronous progress. These designs typically use an additional thread to handle incom-

ing rendezvous requests. For example, in [34], a RDMA read based threaded design

is proposed to provide asynchronous progress. Though the basic approach has been

10

proven to achieve good computation and communication overlap, there are several

overheads associated with the implementation of the design. First, the existing design

uses locking to protect the shared data structures in the critical communication path.

Second, it uses multiple interrupts to make progress. Third, there is no mechanism

to selectively ignore the events generated. In this work, we propose an enhanced

asynchronous rendezvous protocol which overcomes these limitations. Specifically,

our design does not require locks in the communication path. In our approach, the

main application thread makes progress on the rendezvous transfer with the help of

an additional thread. The communication between the two threads occurs via system

signals.

In the second work, we study the characteristics of offload and onload NICs and

demonstrate how algorithms for MPI Alltoall is affected by these characteristics.

Specifically, we propose different algorithms for multi-core systems connected with

varying implementations of InfiniBand network interfaces.

The rest of the thesis is organized in the following way. In Chapter 2, we redesign

the rendezvous protocol to provide for overlap of communication with computation.

We first study and evaluate the current designs for asynchronous progress of ren-

dezvous protocol. We propose an improved design and evaluate our design using

publicly available benchmarks. Finally, we show the performance improvement of

matrix multiplication kernel with the proposed design by overlapping communication

with computation.

In Chapter 3, we take on the challenge of developing better algorithms for all-

toall collective. First we study the current alltoall algorithms. Then we evaluate the

11

network characteristics of different modern NICs. Based on this we propose differ-

ent algorithms for different NICs. Final conclusions and areas for future work are

presented in Chapter 4.

12

CHAPTER 2

ASYNCHRONOUS PROGRESS FOR OFFLOAD
INTERFACES

Offload interfaces can transfer data from memory without the involvement of the

host processor. Applications can benefit from this by concurrently performing com-

putation after initiation of communication. MPI does provide non-blocking semantics

of point-to-point communication. Applications can use MPI Isend, MPI Irecv to ini-

tiate the communication operations and return to computing. When it needs the

message, the application can call MPI Wait. Most high-performance MPI implemen-

tations are based on polling progress engines, i.e. the sender and receiver processes

must periodically call MPI functions to ensure communication progress. However,

due to certain MPI internal protocols (such as rendezvous protocol), overlap of com-

putation and communication may be hampered. If progress calls are not triggered

for a long time, messages may be severely delayed. In this Chapter, we take on the

challenge of redesigning the rendezvous protocol in order to improve the computation

and communication overlap. We design a lock-free asynchronous progress engine for

RDMA based rendezvous protocol.

The rest of the chapter is organized as follows. In Section 2.1, we provide necessary

background information for this work. In Section 2.2, we describe current approaches

13

to provide asynchronous progress in MPI and their limitations. In Section 2.3, we

discuss our proposed design. In Section 2.4, we evaluate our design and provide

experimental results. Finally, in Section 2.5, we summarize the results and impact of

this work.

2.1 Background

In this Section, we provide the necessary background on MPI point-to-point pro-

tocols and the need for asynchronous progress.

2.1.1 Point-to-Point Communication Protocols

MPI communication is often implemented using two general protocols:

Eager protocol: In this protocol, the sender process sends the message eagerly

to the receiver. The receiver needs to provide buffers in advance for the incoming

messages. This protocol has low startup overhead and is used for small messages.

Rendezvous protocol: The rendezvous protocol involves a handshake during

which the buffer availability is negotiated. The message transfer occurs after the

handshake. This protocol is used for transferring large messages. In the rendezvous

protocol, the actual data can be transferred using RDMA operations or using send-

recv operations. In the send-recv method, the messages are divided into small chunks

and transmitted using eager protocol. At the receiver, the chunks are assembled into

the destination buffer. This protocol, however, incurs additional message copies. In

the other method, RDMA write or RDMA read can be used to transfer the data. Both

RDMA based approaches can achieve zero copy message transfer. The RDMA write

based and RDMA read based rendezvous protocol have been shown in Figures 2.1(a)

and 2.1(b), respectively.

14

(a) RDMA write based (b) RDMA read based

Figure 2.1: Rendezvous protocols

15

2.1.2 Progress

RDMA based rendezvous protocols are more popular for modern networks, which

support RDMA operations. OS bypass communication architecture, such as in Infini-

Band, allow the network interface card to perform data transfer asynchronously with

the host processor. This also allows for overlap of communication with computation.

MPI provides non-blocking communication primitives to take advantage of this ca-

pability of networks. However, for large messages, which use rendezvous protocol,

the ability to leverage overlap is limited due to lack of asynchronous progress of the

rendezvous protocol.

Suppose the receiving process posts a non-blocking receive before the arrival of the

RNDZ START message. After the post, the receiver begins to perform computation.

On arrival of the RNDZ START message, the receiver is unaware of it’s arrival. The

progress on the communication takes place after the receiver finishes the computation.

This is also shown in Figures 2.2(a) and 2.2(b) for RDMA write and RDMA read based

protocols, respectively. Therefore, most of the communication takes place within the

MPI Wait call when the host processor is unable to perform any useful work. In the

RDMA write based protocol, both the sender and receiver are unable to provide for

overlap. In RDMA read based protocol, the receiver is unable to achieve any overlap.

However, the sender is able to achieve almost total overlap as it only takes part in

sending the initial request message.

Asynchronous progress is useful for both onload as well as offload interfaces to help

the sender and receiver process communication independently. In offload interfaces,

it also helps in achieving overlap of communication with computation.

16

(a) RDMA write

(b) RDMA read

Figure 2.2: Overlap capability of rendezvous protocols

2.2 Related Work

Several studies have been done to show the importance of overlap capability in

MPI library. Brightwell et al. [6] show the impact of these features on applications.

Eicken et al. [8] propose for hardware support for active messages to provide commu-

nication and computation overlap. Schemes to achieve overlap in one-sided commu-

nication have been proposed in [22]. Sur et al. [34] propose thread based rendezvous

protocol which employs locks for protection. Our design is an improvement over this

design.

In this Section, we explain the design proposed in [34]. The design used Infini-

Band’s RDMA read capability together with IBA’s event notification mechanism.

Figure 2.3 (left) provides an overview of the approach. As shown in the figure,

the main idea in achieving asynchronous progress is to trigger an event once a con-

trol message arrives at a process. This interrupt invokes a callback handler which

17

processes the message and makes progress on the rendezvous. The required control

messages which triggers the events in the existing scheme are: a) RNDV START

and b) RNDV FINISH. In addition, the RDMA read completion also triggers a lo-

cal completion event. This design provides good ability to overlap computation and

communication via asynchronous progress. For example, if an application is busy

doing computation, the callback handler can make progress via the interrupt mech-

anism. However, there are a couple of important details that arise in implementing

the approach.

One main issue in the existing approach is the overhead of interrupt generation. As

explained above, a total of three interrupts are generated for every rendezvous transfer

of data. This can potentially degrade the performance for medium messages using

this protocol. Further, it is not easy to provide for a mechanism to selectively ignore

the events generated by the control messages. This feature can be used whenever

the main application thread is already making progress and is expecting the control

messages. Another important issue which cannot be overlooked is the overhead of

locking/unlocking shared data structures. In this work, we take into account all these

issues and propose a new implementation alternative. Specifically, we aim to:

• Avoid using locks for shared data structures

• Reduce the number of events triggered by the control messages

• Provide for an ability for the process to selectively ignore the events generated

18

Signal

A AB B

EXISTING DESIGN NEW DESIGN

A AB B

2. RDMA_READ

1. RNDV_START

3. RNDV_FINISH

1. RNDV_START

2. RDMA_READ

3. RNDV_FINISH

A: Main Application Thread B: Auxillary Progress Thread

Interrupt

Interrupt

Interrupt

SleepActiveSleepActive SleepActive SleepActive

Figure 2.3: Asynchronous Rendezvous Protocol Implementations

2.3 Design of Asynchronous Progress

As explained above, the existing design has several limitations. In this Section, we

explain our new approach of achieving asynchronous progress. Figure 2.3 (right) ex-

plains the basic idea in the new implementation. In our approach, each process creates

an auxiliary thread at the beginning. The auxiliary thread waits for RNDV START

control message. As seen from the figure, the RNDV START control message issued

by the sender interrupts the auxiliary thread. This thread in turn sends a signal to the

main thread to take the necessary action. This is different from the earlier approach

where the auxiliary thread made progress on the rendezvous communication. Since,

only one thread is involved with communication data structures, no locking mecha-

nism is required for the data structures. In the second step, the main thread issues

the RDMA read for the data transfer. After issuing RDMA read, the main thread

19

resumes to perform the computation. Unlike the existing approach, the RDMA read

completion does not trigger any interrupt in our design. We believe this interrupt

does not help in overlap in Single Program Multiple Data (SPMD) programming

model where each process performs the same task and the load is equally balanced.

Triggering of the interrupt on RDMA read completion can be easily added to the pro-

tocol if required. In our design, the main thread sends the RNDV FINISH message

soon after it discovers the completion of RDMA read.

There are several benefits of this new design. First, locks are avoided thus reduc-

ing contention for shared resources. Also, in our design the signal from the auxiliary

thread is disabled by the main thread when it is not expecting a message from any

process. By doing so, the main thread is not unnecessarily interrupted by an unex-

pected message since it does not have the receive buffer address to make progress on

the communication. The main thread also disables signal if it is already inside the

MPI library and making communication progress. Since the main thread can disable

the interruption from the auxiliary thread, the execution time of the application is

unaffected if rendezvous protocol is not used by the application. Also, the signal is

enabled only if a non-blocking receive has been posted and not for blocking receives.

Also, at most of the time the auxiliary thread is waiting for interrupts from the NIC

and does not perform any communication processing. Therefore, as the auxiliary

thread is I/O bound the dynamic priority of the thread is very high which helps in

scheduling it quickly. Finally, the new design also cuts down the number of interrupts

to one thus improving the communication performance.

20

2.4 Evaluation

The experiments were conducted on a 64 node InfiniBand Linux cluster. Each

machine has dual 2.33 GHz Intel Xeon “Clovertown” quad-core processors for a to-

tal of eight cores per node. Each node is connected by DDR network interface card

MT25208 dual-port Memfree HCA by Mellanox [4] through a switch. InfiniBand

software support is provided through OpenFabrics/Gen2 stack [23], OpenFabrics En-

terprise Edition 1.2.

2.4.1 Comparison with existing design

Figure 2.4 shows the performance of basic bandwidth micro-benchmark. We used

OSU Benchmarks [25] for the experiment. The legend ‘no-async’ refers to the basic

RDMA read based rendezvous protocol without any enhancements for asynchronous

progress, ‘existing-async’ refers to the existing asynchronous progress design proposed

in [34] and ‘new-async’ refers to the proposed design described in Section 2.3. Figure

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

4M1M256K64K16K

B
an

dw
id

th
 (

M
B

/s
ec

)

Message Size (bytes)

no-async
existing-async

new-async

Figure 2.4: Bandwidth for large messages

 0

 20

 40

 60

 80

 100

no-async

existing-async

new
-async

P
e
rc

e
n
t
o
f
E

x
e
c
u
ti
o
n
 T

im
e

37.48s 465s 37.42s

Computation
MPI_Wait

Figure 2.5: NAS-SP Normalized Execution
Time

2.4 shows that the bandwidth of the proposed design closely matches with the base

bandwidth numbers, which matches our expectations. However, with the old design

21

the bandwidth is very low. In the bandwidth test, the receiver posts several requests

and waits for the completion of all the pending messages. As several rendezvous start

messages are received by the process, the auxiliary thread is continuously interrupted.

Also, since the main thread is not involved in computation, both the threads concur-

rently poll the MPI library. The main thread cannot make any progress, however,

it hinders the auxiliary thread from being scheduled on the processor. Therefore,

due to exhaustion of CPU resources by the main thread the bandwidth performance

is affected. The bandwidth performance is also non-deterministic as it depends on

the scheduler to schedule the auxiliary process quickly. The effects of schedule is

discussed in Section 2.4.2.

The performance of the new design is very similar to the base bandwidth perfor-

mance since the main thread disables interrupts from the auxiliary thread when it is

already inside the MPI library.

The poor performance of the existing design can be seen not only on micro-

benchmarks but also in the performance of SP NAS Parallel Benchmark [20] appli-

cation as can be seen in Figure 2.5. It can be seen from the figure that with the old

design most of the execution time is wasted in MPI Wait. In the remaining evalua-

tions we do not show the performance of the old design. We found that the old design

performs well when using an extra-core, however, it performs poorly when a single

processor is assigned per process.

22

2.4.2 Overlap Microbenchmark Performance

Figures 2.6 and 2.7 show the overlap performance of the proposed design. Sandia

Benchmark [31] (SMB) has been used to evaluate the overlap capability of the im-

plementation. Overlap potential at the receiver and at the sender have been shown

in Figures 2.6 and 2.7, respectively. Since the base design and the proposed design

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4M1M256K64K16K

A
pp

lic
at

io
n

av
ai

la
bi

lit
y(

%
)

Message Size (bytes)

no-async
new-async

Figure 2.6: Application availability at Re-
ceiver

 0

 20

 40

 60

 80

 100

4M1M256K64K16K

A
pp

lic
at

io
n

av
ai

la
bi

lit
y(

%
)

Message Size (bytes)

no-async
new-async

Figure 2.7: Application availability at
Sender

employ RDMA read, almost total overlap is achieved at sender for both protocols.

However, at the receiver the base RDMA read based protocol offers no overlap, as

expected. The proposed design is able to achieve increasing overlap with increasing

message size and reaches almost 100% overlap for messages greater than 1MB.

Effect of Schedule

Linux has different scheduling policies as discussed in appendix A. There are three

scheduling policies FIFO (First in first out) , RR (Round-robin) and OTHER (the

default policy). There is another policy BATCH which is used in batch systems and

23

has not been used in our evaluations. Figures 2.8(a) and 2.8(b) show the effect of

scheduling algorithm on the overlap performance of the new design. Results for the

default Linux schedule, FIFO and Round robin have been compared. For each of the

executions with different scheduling algorithm, the auxiliary thread is assigned the

highest possible priority so that it is scheduled as soon as it is interrupted.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

16K 64K 256K 1M 4M

A
pp

lic
at

io
n

av
ai

la
bi

lit
y(

%
)

Message Size (bytes)

no-async
new-async-default

new-async-FIFO
new-async-RR

(a) Varying Message Size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 4 16 64 256 1K

A
pp

lic
at

io
n

av
ai

la
bi

lit
y(

%
)

Iteration

no-async
new-async-default

new-async-FIFO
new-async-RR

(b) Varying Execution Time

Figure 2.8: Effect of scheduling algorithm

Figure 2.8(a) shows the results for different message sizes. We observe that with

the default scheduling algorithm, the performance is not consistent for all message

sizes. At some message sizes the auxiliary thread is not scheduled on the processor

on being interrupted. However, with FIFO scheduling algorithm the performance

improves and is best for round-robin algorithm. These real-time scheduling policies

could not be used in the original design because it causes deadlocks. The deadlocks

happen since real-time scheduling policies are non-premptive and the auxiliary thread

24

keeps spinning on spin-locks. Spin-locks are generally used to protect data in MPI

implementation to obtain high performance.

Figure 2.8(b) shows the overlap performance for 256KBytes message with in-

creased number of iterations in each execution. From the figure, it is observed that

with the default scheduling algorithm the performance of the design improves after a

certain time interval. We feel that the improved performance is due to the dynamic

priority scheme of Linux scheduling algorithm. Since the auxiliary thread hardly uses

the CPU and is mostly waiting for completion events it is assigned a high dynamic

priority which helps increase its performance. However, for FIFO and round robin

the performance is optimal even for low number of iterations.

2.4.3 Application Performance

In this Section, we use a matrix multiplication kernel to evaluate the application

performance of the proposed design. The kernel uses Cannon’s algorithm [15] and

employs both MPI and OpenMP [24] programming models. The kernel requires the

number of processes to be a perfect square. Since we wanted to use all 64 nodes of our

cluster we could only use 4 cores per node in our experiments. However, since each

thread is affined to a single core, the presence of the remaining unused cores of the

nodes does not improve or affect the performance of the design. OpenMP program-

ming model is used within the node and MPI is used for inter-node communication.

Figure 2.9(a) shows the application performance with increasing system sizes for

a square matrix of dimensions 2048 elements. Each element of the matrix is a double

datatype occupying eight bytes. As can be seen from the figure, the MPI Wait time

can be reduced by using the proposed design. Figure 2.9(b) shows the performance

25

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

no-async

new-async

no-async

new-async

no-async

new-async

E
xe

cu
tio

n
T

im
e

(u
se

c)

Computation
MPI_Wait

64X416X44X4
(a) Varying System Size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

no-async

new-async

no-async

new-async

no-async

new-async

E
xe

cu
tio

n
T

im
e

(u
se

c)

Computation
MPI_Wait

512X512256X256128X128
(b) Varying Problem Size

Figure 2.9: Matrix Multiplication: MPI + OpenMP configuration

for increasing problem size on four nodes and dividing the work of each node among

four of its cores using OpenMP. Reductions in MPI Wait time can also be seen with

different problem sizes. For matrix of 128X128 dimensions, no improvement is ob-

served as the message communication is of size 4K Bytes which does not employ

rendezvous protocol.

 0

 20

 40

 60

 80

 100

128X
128

256X
256

512X
512

1024X
1024

N
o
rm

a
li
z
e
d
 T

im
e

no-async
new-async

(a) Varying System Size

 0

 20

 40

 60

 80

 100

4X
1

16X
1

64X
1

N
o
rm

a
li
z
e
d
 T

im
e

no-async
new-async

(b) Varying Problem Size

Figure 2.10: Matrix Multiplication: MPI x1 configuration

26

 0

 20

 40

 60

 80

 100

256X
256

512X
512

1024X
1024

2048X
2048

N
o
rm

a
li
z
e
d
 T

im
e

no-async
new-async

(a) Varying System Size

 0

 20

 40

 60

 80

 100

4X
4

16X
4

64X
4

N
o
rm

a
li
z
e
d
 T

im
e

no-async
new-async

(b) Varying Problem Size

Figure 2.11: Matrix Multiplication: MPI x4 configuration

The performance of the new design has also been evaluated for MPI programming

model without using OpenMP. The MPI implementation of matrix multiplication

kernel was run in two configurations. In the first configuration, all the processes are

involved in inter-node communication. This is achieved by launching only one process

per node. In the second configuration, four processes per node are launched. In

this setup, some of the processes employ shared memory for communication whereas

some processes are involved in inter-node communication. So the processes which

use shared memory communication cannot achieve any overlap. The results for the

first configuration can be seen in Figures 2.10(a) and 2.10(b). The results for the

second configuration can be seen in Figures 2.11(a) and 2.11(b). In Figure 2.11(a), no

improvement is observed for matrix of dimensions 256X256. This is because the size

of message transfer is less than 8KB. Messages of sizes lower than 8KB were not using

rendezvous protocol in the experiments. Considerable improvement is observed for all

the other problem sizes and system sizes. However, the improvement in performance

is lower than when MPI+OpenMP programming model is used. This is because of

27

decreased percentage of communication time (of the corresponding execution time)

than the MPI+OpenMP program.

2.5 Summary

In this chapter, we proposed an enhanced asynchronous rendezvous protocol.

Specifically, our design does not require locks in the communication path. In our ap-

proach, the main application thread makes progress on the rendezvous transfer with

the help of an additional thread. The communication between the two threads occurs

via system signals. The new design achieves almost total overlap of communication

with computation. Further, our design does not reduce the performance of non-

overlapped communication. With the new design we have been able to achieve 20%

reduction in time for a matrix multiplication kernel with MPI+OpenMP paradigm

on 256 cores.

28

CHAPTER 3

ALLTOALL COLLECTIVE FOR ONLOAD AND
OFFLOAD INTERFACES

Alltoall collective operation is extensively used in many applications which in-

cludes CPMD [3], NAMD [26], FFT and matrix transpose. Alltoall is a very com-

munication intensive operation and scales poorly on large systems. Therefore, the

scalability of applications, which involve this communication pattern, is limited by

the implementation of this collective. There has been tremendous research in opti-

mizing this collective for SMP and uni-processor systems. In this Chapter, we take

on the challenge of designing communication algorithm of alltoall collective for multi-

core systems connected with InfiniBand interfaces. We study the characteristics of

both onload and offload InfiniBand interfaces and evaluate algorithms on both archi-

tectures. We evaluate our designs on clusters connected with InfiniPath, InfiniHost

III and ConnectX InfiniBand network interfaces.

The rest of the chapter is organized as follows. In Section 3.1, we provide the

necessary background information for this work. In Section 3.2, we provide the mo-

tivation behind the work. In Section 3.3, we present the related work. In Section 3.4,

we discuss the proposed designs. In Section 3.5, we evaluate our design and provide

experimental results. Finally, in Section 3.6, we summarize the results of this work.

29

3.1 Background

In this Section, we provide the necessary background details for this work. First,

we describe the current alltoall algorithms employed in popular MPI implementations.

Then we describe CPMD [3] application. CPMD has been used in the evaluation of

our design.

3.1.1 Alltoall Algorithms

The most popular algorithms for alltoall currently used are: 1. Bruck’s algo-

rithm [7], 2. Irecv-Isend algorithm [35] and 3. Pairwise Exchange [35].

Because none of the above algorithms gives the best performance for all message

sizes, we choose different algorithms according to the message size. Bruck’s algorithm

completes in minimum number of steps, log P (P is the number of processes). Hence,

it is used for small messages where start-up latencies are a dominant part of the col-

lective time. However, because it sends the same message over the network more than

once, it is not suitable for medium or large messages. In the Irecv-Isend algorithm,

each process sends the data directly to the destined process, hence it requires P-1

steps to complete. The amount of data going out of each node is equal to the total

amount of data that each node must send. The amount of data going into each node

is equal to the total amount of the data that each node must receive. Therefore,

the algorithm is optimal in terms of amount of data sent on the network and should

be suitable for medium and large messages. However, we found the algorithm is not

suitable for large messages. At large message sizes, contention on the links comes into

play. The algorithm uses a cyclic pattern of communication which is not congestion

free on fat-tree networks [14]. The pairwise exchange algorithm gives better results for

30

large messages. At each stage of the pair-wise exchange algorithm, the communica-

tion pattern is congestion free on fat-tree networks. Moreover, ‘irecv-isend’ algorithm

makes loose coupling among the sending and receiving processes. It has been found

that if processes are tightly coupled, the latencies are lower for large messages [30].

Pair-wise exchange uses send-recv, utilizing rendezvous protocol for large messages

and hence are tightly coupled.

We have found that network characteristics play a role in tuning the alltoall collec-

tive for different network interfaces. For example, the ‘irecv-isend’ algorithm performs

poorly on InfiniHost III and ConnectX. However, it performs well for medium-sized

messages on the InfiniPath network interface. All of the above tuning are available

in the open source MVAPICH [21] software.

3.1.2 CPMD

The Car-Parrinello Molecular Dynamics (CPMD) [3] is designed for ab-initio

molecular dynamics. It is widely used for research in computational chemistry, ma-

terials science and biology. It was developed by IBM Research Zurich laboratory and

the Max-Planck-Institute, Stuttgart in collaboration with many groups around the

world. It is used world wide by more than 6000 users. The application is a pro-

duction code mainly written in FORTRAN, parallelized for distributed-memory with

MPI. CPMD makes extensive use of three-dimensional FFT, which requires efficient

all-to-all communication [12]. CPMD application has been used in the evaluation of

the proposed design.

31

3.2 Motivation

Communication time of MPI Alltoall is dependent on two factors: start-up costs

and network bandwidth. For small messages, MPI Alltoall time is dominated by

start-up costs. For large messages, network bandwidth determines the time of the

operation. To illustrate the impact of start-up costs on latency of MPI Alltoall, we

conducted a simple test to measure the time of ‘irecv-isend’ alltoall algorithm on a

fixed set of nodes. However, we increase the number of cores involved in the collective

keeping the size of total data involved in the operation the same. The experiment

was conducted on our InfiniPath cluster mentioned in section 3.5. Figure 3.1 shows

the results. As shown in the figure, we observe that there is a significant increase in

 0

 50

 100

 150

 200

 250

 300

 350

168421

L
a
te

n
c
y
 (

u
s
e
c
)

Number of nodes

1 core/node
2 cores/node
4 cores/node
8 cores/node

Figure 3.1: Performance of alltoall on multi-core systems

MPI Alltoall time with the increase in the number of cores per node although the

32

amount of data exchanged between the nodes is the same. This is primarily due to

an increasing number of sends issued which increases start-up costs. Thus, reducing

start-up costs is necessary to obtain good performance.

3.2.1 Performance of bi-directional bandwidth

On the other hand, different implementations of InfiniBand network interfaces

exist. These different interfaces exhibit varying communication characteristics. We

demonstrate this using a simple bi-directional bandwidth test between two nodes.

The number of concurrent pairs involved in the test is increased from one to four.

Figures 3.2 and 3.3 show the multi-pair bi-directional bandwidth performance on

InfiniPath and ConnectX adapters, respectively.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1M256K64K16K4K1K256641641

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Message Size (bytes)

1-cores
2-cores
4-cores

Figure 3.2: InfiniPath SDR: Multi-pair Bidirectional Bandwidth.

33

 0

 500

 1000

 1500

 2000

 2500

 3000

1M256K64K16K4K1K256641641

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Message Size (bytes)

1-cores
2-cores
4-cores

Figure 3.3: ConnectX DDR: Multi-pair Bidirectional Bandwidth.

We observe that using more than one core to send the data out of the node is

advantageous as it provides better network utilization, as can be seen by the increase

in bandwidth on using more cores. This is not the case for earlier generation InfiniHost

III architecture, as can be seen in Figure 3.4. For MPI Alltoall operations, this

observed behavior is significant because, like the bi-directional test, multiple cores

are involved in data exchange across the nodes.

Thus, as described above, different network interfaces exhibit varying communi-

cation characteristics. The alltoall schemes need to take into account these factors to

obtain good performance.

34

 0

 500

 1000

 1500

 2000

 2500

 3000

1M256K64K16K4K1K256641641

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

Message Size (bytes)

1-cores
2-cores
4-cores

Figure 3.4: InfiniHost III DDR: Multi-pair Bidirectional Bandwidth.

3.3 Related Work

Several optimizations have been proposed in the past to take advantage of shared

memory to design collectives. Husbands et al. [11] first proposed hierarchical tree

based MPI Bcast algorithm to minimize the use of network on the Sun SMP system.

Sistare et al. [32] propose a hierarchical scheme but do not use a tree-based point

to point communication within the SMP node. They develop shared memory based

schemes to optimize broadcast, reduce, allreduce and barrier within the SMP node.

Tipparaju et al. [36] also propose hierarchical tree based collective operations using

shared and remote memory access protocols. In an earlier work from our group [17],

we proposed a hierarchical multicast based design for broadcast. Most of the work

to optimize collectives for shared memory based systems have proposed hierarchical

35

leader based schemes. In this work we propose a non-leader based scheme to optimize

alltoall collective for multi-core systems.

3.4 Proposed Design

In the leader based scheme, at the sender, all data of a node is aggregated to the

leader of the node followed by inter-node communication and then distribution to all

the processes of the node at the receiver. The leader based scheme proposed for SMP

based clusters cannot be naively used for all multi-core systems. It has the following

disadvantages which are addressed by the proposed design:

1. Significant shared memory overhead (assuming all the intra-node communica-

tion is done using shared memory communication). This is because the inter-

node alltoall can begin only after all processes of the node have written data to

the shared memory location.

2. Utilizes a single core to perform the inter-node communication and therefore

does not take advantage of the increase in bi-directional bandwidth available

with the increase in number of cores used to send the data.

One can also design a leader-based scheme with two leaders per node. This scheme

would achieve better bandwidth as it utilizes more cores to send the data to other

nodes. However, this also increases the number of network sends by two times and

hence increases start-up costs. Instead, a scheme in which more cores of the node

participate in inter-node communication without an increase in number of sends issued

by each core will benefit significantly. This can be achieved if each core of a node

communicates with one and only one core of all other nodes. This does not increase

36

(a) 3X4 System (b) Step 1 (c) Step 2

Figure 3.5: Communication steps of the proposed design

the number of network sends issued by each process and network start-up costs are

almost the same with better network utilization. In our implementation of the above

scheme, we opted to use all cores of a node to participate in inter-node communication.

However, a subset of the cores can also be used. We explain the design keeping in

mind that all of the cores are being used. However, it can be extended to address the

situation wherein only a subset of the cores are utilized.

Since a core/process communicates with a single core of the other nodes, intra-

node communication must be used to send the respective data to the other cores of

the node. There are two ways in which this can be performed: 1. Before sending the

data to other nodes, perform an intra-node communication. In this, a core receives

all data that has to be received by cores with which it will communicate. We call

this send-side aggregation. OR 2. Perform the inter-node communication first. In

the inter-node communication, a core sends all of its data destined for a node to the

core with which it communicates. It then performs an intra-node communication in

37

which a core sends the data to the respective cores for which it was destined. We call

this receive-side distribution.

We chose the first option for our implementation.

The proposed algorithm for alltoall completes in two steps:

1. Step 1: Intra-node exchange - This step takes place simultaneously within all

nodes. Each core/process sends all the data that has to go to shared memory

rank x (rank of the process in its node) of all nodes to process with shared

memory rank x on its node.

2. Step 2: Inter-node exchange - Each core/process performs an inter-node all-

toall communication with processes having the same shared memory rank. The

message size of this alltoall is more than that of the intended alltoall communi-

cation.

Figure 3.5 shows the communication that takes place in each of the above steps

for a system of size 3X4, i.e., the system having three nodes and each node has

four cores as shown in Figure 3.5(a). Each small ellipse represents a core and the

surrounding bigger ellipse represents a node. The numbers ‘a’ and ‘b’ on the core

represent ‘a’ as MPI Rank and ‘b’ as the shared memory rank. Figure 3.5(b) shows

the communication of step 1. In this step, only intra-node communication takes

place. After step 1, all processes having the same shared memory rank are part of

one communicator as shown in Figure 3.5(c). Each of the core/process participates

in alltoall communication within the new communicator.

The above scheme has the following advantages:

38

1. Lower shared memory overhead. Each process waits for other processes to write

only a subset of their data not their whole data.

2. Uses more than one core to send out the data, allowing for better bandwidth.

3.5 Evaluation

The following two test-beds were used to conduct the experiments:

First is a 512-core InfiniBand Linux cluster. Each of the 64 nodes have dual 2.33

GHz Intel Xeon “Clovertown” quad-core processors for a total of 8 cores per node.

Each node has two network interface cards. First is a host-based SDR network in-

terface QLE7140 by Qlogic and the second is offload DDR network interface card

MT25208 dual-port Memfree HCA by Mellanox. InfiniBand software support is pro-

vided through InfiniPath software stack 2.1 on Qlogic HCA and OpenFabrics/Gen2

stack [23], OFED 1.2 release for Mellanox HCA. The Mellanox HCA is built using

the Infinihost III architecture.

Second is a 4 node dual 2.33 GHz Intel Xeon “Clovertown” quad-core processors

for a total of 8 cores per node. Each node is connected with Mellanox ConnectX

cards which operate at DDR speed (20Gbps). The ConnectX card (MT25408) has

firmware version 2.0.139 and operates with new Open-Fabrics drivers which are based

on OFED 1.2 distribution.

We have used MVAPICH-PSM and MVAPICH-Gen2 [21] to test our collective

schemes on the two devices. MVAPICH is a popular open-source MPI implementation

over InfiniBand. It is based on MPICH [10] and MVICH [16] and is used by over 715

organizations worldwide.

39

3.5.1 Alltoall Performance

In this section, we evaluate and compare the performance of the proposed scheme

using OSU Alltoall Benchmark [25]. The benchmark calls MPI Alltoall back-to-back

and reports an average over a large number of iterations (typically 1000).

Performance on InfiniPath

Figure 3.6 shows the MPI Alltoall collective performance on 64X8 configuration

where AXB implies ‘A’ nodes and ‘B’ cores per node. The legend ‘orig’ refers to

the current algorithms employed in MVAPICH tuned for the testbed for appropriate

message sizes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

1K256641641

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

orig
L-orig

proposed

Figure 3.6: InfiniPath: Alltoall time on 64X8 system

MVAPICH-PSM currently uses Bruck’s algorithm for up to 256 Bytes, direct

‘irecv-isend’ from 256Bytes to 32KB and pairwise exchange for messages larger than

40

32KB for the Qlogic HCA. We have found that the direct ‘irecv-isend’ algorithm per-

forms poorly on Mellanox HCA; therefore MVAPICH-GEN2 uses Bruck’s algorithm

for up to 8KB and pairwise exchange for messages larger than 8KB. The ‘L-orig’

scheme refers to leader based scheme and uses the original tuned alltoall to perform

the inter-node alltoall communication among the leaders. The ‘proposed’ scheme

refers to the new proposed scheme explained in section 3.4. It uses the tuned alltoall

explained above to perform step 2 of the proposed scheme.

The leader based scheme performs well for very small messages. However, due to

high shared memory overhead, the benefits fade with increasing message size. The

proposed scheme outperforms the current algorithm and leader-based algorithm up to

2KB message size. This is primarily due to better utilization of network bandwidth

by using multiple cores. As the system size increases, higher performance gains are

obtained and up to a greater message size.

Figure 3.7 shows the MPI Alltoall time for 512Byte message on varying system

sizes. The results show that the performance gains in alltoall time increase with

increasing system sizes.

Performance on Infinihost III

On Infinihost NIC, simultaneously using multiple cores deteriorates the perfor-

mance of communication latency [33]; therefore, multi-pair bi-directional bandwidth

shows deterioration in performance with increasing number of cores as can be seen in

Figure 3.4. Therefore, leader-based scheme performs best here because it is able to

eliminate the effects of congestion. This can be seen from the results in Figure 3.8.

41

 0

 2000

 4000

 6000

 8000

 10000

 12000

64X832X816X88X84X82X8

L
a
te

n
c
y
 (

u
s
e
c
)

System Size

orig
L-orig

proposed

Figure 3.7: InfiniPath: Alltoall time of 512Byte message

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

4K1K256641641

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

orig
L-orig

proposed

Figure 3.8: Infinihost III: Performance of different schemes on 64X8 system

42

Performance on ConnectX

From Figure 3.3 we see that on ConnectX architecture, multi-pair bi-directional

bandwidth increases with more cores. Therefore, leader-based scheme does not per-

form as well as the proposed scheme as it uses only a single core for network com-

munication. However, both schemes perform better than the original scheme as they

reduce the number of network transmissions. The alltoall time for different schemes

can be seen in Figure 3.9.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4K1K256641641

L
a
te

n
c
y
 (

u
s
e
c
)

Message Size (bytes)

orig
L-orig

proposed

Figure 3.9: ConnectX: Performance of different schemes on 4X8 system

3.5.2 Application Performance

The CPMD application was used to evaluate the performance impact of the pro-

posed scheme on applications. The InfiniPath network interface testbed was used

43

for the evaluation. Figure 3.10 shows the performance improvement over the current

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

32-w
at

si63-10ryd

si63-70ryd

si63-120ryd

T
im

e
 (

s
e
c
)

CPMD Benchmark

orig
L-orig
proposed

Figure 3.10: CPMD Application Benchmark Performance on InfiniPath: Different
Input Files

algorithms for different input files on 16X8 system.

Figure 3.11 shows the performance improvement for si63 atoms with 120ryd cut-

off for different system sizes. As we saw earlier, the performance improvement for

MPI Alltoall increases with increasing system sizes, this is also reflected in the appli-

cation performance improvement. Figure 3.11 shows that the ‘L-orig’ scheme begins

to perform well at 64X8 system size. At 64X8 system size, the message size of alltoall

collective decreases as the problem size remains the same. Therefore, leader-based

collective performs comparable to the proposed scheme.

44

 0

 100

 200

 300

 400

 500

 600

64X832X816X88X8

T
im

e
 (

s
e
c
)

System Size

orig
L-orig

proposed

Figure 3.11: CPMD Application Benchmark Performance on InfiniPath: Varying
System Sizes

3.6 Summary

In this chapter, we have extended the leader-based collective design to implement

the alltoall collective for multi-core systems. We have also proposed a partial aggre-

gation based design for alltoall collective. We evaluated both the designs in detail.

The results show that the performance of the designs differ on onload and offload

interfaces. The leader-based design is more suitable for offloaded interfaces such as

InfiniHost III architecture. Whereas, the partial aggregation based design produces

better performance on onload interfaces such as InfiniPath architecture.

A single collective algorithm does not perform optimally for all network interfaces

due to differing network characteristics. Our results show that the proposed scheme

delivers improvement in the performance of CPMD application by as much as 33% .

45

CHAPTER 4

CONTRIBUTIONS AND FUTURE WORK

In this thesis, we have studied the characteristics of InfiniBand interfaces when

the network processing is offloaded to the NIC and when it is performed by the host

processor. We describe how we can take advantage of the features provided by such

interfaces. Our work involved designing collective algorithms and enhancement to

point-to-point communication protocols.

4.1 Summary of Research Contributions and Future Work

The research in this thesis aims towards enhancing MPI by taking advantage of

the features provided by offload and onload InfiniBand interfaces. The designs have

been integrated into the MVAPICH software and are freely available for download.

Following is a detailed summary of the research presented in the thesis.

4.1.1 Providing Asynchronous Progress in Rendezvous Pro-
tocol

There are several designs that have been proposed in the past to provide asyn-

chronous progress. These designs typically use progress helper threads with support

from the network hardware to make progress on the communication. However, most

46

of these designs use locking to protect the shared data structures in the critical com-

munication path. Secondly, multiple interrupts may be necessary to make progress.

Further, there is no mechanism to selectively ignore the events generated during com-

munication.

In this thesis, we proposed an enhanced asynchronous rendezvous protocol which

overcomes these limitations. Specifically, our design does not require locks in the

communication path. In our approach, the main application thread makes progress

on the rendezvous transfer with the help of an additional thread. The communication

between the two threads occurs via system signals. The new design achieves almost

total overlap of communication with computation. Further, our design does not

reduce the performance of non-overlapped communication. With the new design we

have been able to achieve 20% reduction in time for a matrix multiplication kernel

with MPI+OpenMP paradigm on 256 cores. In future, we plan to carry out scalability

studies of this new design for a range of applications and system sizes.

4.1.2 Improving Performance of Alltoall Collective

In Chapter 2, we studied the network characteristics exhibited by offloading/onloading

of network processing in InfiniBand network interfaces. The results show that net-

work interfaces implemented for the same interconnect exhibit different network char-

acteristics. A single collective algorithm does not perform optimally for all network

interfaces due to differing network characteristics. The thesis proposes an optimized

alltoall collective algorithm for multi-core systems connected using modern InfiniBand

network interfaces. However, we believe that the work can be applied to onload im-

plementation of other networks as well, like the Ethernet-based JNIC architecture [9].

47

We plan to evaluate our designs on such systems in the future, as well as, extend the

proposed framework to other collectives.

48

APPENDIX A

SCHEDULING POLICIES

The scheduler is the kernel part that decides which runnable process will be exe-

cuted by the CPU next. The Linux scheduler offers three different scheduling policies,

one for normal processes and two for real time applications. A static priority value

sched priority is assigned to each process and this value can be changed only via

system calls. Conceptually, the scheduler maintains a list of runnable processes for

each possible sched priority value, and sched priority can have a value in the range

0 to 99. In order to determine the process that runs next, the Linux scheduler looks

for the non-empty list with the highest static priority and takes the process at the

head of this list. The scheduling policy determines for each process, where it will

be inserted into the list of processes with equal static priority and how it will move

inside this list. Currently, the following three scheduling policies are supported under

Linux: SCHED FIFO, SCHED RR, SCHED OTHER, and SCHED BATCH; their

respective semantics are described below.

SCHED OTHER is the default universal time-sharing scheduler policy used by

most processes. SCHED BATCH is intended for ”batch” style execution of processes.

SCHED FIFO and SCHED RR are intended for special time-critical applications that

49

need precise control over the way in which runnable processes are selected for execu-

tion.

Processes scheduled with SCHED OTHER or SCHED BATCH must be assigned

the static priority 0. Processes scheduled under SCHED FIFO or SCHED RR can

have a static priority in the range 1 to 99. The system calls sched get priority min()

and sched get priority max() can be used to find out the valid priority range for a

scheduling policy in a portable way on all POSIX.1-2001 conforming systems.

All scheduling is preemptive: If a process with a higher static priority gets ready

to run, the current process will be preempted and returned into its wait list. The

scheduling policy only determines the ordering within the list of runnable processes

with equal static priority.

SCHED FIFO: First In-First Out scheduling SCHED FIFO can only be used

with static priorities higher than 0, which means that when a SCHED FIFO pro-

cesses becomes runnable, it will always immediately preempt any currently running

SCHED OTHER or SCHED BATCH process. SCHED FIFO is a simple scheduling

algorithm without time slicing. For processes scheduled under the SCHED FIFO pol-

icy, the following rules are applied: A SCHED FIFO process that has been preempted

by another process of higher priority will stay at the head of the list for its priority

and will resume execution as soon as all processes of higher priority are blocked again.

When a SCHED FIFO process becomes runnable, it will be inserted at the end of

the list for its priority. A call to sched setscheduler() or sched setparam() will put

the SCHED FIFO (or SCHED RR) process identified by pid at the start of the list if

it was runnable. As a consequence, it may preempt the currently running process if

it has the same priority. A process calling sched yield() will be put at the end of the

50

list. No other events will move a process scheduled under the SCHED FIFO policy in

the wait list of runnable processes with equal static priority. A SCHED FIFO process

runs until either it is blocked by an I/O request, it is preempted by a higher priority

process, or it calls sched yield().

SCHED RR: Round Robin scheduling SCHED RR is a simple enhancement of

SCHED FIFO. Everything described above for SCHED FIFO also applies to SCHED RR,

except that each process is only allowed to run for a maximum time quantum. If a

SCHED RR process has been running for a time period equal to or longer than the

time quantum, it will be put at the end of the list for its priority. A SCHED RR

process that has been preempted by a higher priority process and subsequently re-

sumes execution as a running process will complete the unexpired portion of its

round robin time quantum. The length of the time quantum can be retrieved us-

ing sched rr get interval.

SCHED OTHER: Default Linux time-sharing scheduling SCHED OTHER can

only be used at static priority 0. SCHED OTHER is the standard Linux time-sharing

scheduler that is intended for all processes that do not require special static priority

real-time mechanisms. The process to run is chosen from the static priority 0 list

based on a dynamic priority that is determined only inside this list. The dynamic

priority is based on the nice level and increased for each time quantum the process is

ready to run, but denied to run by the scheduler. This ensures fair progress among

all SCHED OTHER processes.

This text is based on linux man pages.

51

BIBLIOGRAPHY

[1] http://www.lanl.gov/roadrunner/.

[2] http://www.mellanox.com/products/infinihost iii ex cards.php.

[3] http://www.cpmd.org/.

[4] Mellanox Technologies. http://www.mellanox.com.

[5] TOP 500 Supercomputer Sites. http://www.top500.org.

[6] Ron Brightwell and Keith D. Underwood. An Analysis of the Impact of MPI
Overlap and Independent Progress. In ICS ’04: Proceedings of the 18th annual
international conference on Supercomputing, March 2004.

[7] J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. Efficient Algorithms
for All-to-All Communications in Multiport Message-Passing Systems. IEEE
Transactions in Parallel and Distributed Systems, 8(11):1143–1156, November
1997.

[8] Thorsten Von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active messages: a mechanism for integrated communication and com-
putation. In ISCA ’92: Proceedings of the 19th annual international symposium
on Computer architecture, New York, NY, USA, 1992. ACM.

[9] Mike Schlansker et. al. High-performance Ethernet-based Communications for
future Multi-core Processors. In SC ’07: Proceedings of the 2007 ACM/IEEE
conference on Supercomputing, pages 49–59, 2007.

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable
Implementation of the MPI, Message Passing Interface Standard. Technical re-
port, Argonne National Laboratory and Mississippi State University.

[11] P. Husbands and J.C. Hoe. MPI-StarT: Delivering Network Performance to
Numerical Applications. Supercomputing, 1998. SC98. IEEE/ACM Conference
on, pages 17–17, 07-13 Nov. 1998.

52

[12] J. Hutter and A. Curioni. Dual-level Parallelism for Ab Initio Molecular Dynam-
ics: Reaching Teraflop Performance with the CPMD Code. In Parallel Comput-
ing, pages 1–17, 2005.

[13] InfiniBand Trade Association. InfiniBand Architecture Specification.
http://www.infinibandta.com.

[14] Sameer Kumar and Laxmikant V. Kale. Scaling All-to-All Multicast on Fat-
tree Networks. ICPADS: International Conference on Parallel and Distributed
Systems, 00:205, 2004.

[15] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction
to Parallel Computing: Design and Analysis of Algorithms. Benjamin-Cummings
Publishing Co., Inc., 1994.

[16] Lawrence Berkeley National Laboratory. MVICH: MPI for Virtual Interface
Architecture. http://www.nersc.gov/research/FTG/mvich/ index.html, August
2001.

[17] A.R. Mamidala, Lei Chai, Hyun-Wook Jin, and D.K. Panda. Efficient SMP-
aware MPI-level Broadcast over InfiniBand’s Hardware Multicast. Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, pages
8 pp.–, 25-29 April 2006.

[18] Mellanox Technologies. ConnectX Architecture.
http://www.mellanox.com/products/connectx architecture.php.

[19] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Mar 1994.

[20] NAS Parallel Benchmarks (NPB). http://www.nas.nasa.gov/Software/NPB/.

[21] Network-Based Computing Laboratory. MVAPICH: MPI over InfiniBand and
iWARP. http://mvapich.cse.ohio-state.edu.

[22] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. K. Panda. High performance
remote memory access communication: The ARMCI approach. Thousand Oaks,
CA, USA, 2006. Sage Publications, Inc.

[23] OpenFabrics Alliance. OpenFabrics. http://www.openfabrics.org/.

[24] OpenMP. http://openmp.org/wp/.

[25] OSU Micro-Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.

[26] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD: Biomolecular
Simulation on Thousands of Processors. In Supercomputing, 2002.

53

[27] Qlogic. InfiniPath. http://www.pathscale.com/infinipath.php.

[28] Quadrics. QsNET II. http://www.quadrics.com/quadrics.

[29] Greg Regnier, Srihari Makineni, Ramesh Illikkal, Ravi Iyer, Dave Minturn, Ram
Huggahalli, Don Newell, Linda Cline, and Annie Foong. TCP Onloading for
Data Center Servers. Computer, 37(11):48–58, 2004.

[30] D. Roweth and A. Moody. Performance of All-to-All on QsNetII, Quadrics White
Paper, available at http://www.quadrics.com/. 2005.

[31] Sandia National Laboratories. Sandia MPI Micro-Benchmark Suite.
http://www.cs.sandia.gov/smb/.

[32] S. Sistare, R.v. Vaart, and E. Loh. Optimization of MPI Collectives on Clusters
of Large-Scale SMPs. Supercomputing, ACM/IEEE 1999 Conference, pages 23–
23, 13-18 Nov. 1999.

[33] S. Sur, M. Koop, L. Chai, and D. K. Panda. Performance Analysis and Evalua-
tion of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms.
In 15th IEEE Int’l Symposium on Hot Interconnects (HotI15), August 2007.

[34] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K. Panda. RDMA
Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives
and Benefits. In Symposium on Principles and Practice of Parallel Programming,
(PPOPP ’06), March 2006.

[35] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of Collective commu-
nication operations in MPICH. Int’l Journal of High Performance Computing
Applications, 19(1):49–66, Spring 2005.

[36] V. Tipparaju, J. Nieplocha, and D.K. Panda. Fast Collective Operations Using
Shared and Remote Memory Access Protocols on Clusters. Parallel and Dis-
tributed Processing Symposium, 2003. Proceedings. International, pages 10 pp.–,
22-26 April 2003.

54

