
Can User-Level Protocols Take Advantage of Multi-CPU NICs?

Piyush Shivam
Dept. of Comp. & Info. Sci.
The Ohio State University

2015 Neil Avenue
Columbus, OH 43210

shivam@cis.ohio-state.edu

Pete Wyckoff
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212

pw@osc.edu

Dhabaleswar Panda
Dept. of Comp. & Info. Sci.
The Ohio State University

2015 Neil Avenue
Columbus, OH 43210

panda@cis.ohio-state.edu

Abstract

User-level protocols and their implementations on smart
and programmable network interface cards (NICs) have
been alleviating the communication bottleneck for high
speed interconnets . Most of the user-level protocols de-
veloped so far have been based on single-CPU NICs. One
of the more popular current generation Gigabit Ethernet
NICs includes two CPUs, though. This raises an open chal-
lenge whether performance of user-level protocols can be
improved by taking advantage of a multi-CPU NIC. In this
paper, we analyze the intrinsic issues associated with such a
challenge and explore different parallelization and pipelin-
ing schemes to enhance the performance of our earlier de-
veloped EMP protocol for single-CPU Alteon NICs. Per-
formance evaluation results indicate that parallelizing the
receive path of the protocol can deliver 964 Mbps of band-
width, close to the maximum achievable on Gigabit Ether-
net. This scheme also delivers up to 8% improvement in
latency for a range of message sizes. Parallelizing the send
path leads to 17% improvement in bidirectional bandwidth.

1. Introduction

High-performance computing on a cluster of worksta-
tions requires that the communication latency be as small
as possible . This has led to the development of a range
of user-level network protocols: FM [7] for Myrinet, UNet
[14] for ATM and Fast Ethernet, GM [2] for Myrinet, our
recent work on EMP [10] for Gigabit Ethernet, etc. 1 Dur-
ing the last few years, the designs and developments related
to user-level protocols have been brought into an industry
standard in terms of the Virtual Interface Architecture (VIA)
[13]. An extension to the VIA interface is already included
in the latest InfiniBand Architecture (IBA) [3] as the Verbs
layer.

1This research is supported by a grant from Sandia National Labs (con-
tract number 12652 dated 31 Aug 2000).

As processor technology is moving towards gigahertz
speeds and network technology is moving towards 10–30
Gbits/sec [3] it is becoming increasingly important to ex-
ploit the capabilities of the NIC to achieve the best pos-
sible communication performance. In current generation
systems, the PCI bus serves as a fundamental limitation to
achieving better communication performance. This aspect
is being alleviated in the IBA standard. Thus, the design of
the NICs and their interfaces are getting increased attention.

Most of the older and current generation NICs support
only one processor. Thus, to the best of our knowledge, all
user-level communication protocols including VIA imple-
mentations have been centered around single-CPU NICs.
One popular current generation NIC design is the two-CPU
core from Alteon [6] for Gigabit Ethernet. This leads to the
following interesting challenges:

1. Can user-level protocols be better implemented by tak-
ing advantage of a multi-CPU NIC?

2. What are alternative strategies to parallelization and
pipelining of user-level protocols with a two-CPU
NIC, and what are the intrinsic issues?

3. How much performance benefit can be achieved with
such parallelization and pipelining?

In this paper, we analyze, design, implement, and eval-
uate a parallel version of the user-level protocol layer with
two-CPU Alteon NICs for Gigabit Ethernet. We enhance
the Ethernet Message Passing (EMP) [10] protocol which
we have recently developed for Gigabit Ethernet using Al-
teon NICs. EMP was developed by taking into account
only one of the two available CPUs in the NIC. First we
analyze the send and receive paths of the EMP messag-
ing layer to determine the costs associated with the basic
steps. Next, we analyze the challenges involved in paral-
lelizing and/or pipelining user-level protocols for the two-
CPU Alteon NIC. This leads to four alternative enhance-
ments: splitting up the send path only (SO), splitting up the
receive path only (RO), splitting both the send and receive



paths (SR), and assigning dedicated CPUs for send and re-
ceive (DSR).

We implement these strategies on our cluster testbed
with 933 MHz Intel PIII systems and evaluate their perfor-
mance benefits. The best results are obtained with the RO
scheme for unidirectional traffic, giving a small message
(10 bytes) latency of 22.62 us and bandwidth of 964 Mbps.
This is compared to the base case latency of 24.31 us (a
gain of 7.0%) and bandwidth of 840 Mbps. For large mes-
sages the latency improvement was around 8.3%. For bidi-
rectional traffic the best results were achieved with the SO
scheme where the total bandwidth peaked at 1100 Mbps as
compared to 940 Mbps in the base case, a gain of 17%.

2. Architectural overview

Alteon Web Systems, now owned by Nortel Networks,
produced a Gigabit Ethernet network interface chipset
based around a general purpose embedded microprocessor
design which they called the Tigon2.

The Tigon chip is a 388-pin ASIC consisting of two
MIPS-like microprocessors running at 88 MHz, an inter-
nal memory bus with interface to external SRAM, a 64-bit,
66 MHz PCI interface, and an interface to an external MAC.
The chip also includes an instruction and data cache, and a
small amount of fast per-CPU “scratchpad” memory. Hard-
ware registers can be used by the processor cores to con-
trol the operation of other systems on the Tigon, including
the PCI interface, a timer, two host DMA engines, transmit
and receive MAC FIFOs, and a DMA assist engine. Our
particular cards have 512 kB of external SRAM, although
implementations with more memory are available.

The hardware provides a single semaphore which can be
used to synchronize the two CPUs. Each CPU has its own
register which it writes with any value to request owner-
ship of the semaphore, then must loop until a read from the
semaphore register is non-zero, indicating successful own-
ership. This is the only general locking mechanism avail-
able at the NIC. For more details see [9].

3. Overview of the EMP protocol

In this section we provide an overview of the imple-
mentation of the EMP protocol [10]. We first provide an
overview of the basic steps. Next, we discuss these steps in
detail. Finally, we present a timing analysis of these steps
on a single-CPU NIC. The description of the steps and the
timing analysis will help us understand the challenges in-
volved in parallelizing the EMP protocol.

3.1. Basic protocol steps

Here we outline the basic steps happening at the sending
side and the receiving side of the EMP protocol. The

sending side performs the following steps.

Send bookkeeping. Send bookkeeping refers to the oper-
ations which take place for preparing the frame for being
sent. The bookkeeping operations can be outlined as:
Handle posted transmit descriptor: This step is initiated by
the host which operates asynchronously with the NIC. The
introduction of each new transmit request leads to the rest
of the operations. This operation takes place per message.
Message fragmentation: The host desires to send a message,
which is a user-space entity corresponding to some size of
the application’s data structures. The NIC must fragment
this into frames, which is a quantity defined by the underly-
ing ethernet hardware as the largest quantum of data which
can be supported in the network, 1500 bytes in our system.
Initialize transmission record: Each message which enters
the transmit queue on the NIC is given a record in a
NIC-resident table which keeps track of the state of that
message including how many frames, a pointer to the
host data, which frames have been sent, which have been
acknowledged, the message recipient, and so on.

Transmission. The steps involved in transmission are:
DMA from HOST to the NIC: Along with the two DMA
channels the NIC also contains the “DMA Assist” state ma-
chine to help off-load some of the tasks from the NIC pro-
cessor. Once the bookkeeping steps for the frame are over,
the DMA assist engine will queue a request for data from
the HOST. When the transfer has completed, it will auto-
matically tell the MAC to send the frame. The transfer is
made in the send buffer which is updated after each trans-
fer. This set of operations takes place for every frame and
hence will take more time for large message sizes.
MAC to wire: The NIC uses MAC transmit descriptor
to keep track of frames being sent to the serial Ethernet
interface. The MAC is responsible for sending frames to
the external network interface by reading the associated
MAC transmit descriptor and the frame from the local
memory buffer. This operation happens per frame and
each frame uses one MAC descriptor, hence the overhead
incurred will increase with increasing message size.

Receive acknowledgment. Once the sender knows that the
receiver has successfully received the frames it can release
the resources related to the sent data. Receive acknowledg-
ment introduces only minimal per-frame overhead, again,
because acknowledgment is a process which applies only
to groups of frames [10].

Similarly the receiving side steps are:

Receive bookkeeping. The receive bookkeeping refers
to the operations which need to be performed before the
frame can be sent to the host. These operations are:
Handle preposted receive descriptor: This step is initiated
by the host for all the messages expected to arrive in future.



Here the state information which is necessary for match-
ing an incoming frame is stored at the NIC. If a frame ar-
rives and does not find a matching preposted descriptor, it
is dropped to avoid buffering at the NIC [10].
Classify frame: This step looks at the header of each incom-
ing frame and identifies if it is a header frame, data frame,
acknowledgment frame or negative acknowledgment. It
also identifies the preposted receive to which the incoming
frame belongs by going through all the preposted records.
In the process it also identifies if the frame has already ar-
rived and, if so, drops it. Classify frame is performed for
every frame and hence the overhead per message increases
with increasing message size.
Process frame: Once the frame has been correctly identified
in the previous step, the frame header information (message
sequence number, frame sequence number, etc.) is stored
in the receive data structures for reliability and other
bookkeeping purposes. After recording this information,
this step also initiates the DMA of the incoming frame data.
This step is done per frame and the overhead increases as
the message size increases.

Receiving. The step comprising the actual receiving pro-
cess involves the following operations:
Wire to MAC: Similar to transmission, the NIC uses MAC
receive descriptors to keep track of frames being received
from the serial Ethernet interface. Error conditions are mon-
itored during frame reception and reported to the firmware
through the status word located in the descriptors. Before
the data is given to the NIC the 32-bit CRC is verified and
noted in the status word.
NIC to HOST: Here the “DMA Assist” engine comes into
play exactly like in the transmit case but in the reverse
direction.

Send acknowledgment. This step involves a combination
of bookkeeping and transmission. The acknowledgment is
sent as a single frame with some control information but
no data. Hence the overhead involved in this step is not as
large as that for any data frame. Moreover, this does not
involve per-frame overhead because an acknowledgment is
sent only for complete groups of frames.

3.2. Timing analysis

We did a complete profiling of our protocol to find out
how much time is spent in each of the steps. As we dis-
cussed, each of the steps consists of one or more operations.
But for the sake of clarity we are showing only the timings
for the major steps. Table 1 shows the analysis. The exper-
imental platform is described in Section 6.

Receive bookkeeping is more expensive than send book-
keeping because while sending, the frames are sent in order
but they can arrive out of order on the receive side (due to
switch dropping and reordering of frames). So extra effort

is needed per frame to accept these out of order frames and
put them in the correct order. Also, the tag matching for
MPI happens at the receiver.

Table 1. Timing analysis for the major func-
tional operations.

Operation Time (us)
Send bookkeeping 5.25
Transmission 5.50
Receive acknowledgment 5.75

Recv bookkeeping 10.50
Receiving 2.75
Send acknowledgment 2.50

4. Challenges of using multi-CPU NIC

In order to take advantage of a multi-CPU NIC, the ba-
sic protocol steps need to be distributed across the two pro-
cessors. However, these steps need to share some common
state information at some point in the execution. Typically,
NICs have limited hardware resources to assist in this op-
eration without introducing additional overhead. Here, we
take a critical look at the limitations of the Alteon NIC and
the potential alternatives for achieving our objective.

4.1. NIC constraints

The Alteon NIC does not provide hardware support for
concurrency. There is only one lock, hence fine-grained par-
allelism is expensive. Coarse-grained parallelism is inap-
propriate for the kind of operations performed at the NIC,
due to its limited resources. Shared resources (MAC, DMA)
do not have hardware support for concurrency, and use the
only available lock, thus overloading that single semaphore.

4.2. Achieving concurrency

There are many scenarios where even after distributing
the send and receive functions on different processors, the
sending and receiving state information needs to be shared.

To minimize sharing of such state one may keep separate
data structures for send bookkeeping and receive bookkeep-
ing so that both the operations can happen in parallel with-
out needing to access the other’s data structure. However,
this cannot be guaranteed for every case.

One way to solve this problem would be to share the data
structures across the CPUs. However this would mean that
each access to the data structure requires synchronization,
which would be very expensive as the data structures are
accessed frequently.

To reduce the synchronization overhead, the bookkeep-
ing data structures can be fine-grained so that locking one
data structure does not lead to halting of other operations
which can proceed using other unrelated data structures.

One may also accomplish synchronization by allocating
a special region in the NIC SRAM where one CPU would
write the data needed by the other CPU, which would then



read the common data from there. This might be a better
option because in this case the overhead is generated only
when there is a need for sharing data between the CPUs.

4.3. Exploiting pipelining and parallelization

Amdahl’s law states that the speed-up achievable on a
parallel computer can be significantly limited by the exis-
tence of a small fraction of inherently sequential code which
cannot be parallelized. In any reliable network protocol
there will be a lot of steps which have to be executed se-
quentially. In fact, serially constrained operations become
the norm. This puts a limit on the amount of work which
can be scheduled in parallel. This limitation forces us to
think about the underlying implementation and make appro-
priate changes so that we can perform the maximum num-
ber of operations in parallel. In addition to parallelization,
pipelining can also be exploited, where the operations hap-
pen one after another but not in parallel. In this paper, we
explore both pipelining and parallelization to enhance the
performance of user-level protocols with multi-CPU NICs.

5. Schemes for parallelization and pipelining

In this section, we propose and analyze alternative
schemes to enhance the performance of the EMP protocol
with the support of a two-CPU NIC. The basic approach
was to distribute the major steps of send and receive paths
to achieve a balance of work on the two processors. This
break-up was done with the goal of achieving pipelining
or parallelism—whichever would be possible. We tried to
achieve the latter as much as possible but were limited by
the inherent sequentiality of the protocol in many cases.

We analyzed the send path and the receive path for
parallelization based on our timing analysis and recognized
the following four alternatives.

SO: The send path only is split-up across the NIC CPUs.
RO: The receive path only is split-up across the NIC CPUs.
DSR: Dedicated processors for send and receive paths.
SR: Both send and receive path are split-up.

For each of these alternatives, we illustrate how differ-
ent components (steps) are distributed over two processors
at both the sending and receiving sides. We compare our
schemes with the base case scheme where all the steps hap-
pen at the same processor.

SO. The split-up of the send path in SO happens as shown
in Table 2. Here, we aim to achieve pipelining by running
the bookkeeping phase of a later message with the trans-
mission phase of an earlier message for a unidirectional
flow. There is some parallelism also happening at the
receiver between send ack (2.50 us) and recv dma (1.25 us).
The receive path for SO remains the same as in the base
case. One needs to distinguish the difference between the

Table 2. Component distribution - sending
side(top), receiving side (bottom) for unidi-
rectional traffic.

A (us) B us)
SO send bkkeep 5.25 txmission 5.50

recv ack 5.75
RO send bkkeep 5.25

txmission 5.50
recv ack 5.75

DSR send bkkeep 5.25 recv ack 3.25
txmission 5.50
recv ack 2.50

SR send bkkeep 5.25 txmission 5.50
recv ack 5.75
A (us) B (us)

SO recv bkkeep 6.25 send ack 2.50
recv frame 4.25
recv dma 2.75

RO recv bkkeep 6.25 recv frame 4.25
send ack 2.50 recv dma 2.75

DSR send ack 2.50 recv bkkeep 6.25
recv frame 4.25
recv dma 2.75

SR recv bkkeep 6.25 recv frame 4.25
send ack 2.50
recv dma 2.75

receive path and receive side. The receive path is made up
of receive bookkeeping and actual receiving (DMA). The
send acknowledgment on the receiver is a part of the send
path since the send ack involves steps used in sending and
not receiving.

RO. The split-up of functions in RO happens as shown in
Table 2. The send ack (2.50 us) happens in parallel with
the recv dma (2.75 us) and a part of recv bkkeep (4.25 us).
The split-up of receive bookkeeping helps in achieving
pipelining also. We are able to achieve a very good balance
of functions on the receiving side. The send path remains
the same as in the base case. Again, similar to the receive
path scenario one needs to distinguish between the send
path and sending side. The sending side has a receive step
happening which is a part of the receive path.

DSR. In this case, we are dedicating one CPU each for the
send path and the receive path on the sending as well as
receiving side. This way we achieve an almost complete
split of the send and receive paths. The recv ack step is
split on the sending side because a part of it needs to update
the send data structures and hence it is scheduled at the
send processor. The functions are distributed as shown in
Table 2.

SR. Here we combine the optimized send path and receive
path together to see if we can benefit from the overall op-



timization of the protocol. It is a combination of SO and
RO as depicted in Table 2. We hope to gain from the bene-
fits of pipelining on the send side and parallelization on the
receive side.

6. Implementation and performance

For the Gigabit Ethernet tests, we used two dual
933 MHz Intel PIII systems, built around the ServerWorks
LE chipset which has a 64-bit 66 MHz PCI bus, and un-
modified Linux 2.4.2. Our NICs are Netgear 620, which
have 512 kB of memory. The machines were connected
back-to-back with a strand of fiber.

6.1. Exploiting the NIC hardware capability

To solve the problem of synchronization we allocated a
special common area in the NIC SRAM though which the
CPUs can communicate common data. The benefits of such
an approach were discussed in section ??.

We developed a pair of calls, spin lock and
spin unlock, which are used to gain exclusive access for
protected code regions. We would have preferred to have
multiple points of synchronization to implement object-
specific locking, but the hardware provides exactly one
point for inter-CPU synchronization through a semaphore.
Thus accesses to protected regions become potentially very
expensive due to high contention for this single lock.

The other communication mechanism we used was to set
bits in the event register of each processor. These calls use
spin locks to guarantee exclusive access to the event regis-
ter, whereby one CPU sets a bit in the event register of the
other. The second CPU will notice this event in its main
priority-based dispatch loop, clear the bit, and process the
event.

Running two processors simultaneously puts more load
on the memory system in the NIC. We attempt to allevi-
ate this pressure somewhat by moving frequently used vari-
ables to the processor-private “scratchpad” memory area in
each CPU. This small region (16 kB on cpu A, 8 kB on cpu
B) also has faster access times, so we put frequently-called
functions there too.

6.2. Results and discussion

In this section we analyze the results derived from the
alternatives discussed so far. We tested each of our alterna-
tives for unidirectional as well as bidirectional flows. For
unidirectional flow, we evaluated latency as well as band-
width. For bidirectional flow, we evaluated bandwidth. We
get better performance than the base case (single CPU per
NIC) by using at least one alternative in each of the cases.

6.2.1. Unidirectional traffic

The latency is determined by halving the time to com-
plete a single ping-pong test. The “ping” side posts two
descriptors: one for receive, then one for transmit, then a
busy-wait loop is entered until both actions are finished by
the NIC. Meanwhile the “pong” side posts a receive descrip-
tor, waits for the message to arrive, then posts and waits for
transmission of the return message. This entire process is it-
erated

���������
times from which an average round-trip time

is produced, then divided by two to estimate one-way la-
tency.

The unidirectional throughput is calculated from one-
way sends with a trailing return acknowledgment. The
user-level receive code posts as many receive descriptors as
possible (about 400), and continually waits for messages to
come in and posts new receives as slots become available.
The transmit side posts two transmit descriptors so that the
NIC will always have something ready to send, and loops
waiting for one of the sends to complete then immediately
posts another to take its place. Each transmit is known to
have completed because the receiving NIC generates an
acknowledgment message which signals the sending NIC
to inform the host that the message has arrived. This is
iterated

���������
times to generate a good average.

SO. The unidirectional bandwidth (Figure 1) is the same as
in the base case. On the sending side the benefit is obtained
due to pipelining (between send bkkeep and txmission) and
parallelism (recv ack and txmission).

However the gains are offset by two factors. First,
the overhead in inter-CPU communication. Next, while
comparing the receive and the send path, we can see that
the receive path has more overhead than the send side.
The sending side cannot send at any rate since it will
swamp the receiver. It waits for the acknowledgment from
the receiving side for a certain number of messages (two
in our case) before it sends out more messages. Thus
whatever speedup which can be gained due to pipelining or
parallelism is limited by the reception of acknowledgment
from the receiver which is again dependent on receive
processing. Since the receive processing is happening in
the same way as the base case except for a very small
amount of parallelism (which is offset by the inter-CPU
communication overhead), the pipelining/parallelization
does not demonstrate much benefit for the SO case.

RO. The unidirectional bandwidth (Figure 1) is much better
than the base case. In fact it reaches up to 99.78% of the
theoretical throughput limit on Gigabit Ethernet (taking into
account the required preamble and inter-frame gap and our
protocol headers). This happens because on the receiving
side, we are able to parallelize send ack on CPU A and recv
frame and recv DMA on CPU B (Table 2). In addition, the



400

500

600

700

800

900

1000

1100

1200

0 5 10 15 20

Unidirectional bandwidth (Mb/s)
base case

SO
RO

DSR
SR

0 5 10 15 20 25

Bidirectional bandwidth (Mb/s)
base case

SO
RO

DSR
SR 0

10

20

30

40

50

60

0 1 2 3 4

Latency (us)
base case

SO
RO

DSR
SR

Figure 1. Latency & Bandwidth comparisons for unidirectional and bidirectional traffic. The � -axis
indicates message size in kilobytes. The � -axis shows latency(rightmost) and bandwidth.

distribution of jobs on the receiving side is well balanced,
resulting in both the CPUs being occupied most of the time.

Since the receive path has been parallelized effectively
we are able to offset the inter-CPU communication over-
head and achieve almost the maximum possible bandwidth.
This implies that the receive side is the bottleneck, a fact
confirmed by the SO case where we left the receive side al-
most unaltered and did not achieve any benefits even though
we had pipelined and parallelized the send path.

By looking at Figure 1 we observe that even the latency
improves for RO parallelism. For a 10-byte messages we
obtained a a gain of about 7%. For a message size of
14 kB we were able to achieve a latency improvement of
about 8.3%, indicating that the rate of latency improvement
increases with increasing message size. The large message
case results are in [9].

DSR. The unidirectional bandwidth (Figure 1) is marginally
better than the base case. Here the scenario is very simi-
lar to the SO case, with the receive side being the bottle-
neck. However, since on the receive side we do schedule
send ack to happen on a different CPU, we are able to see
the marginal improvement in bandwidth numbers. The im-
provement is marginal because send ack is a very small por-
tion of the receive side processing.

By looking at Figure 1 we can conclude that latency also
benefits with this approach. For a 10-byte message, we get
a latency improvement of 6%.

SR. This alternative gives the best unidirectional band-
width. One is able to achieve almost complete utilization
of Gigabit Ethernet’s bandwidth. The results are very simi-
lar to the RO case but one can see the benefits of pipelin-
ing/parallelizing the send path also in the SR case (Fig-

ure 1).

6.2.2. Bidirectional traffic

Bidirectional throughput is calculated in a manner sim-
ilar to the unidirectional throughput, except both sides are
busy sending to each other. After the startup pre-posting of
many receive descriptors, the timer is started on one side.
Then two messages are initiated at each side, and a main
loop is iterated

���������
times which consists of four oper-

ations: wait for the oldest transmit to complete, wait for
the oldest receive to complete, post another transmit, post
another receive. Using one application rather than two on
each host ensures that we do not suffer from operating sys-
tem scheduler decisions.

Bidirectional traffic is more complex than unidirectional
traffic. A lot more steps are happening at the sender and
the receiver as compared to the unidirectional case. These
steps are send bookkeeping, transmission, acknowledgment
receive, sending acknowledgment, receive bookkeeping and
dmaing of the receive as well as send data.

Figure 1 shows considerable improvement for all the al-
ternatives. This is so because of more number of steps and
hence more opportunities to parallelize/pipeline in a bidi-
rectional traffic as compared to the unidirectional traffic. In
the bidirectional traffic we encounter the same interplay of
factors which was present in the unidirectional traffic. How-
ever, for large message sizes the inter-CPU communication
overtakes the gain. This does not happen in the unidirec-
tional case because the amount of inter-CPU communica-
tion is less as compared to the bidirectional case. The de-
tailed analysis for each case can be looked in [9].



7. Related work

All the previous efforts to parallelize the network proto-
cols have been focussed on WAN protocols such as TCP/IP
and Symmetric Multi Processor (SMP) systems. These ap-
proaches involve processing multiple packets in parallel [5],
executing different layers in parallel for TCP/IP like proto-
cols [15] and breaking the protocol functions across multi-
ple processors [8].

It is to be noted that all these research directions focus
on host-based layered protocols and try to exploit SMP sys-
tems. The focus of our work is how to take advantage of
multi-CPU NIC to enhance user-level protocols. The key
idea is to free the host CPUs as much as possible to devote
its cycles to the parallel application itself.

8. Conclusions and future work

In this paper, we have presented how to take advan-
tage of a multi-CPU NIC, as available in Alteon NIC core
implementations, to improve point-to-point communication
performance on Gigabit Ethernet. We have considered
our earlier developed EMP protocol (valid for single-CPU
NIC) and analyzed different alternatives to parallelize and
pipeline different steps of the communication operation.
The study shows that parallelizing the receive path can de-
liver benefits for unidirectional as well as bidirectional traf-
fic. In fact, this scheme allows us to reach the theoretical
throughput of the medium.

As a result of our investigations into work distribution
strategies on the multi-CPU Alteon NIC, we have deter-
mined multiple promising paths for future study. Currently
the split-up of tasks in done at compile time. We would like
to produce a truly dynamic event scheduling system, where
the next available event is handled by either processor when
it becomes free.

We are also exploring the benefits of multi-CPU NICs
to support collective communication operations efficiently.
We plan to perform application-level performance evalua-
tion for our scheme. Another interesting direction is to ex-
plore the required architectural support at the NIC to par-
allelize both point-to-point and collective communication
operations.

References

[1] M. Banikazemi, V. Moorthy, L. Herger, D. Panda, and
B. Abali. Efficient Virtual Interface Architecture support for
the IBM SP switch-connected NT clusters. In IPDPS, May
2000.

[2] N. Boden, D. Cohen, and R. Felderman. Myrinet: a giga-
bit per second local-area network. IEEE Micro, 15(1):29,
February 1995.

[3] Infiniband. http://www.infinibandta.org.
[4] MVIA. http://www.nersc.gov/research/FTG/via, 1998.

[5] E. Nahum, D. Yates, J. Kurose, and D. Towsley. Perfor-
mance issues in parallelized network protocols. In Proceed-
ings of the First USENIX Symposium on OSDI, pages 125–
137, November 1994.

[6] Netgear. http://www.netgear.com/adapters main.asp.
[7] S. Pakin, M. Lauria, and A. Chien. High performance mes-

saging on workstations: Illinois Fast Messages (FM) for
Myrinet, 1995.

[8] T. Porta and M. Schwartz. A high-speed protocol par-
allel implementation: design and analysis. In Fourth
IFIP TC6.1/WG6.4 International Conference on High Pe-
formance Networking, pages 135–150, December 1992.

[9] P. Shivam, P. Wyckoff, and D. Panda. Can user level proto-
cols take advantage of multi-CPU NICs? Technical Report
OSU-CISRC-08/01-TR09, The Ohio State University, 2001.

[10] P. Shivam, P. Wyckoff, and D. Panda. EMP: Zero-copy OS-
bypass NIC-driven gigabit ethernet message passing. In Pro-
ceedings of SC01, November 2001.

[11] E. Speight, H. Abdel-Shafi, and J. Bennett. Realizing the
performance potential of a virtual interface architecture. In
Proceedings of the International Conference on Supercom-
puting, June 1999.

[12] TechFest. http://www.techfest.com/networking/lan/ethernet2.htm.
[13] VI. http://www.viarch.org, 1998.
[14] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-net:

A user-level network interface for parallel and distributed
computing. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, December 1995.

[15] M. Zitterbart. High-speed protocol implementations based
on a multiprocessor architecture. In Protocols for High
Speed Networks, pages 151–163, 1999.


