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Abstract—Coordinated checkpoint and recovery is a
common approach to achieve fault tolerance on large-scale
systems. The traditional mechanism dumps the process
image to a local disk or a central storage area of all
the processes involved in the parallel job. When a failure
occurs, the processes are restarted and restored to the latest
checkpoint image. However, this kind of approach is unable
to provide the scalability required by increasingly large-
sized jobs, since it puts heavy I/O burden on the storage
subsystem, and resubmitting a job during restart phase
incurs lengthy queuing delay.

In this paper, we enhance the fault tolerance of MVA-
PICH2 [1], an open-source high performance MPI-2 im-
plementation, by using a proactive job migration scheme.
Instead of checkpointing all the processes of the job and
saving their process images to a stable storage, we transfer
the processes running on a health-deteriorating node to
a healthy spare node, and resume these processes from
the spare node. RDMA-based process image transmission
is designed to take advantage of high performance com-
munication in InfiniBand. Experimental results show that
the Job Migration scheme can achieve a speedup of 4.49
times over the Checkpoint/Restart scheme to handle a node
failure for a 64-process application running on 8 compute
nodes. To the best of our knowledge, this is the first such
job migration design for InfiniBand-based clusters.

I. INTRODUCTION

In the last several years, the High Performance Com-
puter Clusters are continuously growing in terms of
scale and complexity. There has been an exponential
increase in the number of components in the cluster. As a
consequence, failures can be more frequent and can stop
an entire execution, causing the restarting of the entire
application. In this context, Fault-Tolerance becomes
an extremely important requirement. MPI is the most
popular programming model on a distributed memory
system. The current MPI standard does not indicate any
specifications to ensure fault-tolerance. However, MPI
Forum is currently discussing about such fault-tolerance
specifications in the upcoming MPI-3 standard [2].

Checkpoint/Restart is a common practice to guarantee
Fault-Tolerance for large scale applications. A typical

Checkpoint/Restart mechanism saves a snapshot of the
current state of the job to a global shared file system,
which is later used to recover the application from a fail-
ure by rolling back the entire application to the previous
checkpoint. A lot of work has been done to understand
the most convenient interval time to take checkpoint in
order to minimize the checkpointing overhead [3], [4].
However, how to apply Checkpoint/Restart to large-scale
systems still remains a grand challenge. Most of current
implementations handle faults in a reactive manner,
i.e., if one of compute nodes encounters a failure, all
processes of the job must be restarted from their most
recent saved state. This implies two major drawbacks:

• First, every process must be checkpointed at certain
intervals, saving their memory snapshot to some
stable storage to be used in a possible future restart.
This results in huge data volume being dumped
to a (local or global) file system, which becomes
a bottleneck for the overall performance of the
application.

• Second, the entire application has to be aborted
even if only one node fails. This application is then
re-submitted to the job scheduler to go through
the lengthy queuing latency. As a consequence,
the throughput of the computer cluster as a whole
degrades significantly.

The key insight to the above problem is that a check-
point is only needed on the faulty node in order to
recover the processes running on it. Other processes on
healthy nodes can be paused and wait while the processes
on the failing node are being migrated to a spare node.
The assumption here is the availability of some spare
nodes, which has become a common practice in node
allocation at large clusters.

In this paper, we explore a solution that handles
node failures by migrating processes from a health-
deteriorating node to a healthy spare node, while retain-
ing execution of the application as a whole. A migration



can be triggered by an abnormal event of system health
status such as reported by IPMI [5] or other failure
prediction models [6], [7]. Our design also enables direct
user intervention to trigger a migration, such as for load-
balancing or system maintenance purposes.

Once a migration is triggered, coordinated actions are
taken by all processes to reach a consistent global state.
After arriving at such a state, processes at the failing
node are migrated to a spare node, while processes at
healthy nodes are blocked and wait for the migration to
complete. Once the processes are restarted at the spare
node, all processes synchronize to resume execution.
In order to reduce the overhead to move large process
images during migration, we have designed a RDMA-
based process migration approach that takes advantage
of InfiniBand [8], a high performance communication
interconnect.

Similar studies exist, such as a proactive process-level
live migration mechanism proposed by Wang et. al. [9],
[10] for LAM/MPI over on TCP/IP. Unlike their work,
our design is optimized for InfiniBand architecture,
which puts different requirements and constraints on
process migration. The authors in [11], [12] explore the
Virtual Machine migration as an alternative to process-
level migration. However one inherent limitation of such
a strategy is the in-distinguished transfer of entire virtual
machine memory. On the contrary, process migration
strategies, presented in this paper and in [9], [10],
only transfer the memory content actually used by the
processes.

Including the aforementioned strategies, we have im-
plemented a transparent and automatic Job Migration
Framework for MVAPICH2, a high performance imple-
mentation of MPI-2. Experiments show that our RDMA-
based Job Migration strategy causes only marginal (3.9%
to 6.7%) overhead on the total execution duration for 64-
process applications running on 8 compute nodes. Our
approach significantly reduces the amount of data that
need to be dumped by a Checkpoint/Restart strategy, so
as to relieve the I/O bottleneck. Compared to the tradi-
tional Checkpoint/Restart strategy, our approach reduces
the time to handle a node failure from 28.3 seconds to
6.3 seconds, a speed up of 4.49 times.

Provided the capability to detect/predict a subset of
imminent failures by current techniques [5]–[7], our
approach can cope with them by proactively migrating
processes away from those affected nodes. As a result,
our approach has the potential to benefit the existing
Checkpoint/Restart strategy by prolonging the interval
between full job-wide checkpoints. We plan to explore
along this direction in our future studies.

In a brief summary, our contribution in this paper is
as follows:

• We have designed and implemented a Job-
Migration based Fault Tolerance Framework for
MVAPICH2 as a complement to the existing
Checkpoint/Restart Framework [13]–[16]. With this
framework, the MPI job remains alive while the
processes on the involved nodes are being migrated,
and a complete dump of the entire job is avoided.

• We have designed a RDMA-based process migra-
tion strategy, which significantly reduces the over-
head to migrate process images from the failing
node to the spare node. This strategy checkpoints
processes on a failing node using BLCR [17], ag-
gregates the memory snapshots from multiple pro-
cesses, and transfers them on-the-fly to a spare node
using RDMA, where the processes are restarted.

• We have adopted FTB (Fault Tolerance Back-
plane) [18], [19] into this Job Migration Framework
as a communication infrastructure for all the com-
ponents to exchange fault-related messages during
a migration. As can be seen in later sections, FTB
proves to be very useful in such a scenario.

• We have conducted comprehensive performance
evaluation of the proposed design with a state-of-
the-art InfiniBand cluster.

The paper is organized as follows. In section II, we
give a background about the key components involved in
our design. Then in section III, we introduce our Design
and Implementation. In section IV, we present our ex-
periments and evaluation. Related work is discussed in
Section V, and in section VI, we discuss the conclusion
and future work.

II. BACKGROUND

A. InfiniBand and MVAPICH2

InfiniBand is an open standard of high speed in-
terconnect, which provides send/receive semantics, and
memory-based semantics called Remote Direct Memory
Access (RDMA) [8]. RDMA operations allow a node to
directly access a remote node’s memory contents without
using the CPU at the remote side. These operations are
transparent at the remote end since they do not involve
the remote CPU in the communication. InfiniBand em-
powers many of today’s Top500 Super Computers [20].

MVAPICH2 [1] is an open source MPI-2 implementa-
tion using InfiniBand, iWARP and other RDMA-enabled
interconnect networking technologies. MVAPICH2 is be-
ing used by more than 1,185 organizations world-wide.
MVAPICH2 supports application initiated and system
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initiated coordinated Checkpoint and Restart (CR) [13],
[14] using the BLCR Library for Checkpoint/Restart
[17], [21]. During a CR cycle, MVAPICH2 drains the
communication channels of all pending messages, uses
the BLCR Library to independently request the check-
point of every process that is part of the MPI job,
and re-establishes the communication endpoints on every
process during restart. After the checkpoint is taken the
application continues its execution.

B. CIFTS and FTB

The Coordinated Infrastructure for Fault Tolerant Sys-
tems (CIFTS) [18], [19] is an asynchronous messaging
backplane that provides an environment and infrastruc-
ture for sharing fault-related information. The FTB (Fault
Tolerance Backplane) is the backbone of this CIFTS
environment. Its physical infrastructure is based on a
distributed architecture with a set of distributed daemons,
named FTB agents. These agents connect to each other
to form a fault-tolerant and self-healing tree-based topol-
ogy. If an agent loses connectivity during its lifetime, it
can reconnect itself to a new parent in the topology tree.

The FTB Software Stack consists of three layers:
the Client Layer, the Manager Layer, and the Network
Layer. The Client Layer comprises a set of APIs that the
clients use to interact with each other and to connect to
the FTB framework. Once connected, a client can pub-
lish/receive fault-related messages to be communicated
throughout the FTB system. The Manager Layer handles
the bookkeeping and decision making logic. It handles
the client subscriptions, subscription mechanisms and
event notification criteria. It’s also responsible for event
matching and routing events across to other FTB Agents.
The Network Layer deals with the sending and receiving
of data. The Network Layer is transparent to the upper
layers and is designed to support multiple communi-
cation protocols such as TCP/IP and shared-memory
communication.

C. Berkeley Lab Checkpoint/Restart (BLCR)

Berkeley Lab Checkpoint/Restart (BLCR) [21] allows
programs running on Linux systems to be checkpointed
by writing the process image to a file and then later to
be restarted from the saved process image file. BLCR
by itself can only checkpoint/restart processes on a
single node. But it provides callbacks to be extended
by applications, so that a parallel application can also
be checkpointed.
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Fig. 1. Job Migration Framework for MVAPICH2

III. DESIGN AND IMPLEMENTATION

The architecture of the proposed Job Migration frame-
work for MVAPICH2 is illustrated in Figure 1. An FTB
agent is deployed in each node to connect with other
agents to form the communication framework (FTB
backplane). Aided with this backplane, fault-tolerance
related messages are delivered throughout the frame-
work. A Migration Trigger fires events that initiate a
migration, either upon a user request, or at the detection
of system abnormal status by some health monitoring
component, such as IPMI [5]. In our design, MVAPICH2
has three principal components (dark boxes in Figure 1)
that subscribe to the FTB-agent to publish/receive mes-
sages.

• Job Manager. During the startup, the Job Manager
launches the Node Launch Agents (NLA) on the
primary compute nodes as well as on the spare
nodes. During a migration, the Job Manager acts
as a coordinator to orchestrate the actions of other
components in the framework.

• Node Launch Agent (NLA). NLA combines with
Job Manager to form a hierarchical scalable job
launch architecture [22]. It is responsible for start-
ing/terminating the application processes at local
node. We have extended NLA to support restarting
migrated processes on a spare node as necessary.

• Checkpoint/Restart (C/R) Thread within each MPI
Process. MVAPICH2 library provides a Check-
point/Restart (C/R) thread for each MPI process.
By calling BLCR [17], the C/R thread takes the
responsibility to checkpoint a MPI process at mi-
gration source node, and restart the process at the
target node.
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A. Proposed Job Migration Procedure in MVAPICH2
A migration can be triggered either by a user request,

or by a health-deteriorating event reported by a health-
monitoring component. Figure 2 depicts the interactions
between different components during a migration. The
migration cycle can be divided into four phases.

Phase 1: Job Stall. At the startup time, the Job
Manager is supplied with a list of spare nodes in addition
to the primary compute nodes required to run a parallel
job. During the startup phase, the Job Manager launches
the Node Launch Agents (NLA) on the spare nodes in
addition to the primary host nodes, and it subscribes to
FTB backplane for all fault tolerance related messages.
The NLAs on all the primary nodes are in the “MI-
GRATION READY” state, while those on the Hot Spare
Nodes are in the “MIGRATION SPARE” state.

Once a migration is triggered, the Job Manager de-
termines the migration source and the target nodes
and initiates process migration by publishing an
“FTB MIGRATE” message including the names of these
nodes. This message is received by all the NLAs and
all MPI Processes. On receiving this message, all MPI
processes suspend their MPI communication activities,
drain all inflight MPI messages, and tear down their
communication end-points. This step is necessary for
all MPI processes to achieve a consistent global state
in order to checkpoint individual MPI processes, due to
the characteristics native to InfiniBand network.

• First, InfiniBand provides its high performance
communication via an OS-bypass user-level proto-
col. The OS is skipped in the actual communication
and does not own complete knowledge of ongoing
network activities. Therefore it becomes very diffi-
cult for the OS to directly stop network activities
without losing global consistency.

• Second, unlike regular TCP/IP which stores its

communication context within kernel memory, the
network connection context for many InfiniBand
implementations is only available in network adap-
tor cache. Therefore network connection context
has to be released before checkpoint, and rebuilt
afterwards.

• Third, some InfiniBand network connection context
is even cached on remote nodes, such as RDMA
remote key, in order to achieve high performance.
These cached resources must be released before
checkpoint. Otherwise potential inconsistency will
be introduced since these keys become invalid when
network connection context is rebuilt at restart.

Phase 2: Job Migration. By the end of Phase 1,
all processes have suspended their MPI communication
activities and released their communication channels.
At this instant, they have reached a consistent global
state, and Phase 2 begins. The MPI processes not on
the migration source node enter a migration barrier
and remain stalled. Meanwhile, the processes running
on the migration source node are checkpointed using
BLCR [21], and their process images are migrated to the
target node. We have implemented a RDMA-based pro-
cess migration strategy with extensions to BLCR library.
Our strategy takes the advantages of InfiniBand net-
work to achieve a low-overhead and low-latency process
migration. This strategy is elaborated in Section III-B.
Once all the process states have been migrated to the
target node, the NLA on the source node propagates
a “FTB MIGRATE PIIC” message marking the end of
Phase 2. After that, the NLA on source node transits to
the “MIGRATION INACTIVE” state, which indicates
that the NLA’s node is no longer active.

Phase 3: Restart on Spare Node. On receiving
the “FTB MIGRATE PIIC” message, the Job Man-
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ager adjusts the mpispawn tree structure to accommo-
date the topology changes caused by migrating some
MPI processes to the new node. It then broadcasts a
“FTB RESTART” message, with the payload containing
the target hostname and list of process ranks that have
been migrated to the target node.

When the “FTB RESTART” message arrives at the
target node, its Node Launch Agent extracts the MPI
process rank information from the payload, and restarts
these MPI processes from the checkpoint images which
have been migrated to the target node in Phase 2. After
that, the NLA on the Migration Target node changes
its status from “MIGRATION SPARE” to “MIGRA-
TION READY”, to indicate that it is now active.

Phase 4: Resume. Once the MPI processes have been
restarted on the target node, they enter the migration
barrier. At this point, all MPI processes are in the
migration barrier. As a result, all the processes are now
synchronized and are free to exit the migration barrier.
Once out of the migration barrier, all the processes
reestablish their communication end-points and resume
their MPI communication activity. The Job Migration
cycle is now complete and is ready for the next cycle.

B. RDMA-based Process Migration

At Phase 2, we migrate process images from the
source node to the target node. The process images
are acquired by using BLCR library to checkpoint in-
dividual process on the source node. In a naive strat-
egy, process migration can be implemented by using
BLCR to checkpoint a process to a local file, copying
the file to the target node, and restarting the process
from the checkpoint file. However, this approach incurs
significant overhead to store the memory snapshot of
a process image to a file and move this file to target
node. Although the checkpoint files can be stored to
a global file system, the file system related data copy
overhead is not mitigated. When multiple processes on
the same node are checkpointed, the conflicts between
concurrent write streams can cause severe performance
degradation on the global file system, as is demonstrated
in [23]. Additionally, storing checkpoint data to a global
file system has the drawback to interfere with other
applications sharing the same file system.

The Process Live Migration mechanism [9] is able to
copy memory snapshot of a process to another node with
no involvement of file system overhead. This mechanism
is implemented in TCP/IP network where BLCR treats
a TCP socket as a file descriptor for output/input at the
source/target node, therefore it is subject to the heavy
memory-copy overhead through the TCP/IP protocol

stack. Although InfiniBand provides a socket abstrac-
tion through IPoIB, it can only achieve an suboptimal
performance because it still follows the memory-copy
based socket protocol and cannot take full advantage of
InfiniBand’s zero-copy RDMA mechanism.

Fig. 3. RDMA-based Process Migration

In this section we propose a RDMA-based Process
Migration strategy which exploits InfiniBand features
to achieve high-bandwidth checkpoint data transfer. At
migration source node, our strategy alters the BLCR
library to aggregate checkpoint writes from multiple MPI
processes into a local buffer pool, with each chunk con-
taining data from one process. The target node performs
RDMA Read to pull over big chunks of data, and rebuild
checkpoint files for different processes to restart from.
The basic design strategy is illustrated in Figure 3.

On the source node, a user-level buffer manager
prepares a buffer pool which is mapped into kernel space
by BLCR when a checkpoint is initiated in Phase 2. The
buffer manager runs in user space because it is more
flexible to allocate and manage big buffers from user
space. During checkpointing, when a process running
BLCR code in kernel space has some checkpoint data to
be saved, it requires for a buffer chunk from the buffer
manager. If a buffer is available in the pool, it is assigned
to the process. All its checkpoint data is then saved in
the chunk until it is filled up. When the chunk is full, it
is returned to the buffer pool and the next free chunk is
fetched. Whenever a filled chunk is returned to the buffer
pool, the buffer manager on the source node sends a
RDMA-Read request to the buffer manager on the target
node. This request contains two types of information:
(1) RDMA information for the target buffer manager to
perform a RDMA Read to pull over the data, and (2)
the information (such as process rank, data size, offset
of the data) based on which the chunks belonging to
the same process can be concatenated into a complete
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checkpoint file. If a free chunk is available in the target
node buffer pool, a RDMA Read is performed to pull the
chunk to the target node, and the chunk is concatenated
to the proper position in a checkpoint file. After that,
the target buffer manager sends a RDMA-Read reply
telling the source buffer manager to release a buffer
chunk. By the time all processes on the source node
have been checkpointed, their process images are ready
in the target node to be used in Phase 3 to restart the
migrated processes.

IV. PERFORMANCE EVALUATION

We have implemented the Job Migration framework
into MVAPICH2 with extensions to BLCR. In this
section, we conduct various experiments to evaluate
the performance of our design, with respect to: (a)
Overhead caused by process migration; (b) Scalability of
the Job Migration framework at different problem sizes;
and (c) Comparison between Job Migration strategy
and Checkpoint/Restart strategy. In our experiment, we
simulate the migration trigger by firing a user signal
to the Job Manager. Other mechanism, such as node
health monitoring events, can also be used to kick off a
migration.

An InfiniBand Linux cluster is used in the evaluation.
In this cluster each node has eight processor cores
on two Intel Xeon 2.33 GHz Quad-core CPUs. The
nodes are connected with Mellanox MT25208 DDR
InfiniBand HCAs for high performance MPI commu-
nication and process migration. In addition to Infini-
Band, they are also connected with a GigE network for
maintenance purposes, over which the Fault Tolerance
Backplane runs. Each node runs RedHat Enterprise 5.
All experiments use MVAPICH2 1.4 as the MPI library
with extended BLCR 0.8.0. NAS parallel benchmark
(NPB) [24] suite version 3.2 is run to obtain the results.
We choose LU/BT/SP applications of class C out of the
NPB benchmark suite, because these applications run
for a sufficiently long duration and generate significant
amount of data in one migration. For each application,
64 processes are run on eight compute nodes, with eight
processes per node. Another compute node is set aside
to be used as the migration target.

A. Migration Overhead

In the first set of experiments, we measured the
overhead incurred by a migration. Figure 4 shows the
time cost for a complete migration cycle, from the instant
when the migration is triggered, till all application pro-
cesses resume execution. The time cost is decomposed
into four phases as described in section III-A: Phase 1

(Job Stall), Phase 2 (Job Migration), Phase 3 (Restart)
and Phase 4 (Resume).
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Fig. 4. Process Migration Overhead

It can be observed that Phase 1 (Job Stall) is very
swift which completes in tens of milliseconds. With the
RDMA-based process migration design, Phase 2 (Job
Migration) finishes in 0.4-0.8 seconds, depending on
the process image size to be migrated (which is shown
in Table I). The cost is dominated by Phase 3 when
the migrated processes are restarted on the spare node.
In our current design, the process images are stored
into temporary checkpoint files on the target node, and
BLCR restarts the processes by loading their images
from these files. Longer delay is incurred due to the file
I/O latency. As a next step, we plan to revise the restart
strategy on the target node by restarting the processes
on-the-fly as the process image data arrives at the buffer
pool (as shown in Figure 3). In our test, we fix the
buffer pool to be 10 MB with chunk size of 1 MB.
We find that the process-migration overhead does not
vary significantly as buffer pool size changes, because
it is dominated by Phase 3 where the processes are
rebuilt by reading temporary checkpoint files. Therefore
we stick to 10 MB buffer pool and 1 MB chunk size in
all the experiments. In Phase 4, all the MPI processes
reestablish their communication end-points and resume
execution. For a given task scale, the cost in phase 4 is
relatively constant.

We have also assessed the application execution time
without any migration, and with one migration. As
shown in Figure 5, the execution time with 1 migra-
tion exceeds the base run by 3.9% for LU.C.64. The
execution time is prolonged by 6.7% and 4.6% for
BT.C.64 and SP.C.64, respectively. With even longer-
running applications, the overhead caused by migration
is going to be less noticeable. It is worth noting that,
much of this migration overhead is caused by the file-
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based restart scheme at the spare node. Our future work
of memory-based restart scheme will drive down this
cost.
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Fig. 5. Application Execution Time with/without Migration

B. Migration Scalability

We have also evaluated the scalability of the Job
Migration framework with varied task scale. Here we
take the application LU.C for example. By running
8/16/32/64 application processes on eight compute nodes
(hence 1/2/4/8 processes per node), we evaluated the
duration time to perform one migration. The results are
shown in Figure 6. Our RDMA-based process migration
scheme is very efficient in migrating processes images,
and the time spent in Phase 2 remains at low level.
The time cost in Phase 3 becomes prominent due to the
file-based restart scheme on the migration target node.
At Phase 3, the target node restarts the processes by
restoring their memory snapshot from checkpoint files,
therefore this cost is in proportion to the task scale.
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Fig. 6. Scalability of Job Migration Framework (LU.C, 8 Compute
Nodes)

C. Comparison with Checkpoint/Restart

Checkpoint/Restart (CR) is a widely deployed strat-
egy to achieve fault tolerance. MVAPICH2 includes
a Checkpoint/Restart framework aided by BLCR [14].
In this section, we compare the performance of the
proposed Job Migration framework with the existing
Checkpoint/Restart strategy used in MVAPICH2. Similar
to Job Migration, MVAPICH2 C/R goes through four
phases, but with some differences as explained below.

• Job Stall. In this phase, all processes coordinate to
reach a consistent global state, tear down their com-
munication end-points, and freeze their execution.
This phase is the same for both strategies.

• Checkpoint: In this phase, each process is check-
pointed individually using BLCR library, and the
process image is saved either to local disk, or to
a global file system. This phase corresponds to
the “Migration” phase for Job Migration, when
only processes running on the health-deteriorating
node are checkpointed, and their process images are
migrated to the target node.

• Resume: In this phase, all processes rebuild their
communication end-points, and resume execution.
This phase is the same for both strategies.

• Restart: With C/R, this phase is optional and hap-
pens only if a job fails. In this phase, all processes
load their process images from the checkpoint files,
and restore themselves to the last saved state. On the
contrary, this phase is mandatory by Job Migration
to recover the processes on the target node (as is
detailed in section III-A).

In this section, we evaluated the time to checkpoint
NPB LU/BT/SP of class C with 64 processes running
on eight compute nodes. The checkpoint files are saved
to local ext3 or PVFS [25] at different runs. PVFS
2.8.1 with InfiniBand transport is used in the experiment,
with four separate nodes serve as both data servers and
metadata servers. The stripe size is set to 1 MB for
PVFS.

Figure 7 gives the time cost to perform a checkpoint
with checkpoint files saved to local ext3 or PVFS (the
stacks labeled with “CR”). The duration is decomposed
into different phases as mentioned above. The time
to restart the application is also included in the fig-
ure to complement the results. As a comparison, the
corresponding results with our proposed Job Migration
framework are also depicted in the figure (the stacks
labeled with “Migration”).

It is observed that Job Migration can greatly re-
duce the cost in Checkpoint (Migration) phase, since
only the processes on the migration source node are
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Fig. 7. Comparing Job Migration with Checkpoint/Restart (CR)

migrated. On the contrary, CR scheme dumps process
images for all processes of the application. This fact
is reflected in Table I. In the example of LU.C.64,
only 170.4 MB data is migrated during a migration.
However, 1363.2 MB checkpoint data must be dumped
with Checkpoint/Restart (CR) scheme. Figure 7 also
indicates that the storage subsystem has a huge impact

on CR performance. In the example of BT.C.64, all
checkpoint data is dumped to local ext3 file system in
7.5 seconds. This time is prolonged to 23.4 seconds if
the checkpoint is saved to PVFS. A total of 9.1 seconds
is needed to restart this application from checkpoint files
at local ext3 file system, while this time becomes 20.1
seconds if the checkpoint files are stored in PVFS. The
low I/O bandwidth achieved by PVFS can be ascribed
to the contentions caused by the concurrent I/O streams
to write/read checkpoint files to/from the shared storage.

TABLE I
AMOUNT OF DATA MOVEMENT (MB)

Job Migration CR
LU.C.64 170.4 1363.2
BT.C.64 308.8 2470.4
SP.C.64 303.2 2425.6

As shown in Figure 7, the proposed Job Migration
scheme can greatly drive down the cost to handle a node
failure. For example, in LU.C.64, a Job Migration can
be completed in 6.3 seconds. As a contrast, a complete
CR cycle (including all four phases) needs 12.9 seconds
to checkpoint the application to local ext3, and then
restart from it. Job Migration accelerates this procedure
by 2.03 times. With PVFS, a complete CR cycle costs
28.3 seconds: Job Migration achieves a speedup of 4.49
times. Even if the restart cost is not counted into CR
strategy, our Job Migration still outperforms CR strategy.
For LU.C.64, 6.4 seconds are required to checkpoint the
application to local ext3, and 16.3 seconds are needed
if checkpointing to PVFS. Job Migration is comparable
to CR with local ext3, and outperforms CR with PVFS2
by 2.58 times.

In a typical cluster, however, the checkpoint is usually
stored to a global file system. Although a lot of work
has been done to improve the checkpoint performance
to a shared storage [23], [26], dumping huge amount of
data to the shared file system still poses a significant
performance bottleneck, since it competes with other
application for the I/O bandwidth, thus adversely affect-
ing the performance of all applications. This problem
is eradicated by Job Migration, which only migrates
process images to a spare node, without any impact on
the shared storage subsystem.

V. RELATED WORK

In the field of High Performance Computing systems,
many efforts have been carried out to provide fault
tolerance to MPI applications. Many message passing
libraries such as LAM/MPI [27], MVAPICH2 [14] and

8



OpenMPI [28] have Checkpoint/Restart techniques. Gen-
erally, the application image is periodically saved and
used to restart the application when a failure occurs
and the checkpoint is coordinated among the proces-
sors. CoCheck [29], Starfish [30] and Clip [31] are
representatives of this class of checkpointing. These
coordinated checkpoint approach shares a downside in
that all processes must save their process images in a
coordinated manner, which imposes a heavy burden on
the I/O subsystem. Un-coordinated checkpoint(Message-
Logging based) approach, on the other side, has the
central idea of retransmitting one or more messages
when a system failure is detected. They can be op-
timistic, pessimistic or casual. MPICH-V [32] imple-
ments an uncoordinated checkpoint/restart protocol with
message logging to account for process state. However,
message-logging requires some book-keeping upon ev-
ery send/receipt of a message, which implies significant
overhead in high-bandwidth network environment such
as InfiniBand. Additionally it is susceptible to the well-
known domino effect [33], [34] that leads to cascading
abort of interdependent processes.

Recent research focuses on proactive Fault Tolerance.
The authors in [9], [10] propose a proactive process-level
live migration mechanism for LAM/MPI over TCP/IP.
The authors in [35] propose a mechanism that combines
processor virtualization and dynamic task migration to
migrate tasks away from processors which are expected
to fail. Unlike their work, our design is optimized for
InfiniBand to take the advantage of RDMA data transfer.
The authors in [11], [12] exploit an approach based on
operating system virtualization techniques to migrate an
MPI task. OS Virtualization strategy, however, comes
with the inextricable cost to migrate the complete mem-
ory content used by the guest OS. Process migration
strategy, on the other hand, migrates only the memory
content used by the processes.

VI. CONCLUSIONS

In this paper we present our design and implementa-
tion of a Job Migration framework for MVAPICH2, a
high performance implementation of MPI-2. This new
scheme complements the existing Checkpoint/Restart
based fault tolerance design in MVAPICH2. With this
framework, an application can react to an imminent
unavailability of a node reported by some failure pre-
diction/detection module, and proactively migrate appli-
cation processes from the health-deteriorating node to a
spare node. By using the Migration Trigger, moreover, a
migration can also be triggered by user request or a job

scheduler under different circumstances, i.e., a system-
maintenance task or a load imbalance. An RDMA-based
migration strategy with aggregation is implemented to
improve efficiency of process migration. Experimental
results show that the Job Migration design is able to
drastically reduce the time spent to handle a node failure.

As part of our future work, we plan to improve
the process-restart component on the spare node by
using a memory-based restart strategy, so as to further
drive down the cost of process migration. We also want
to investigate the potentials of our process-migration
approach to benefit the existing Checkpoint/Restart strat-
egy by prolonging the interval between full job-wide
checkpoints.
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