
High Performance Pipelined Process Migration
with RDMA

Xiangyong Ouyang, Raghunath Rajachandrasekar, Xavier Besseron and Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

{ouyangx, rajachan, besseron, panda}@cse.ohio-state.edu

Abstract—Coordinated Checkpoint/Restart (C/R) is a
widely deployed strategy to achieve fault-tolerance. How-
ever, C/R by itself is not capable enough to meet the
demands of upcoming exascale systems, due to its heavy
I/O overhead. Process migration has already been proposed
in literature as a pro-active fault-tolerance mechanism to
complement C/R. Several popular MPI implementations
have provided support for process migration, including
MVAPICH2 and OpenMPI. But these existing solutions
cannot yield a satisfactory performance.

In this paper we conduct extensive profiling on several
process migration mechanisms, and reveal that ineffi-
cient I/O and network transfer are the principal factors
responsible for the high overhead. We then propose a
new approach, Pipelined Process Migration with RDMA
(PPMR), to overcome these overheads. Our new protocol
fully pipelines data writing, data transfer, and data read
operations during different phases of a migration cycle.
PPMR aggregates data writes on the migration source node
and transfers data to the target node via high throughput
RDMA transport. It implements an efficient process restart
mechanism at the target node to restart processes from the
RDMA data streams. We have implemented this Pipelined
Process Migration protocol in MVAPICH2 and studied
the performance benefits. Experimental results show that
PPMR achieves a 10.7X speedup to complete a process
migration over the conventional approach at a moderate
(8MB) memory usage. Process migration overhead on the
application is significantly minimized from 38% to 5% by
PPMR when three migrations are performed in succession.

I. INTRODUCTION

High performance computer clusters are continuously
growing in terms of scale and complexity. There has
been an exponential increase in the number of com-
ponents in modern-day clusters, inevitably leading to
more frequent failures of individual components [1, 2].
As a consequence, the possibility of an application being
interrupted by a failure during its execution becomes
so high that fault-tolerance has become a necessity.
MPI is the most popular programming model on a
distributed memory system. The current MPI standard
does not indicate any specifications to ensure fault-
tolerance. However, MPI Forum is currently discussing

about such fault-tolerance specifications in the upcoming
MPI-3 standard [3].

Checkpoint/Restart (C/R) [4, 5] has been a common
practice to guarantee fault-tolerance for large scale ap-
plications. A typical C/R mechanism saves a snapshot of
the current state for all processes in an application to a
global shared file system, which is later used to recover
the application from a failure by rolling back the entire
application to the previous checkpoint. Upon a failure,
the entire application has to be aborted and resubmitted
to the job scheduler, incurring the lengthy queuing delay.
Such a scheme will not be a viable solution to serve
the needs of upcoming exascale systems, which will
typically have a very low Mean Time Between Failures
(MTBF).

Job/process migration [6–9], a pro-active fault-
tolerance mechanism, has been proposed as a com-
plement to C/R. During a migration, the processes
running on a source node are checkpointed and the
checkpoint data is transferred to a healthy spare node
where the processes are restarted. All other processes
of the application are paused when a migration is ini-
tiated and resume execution when the migrated pro-
cesses are restored. Migration overcomes the two key
drawbacks of C/R, namely the unnecessary dumping
of all processes’ snapshots and the resubmit queuing
latency during restart. Job Migration can work in synergy
with C/R by significantly reducing the frequency of full
checkpoint [7], providing two prerequisites: the capabil-
ity to predict a subset of imminent failures with health
monitoring mechanisms such as IPMI [10] and varied
failure prediction models [11, 12], and the availability of
healthy spare nodes.

Additionally, process migration is also a desirable
feature to meet many other demanding requirements such
as cluster-wide load balancing, server consolidation, per-
formance isolation and ease of management. Hence any
progress to improve process migration performance will
likely be perceived by a wide spectrum of demanding
cluster applications.

Process Migration has been supported by several
popular MPI stacks including MVAPICH2 [13] and
OpenMPI [14]. Experiments show that these implemen-
tations cannot achieve an optimal performance. Detailed
profiling in Section III reveals that the high cost arises
from three factors involving vast amount of file IO: (1)
overhead at the source node to write process images into
files; (2) overhead to copy the image files from the source
to the target node; (3) overhead at the target node to read
process images files to restart.

In [8], we have made an initial attempt to optimize (1)
and (2) by leveraging RDMA to transfer checkpoint data.
However it hasn’t totally solved the problem since the
heavy IO overhead at (3) still dominates. Several other
migration protocols [7, 15] proposed to convert a process
image to a socket stream which can be read by the target
node to perform restart, thus avoiding the filesystem
IO. However this approach is subject to the network
protocol overhead inside TCP/IP stack, and loses the
opportunity to leverage the advanced network features
such as RDMA.

In this paper we take the challenge to design a
new approach that can significantly reduce the overhead
at process migration. Specifically we want to address
several questions:

• What are the main factors that dominate the heavy
overhead in process migration?

• How to optimize the checkpoint IO path to reduce
the IO cost at migration source/target nodes?

• How to optimize the data transfer path by leverag-
ing advanced RDMA transport?

• What are the main factors that determine the per-
formance of such a design?

We have designed a new approach Pipelined Process
Migration with RDMA (PPMR) to optimize process
migration. Our design fully pipelines the checkpoint data
writing, data transfer, and data read, the three major
components that dominate the cost of migration. In the
migration source node, we aggregate checkpoint data
writes from multiple MPI processes into a shared buffer
pool which is then transmitted to a buffer pool on
the migration target node via high performance RDMA
transport. While the data is still in transit, restart is
initiated at the migration target node and is fed with
the RDMA data streams on-the-fly from the buffer pool.

We have implemented this new protocol into MVA-
PICH2 [13]. Experiments show that our fully-pipelined
design achieves 10.7X and 2.3X speedup over the file-
based approaches with a local EXT3 filesystem or a
high-throughput PVFS2 [16] filesystem, respectively.
Results also indicate that this new approach requires
only a smaller amount of memory (8MB) to achieve an
ideal performance, and causes only marginal overhead

(up to 5%) on the application when three migrations are
performed in succession.

In a brief summary, our contribution in this paper is
as follows:

• Through detailed profiling, we have identified the
dominant factors that determine the cost of process
migration.

• We have designed and implemented a new protocol
that radically drives down the cost of process migra-
tion by fully pipelining the key steps in a migration
and totally bypassing the IO overhead.

• We have conducted comprehensive performance
evaluation of the proposed design, and revealed
some key characteristics of this pipelined design.

• The new pipelined protocol significantly lowers
the cost to perform process migration, making it
more practical to be deployed in the future exascale
systems to satisfy a wide range of requirements in-
cluding fault-tolerance, load-balancing, server con-
solidation and so on.

The paper is organized as follows. In section II we
give a background about the key components involved in
our design. In section III we conduct extensive profiling
to investigate the key components that determine the ef-
ficiency of process migration. Based on our observation,
we propose a new pipelined design in Section IV. In
section V, we present our experiments and evaluation.
Related work is discussed in Section VI, and in section
VII we present the conclusion and future work.

II. BACKGROUND

A. InfiniBand and MVAPICH2

InfiniBand is an open standard of high speed in-
terconnect, which provides send/receive semantics, and
memory-based semantics called Remote Direct Memory
Access (RDMA) [17]. RDMA operations allow a node to
directly access a remote node’s memory contents without
using the CPU at the remote side. These operations are
transparent at the remote end since they do not involve
the remote CPU in the communication. InfiniBand em-
powers many of today’s Top500 Super Computers [18].

MVAPICH2 [13] is an open source MPI-2 imple-
mentation using InfiniBand, iWARP and other RDMA-
enabled interconnect networking technologies. MVA-
PICH2 is being used by more than 1,400 organiza-
tions world-wide. MVAPICH2 supports application ini-
tiated and system initiated coordinated Checkpoint and
Restart [19, 20] and process migration [8] using the
BLCR library [21].

B. Berkeley Lab Checkpoint/Restart (BLCR)

Berkeley Lab Checkpoint/Restart (BLCR) [21] allows
programs running on Linux systems to be checkpointed

2

Fig. 1. Three Non-optimal Process Migration Schemes

by writing the process image to a file and then later to
be restarted from the saved process image file. BLCR
by itself can only checkpoint/restart processes on a
single node. But it provides callbacks to be extended
by applications, so that a parallel application can also
be checkpointed.

C. Filesystem in Userspace (FUSE)

Filesystem in Userspace (FUSE) [22] is a software
that allows to create a virtual filesystem in the user
level. It relies on a kernel module to perform privileged
operations at the kernel level, and provides a userspace
library that ease communication with this kernel module.

FUSE is widely used to create filesystems that do not
really store the data itself but relies on other resources
to effectively store the data. Then, a FUSE virtual
filesystem is like a way to present and organize data
to users through the classic filesystem interface.

III. PROFILING PROCESS MIGRATION

This section studies different migration approaches in
order to understand the root causes of overhead incurred
during a process migration. With this knowledge we will
identify the dominant factors that determine its time cost.

We consider three non-optimal process migration ap-
proaches, as illustrated in Figure 1. These schemes are
evaluated with MVAPICH2 [13]

Local filesystem-based migration: The processes are
checkpointed into image files stored in a local filesystem
(EXT3 in this paper). Then the image files are transferred
via the 1 GigE to the local filesystem on the target node.
After all data are received the processes are restarted on
the target node. We denoted this approach as “Local”
for brevity.

Shared filesystem-based migration: The processes
are checkpointed into image files stored in a shared
filesystem (PVFS2 [16] in this paper). Then the target
node restarts the processes by reading data from the
shared filesystem. It’s denoted as “Shared” in the paper.

RDMA-transfer with local filesystem: The processes
on a source node are checkpointed and the data is
aggregated into a staging buffer pool. Meanwhile a set
of IO threads transfer the data to the target node via
RDMA. On target node, the data is saved as checkpoint
files in local filesystem. Later on, these files are used to
restart the processes. It’s named as “RDMA+Local” in
the paper.

A. Characterizing Process Migration Protocols

A Process Migration can be characterized with a 5-
step series:

Step 1: Suspend. Once a migration is initiated, all
processes of the application shall suspend their commu-
nication activities and drain all in-flight messages. If the
transport utilizes high-performance network with RDMA
support, then their communication end-points shall be
torn down. This step is necessary for all processes to
reach a consistent global state in order to checkpoint
individual processes, due to the characteristics native
to RDMA-capable networks. The reasons are detailed
in [8].

Step 2: Process Snapshot (Write). Once the applica-
tion is suspended, a snapshot is taken for each processes
on the source node. MVAPICH2 uses BLCR [21] to
checkpoint individual process images into files. For
the “Local” and “Shared” approaches, BLCR directly
writes the process images on the chosen filesystem. For
“RDMA+Local” approach, the BLCR library has been
modified to aggregate all writes into a staging buffer
pool. Simultaneously a set of IO threads transfer the data
to target node through RDMA (Step 3).

Step 3: Process image transfer (Transfer). In this
step,the process images are transfered from the source
node to the target node. Depending on the considered
approach, this transfer can take different forms. In
“Local” approach the process images are transferred
directly from the source node to the target node using
the scp command. For “Shared” approach the data
transfer is implicit: during Write operations in Step 2,

3

Local filsystem−based

migration

Write (step 2) = Process snapshot (including writing process images)

Transfer (step 3) = Process image transfer from source node to target node

Read (step 4) = Process restart (including reading process images)

Write

Transfer 1

Read

Transfer 2

Shared filsystem−based

migration

Write

Transfer

Read
RDMA+Local filesystem−based

migration

Time

Write Transfer Read

Fig. 2. Overlapping of steps in the Different Migration Approaches

data is transferred to the shared filesystem. For the
“RDMA+Local” approach, the process image data is
transferred by chunks directly to the target node using
RDMA capabilities of the InfiniBand network. On the
target node, a file on the local disk is created for each
process image that has been transferred.

Step 4: Process Restart (Read). This step loads the
process images and restarts the application processes on
target node. This task is achieved by the BLCR library by
reading process image files from the local filesystem (for
“Local” and “RDMA+Local” approaches) or from the
network shared filesystem (for the “Shared” approach).

Step 5: Reconnection. Once the processes have been
restarted on the target node, all processes of the ap-
plication synchronize and rebuild their communication
end-points and resume their communication activity.
Once this is done the application has been successfully
migrated.

The above five steps represent the elementary op-
erations that need to be performed to realize process
migration of an MPI application. However, depending
on the considered approach, these steps can overlap.
Figure 2 shows how these steps overlap in different
migration approaches. In this figure, we only show steps
2, 3 and 4 for simplicity purpose (steps 1 and 5 don’t
differ in these approaches).

In the case of Local based migration, these three
steps are serialized. Each step waits for the previous
one to complete before starting. In the Shared based
approach, there are two data transfer steps: one from
the source node to the shared filesystem server, and one
from the server to the target node, but these transfers
overlap with the Write and Read steps. However, Step
2 (Write) and Step 4 (Read) are serialized because
the process restart step has to wait for the process
images to be fully written before restarting. Finally, the
RDMA+Local based migration has only one transfer step
which overlaps with the Write step. However, similar

 0

 5

 10

 15

 20

 25

 30

 35

Local

Shared

R
D
M

A+Local

Local

Shared

R
D
M

A+Local

Local

Shared

R
D
M

A+Local

T
im

e
 (

S
e

c
o

n
d

s
)

LU.C.64 BT.C.64 SP.C.64

Reconnect
Read
Transfer
Write
Suspend

Fig. 3. Decomposed Time Cost to Complete One Migration
(64 Processes on 8 Compute Nodes, 8 Processes are Migrated)

to the Shared based approach, the Step 4 (Read) waits
for the process image files to be fully transferred before
restarting.

B. Profiling Process Migration

We have run the three non-optimal process migration
protocols and collected detailed profiling about the time
cost to complete one migration which relocates 8 pro-
cesses from one compute node to another spare node.
Three applications - LU,BT and SP, with input class C
are used in the profiling (detailed in Section V). Figure 3
breaks down the time cost into different steps.

We find data write is responsible for part of the time
cost during a migration for both Local and Shared strate-
gies. RDMA+Local takes advantage of RDMA transport
to minimize the cost to write and transfer data. Local
pays some price to transfer data using scp command via
1 Gigabit Ethernet. Both Local and RDMA+Local incur
heavy overhead during restart phase. With both strate-
gies, the processes being restarted load data from local
files concurrently, which results in severe contentions in
the filesystem. The Shared approach, on the other hand,
avoids this cost by fetching data from PVFS data servers
via high performance InfiniBand network. However this
efficiency is obtained because the processes are reading
from page cache on data servers. In this profiling, up to
320MB data is migrated and stored in the four PVFS
data servers, hence they can buffer all data in their page
cache. In a production deployment the shared filesystem
is likely to be servicing multiple intensive data streams
concurrently, and one cannot expect data for a single job
to be stored in page cache for fast retrieval.

The above characterization and profiling results indi-
cate that all the three steps (Write, Transfer and Read)
should be taken care of in order to improve process
migration efficiency. In the next section, we propose
our new design that can fully overlap the three major
components to achieve better performance.

4

Write

Transfer

Read

Write (step 2) = Process snapshot (including writing process images)

Transfer (step 3) = Process image transfer from source node to target node

Read (step 4) = Process restart (including reading process images)

Time

RDMA−based

pipelined migration

Fig. 4. Overlap in the Pipelined Process Migration Cycle

IV. DESIGN AND IMPLEMENTATION

In this section, we elucidate the design of our new
Pipelined Process Migration with RDMA (PPMR) pro-
tocol which addresses the performance issues of the
current migration approaches presented in Section III.

As mentioned earlier, the process migration frame-
work in MVAPICH2 is based on the BLCR library [21]
for checkpointing and restarting individual processes.
BLCR uses files as a medium to dump the snapshot of a
process. The image of a process being restarted is loaded
from the same file. This constitutes an implicit barrier
between Step 2 (Write) and Step 4 (Read) of the process
migration model. As illustrated in Figure 2, the current
migration approaches wait until the complete process
snapshot is dumped to a file (Step 2) before proceeding
to the process restart phase (Step 4).

This sequential file-handling is a bottleneck during
process migration. It can be resolved by overlapping
process snapshot (Step 2) and the process restart (Step
4). This is possible because BLCR handles checkpoint
files in a sequential manner, from beginning to end, like
a stream.

In this manner, the entire process can be streamlined
into three fundamental steps, Write to, Transfer across
and Read from a pipeline that moves the process images
from the source node to the target node, as shown in
Figure 4. Previous studies [7, 15] exploit TCP socket to
build this streamline, but their design is subject to high
protocol processing overhead of TCP/IP.

We propose the Pipelined Process Migration with
RDMA (PPMR) protocol to fully streamline the data
movement by leveraging high performance RDMA capa-
bilities. The PPMR architecture is depicted in Figure 5.
In the figure, the Application processes have BLCR
library linked in which takes care of checkpointing these
processes. We leverage FUSE library to intercept file
IO system calls and aggregate them into data streams
directed to a buffer pool. Buffer mangers on both mi-
gration source node and target node cooperate to move
data chunks between the two nodes.

Conceptually PPMR maintains the 5-step migration
cycle as described in Section III, but with steps 2 to 4
fully pipelined. Steps 1 and 5 remains the same in this
new design. Below we will discuss Step 2,3 and 4 in

App Process

BLCR

App Process

BLCR

Migration Source Node

Buffer Pool
RDMA Read

App Process

BLCR

App Process

BLCR

Migration Target Node

FUSE Module

Buffer

Manager

Buffer

Manager

FUSE Module

A

B

C

Buffer Pool

Fig. 5. Pipelined Process Migration with RDMA

detail.
Step 2: Process Snapshot (Write). In this step, the

unmodified BLCR library writes the process image data
by making write() system calls to a virtual filesystem
which is backed by FUSE. These calls are intercepted
by FUSE module, and the data is coalesced into a buffer
chunk taken from the shared buffer pool. When a buffer
chunk is filled up it’s returned to the pool marked as
full, and the next free chunk is grazed to continue the
aggregation.

Step 3: Data Transfer (Transfer). Once a buffer
chunk is filled on Step 2, the buffer manager on the
source node sends a RDMA-Read request to its counter-
part on the target node. This request contains two types
of information: (1) RDMA information for the target
buffer manager to perform a RDMA Read to pull over
the data, and (2) the information (such as process rank,
data size, offset of the data) based on which the chunks
belonging to the same process can be concatenated into
the proper positions in a separate linked list. Upon such
a request, the target buffer manager grabs a free chunk
from the buffer pool and issues a RDMA Read request to
pull over the data. Once the RDMA Read is complete, a
reply is sent telling the source buffer manager to recycle
a buffer chunk. The newly filled chunk gets placed to a
proper position in a linked list to be used on Step 4.

It’s worthwhile to note that PPMR protocol can utilize
both RDMA-Read and RDMA-Write mechanisms to
transfer data, with slight changes to the control message
exchanges between the source/target buffer manager.
Both can achieve approximately the same bandwidth
given that we transfer data at big chunk sizes (128KB
as indicated in later sections). Due to space constraints
we only present the design and experiment results with
RDMA-Read.

Step 4: Process restart (Read). In this step, the
BLCR library restarts the process on the target node. For
this purpose, it reads the process images from files in a

5

virtual filesystem built on top of FUSE in a way similar
to the Step 2. These read() system calls are intercepted
by FUSE, and the linked list consisting of received data
chunks is scanned to locate the data being requested. If
the data is found it’s returned to the reading process.
Otherwise the process is blocked till the demanded data
chunk arrives. This is possible because the checkpoint
data is generated sequentially at the source node, and
BLCR reads the process image data sequentially and
only once at the target node. When all data contained
in a chunk has been read by a process, that chunk is
recycled to receive new data coming from the source
node.

PPMR enables the Write, Transfer and Read steps
to be seamlessly pipelined. The other mechanisms dis-
cussed in Section III, on the other hand, require a
temporary storage to keep the whole process images.
Since this data is potentially too large to fit in memory,
a local or shared filesystem is used to stored the process
images, which create a new bottleneck in the migration.

This pipelined design allows to synchronize the
throughput of the three steps Write, Transfer and Read.
It has the advantage of requiring only a small temporary
storage to stream the chunk, which corresponds to the
buffer pool whose size is small (a few megabytes). The
migration throughput for different buffer pool sizes and
different chunk sizes is studied in the next section.

V. PERFORMANCE EVALUATION

We have implemented the Pipelined Process Migration
with RDMA (PPMR) protocol into MVAPICH2 [13]. In
this section we conduct extensive experiments to evaluate
its performance from various perspectives including: (a)
Raw performance of PPMR to pump data through the
pipeline from source node to target node; (b) Time
cost to perform a process migration using PPMR in
comparison to other existing mechanisms; (c) Scalability
of PPMR protocol with applications of varied memory
footprints, and with different levels of process multiplex-
ing.

A. Experimental Setup

In the evaluation, a 64-node InfiniBand Linux cluster
is used. Each node has eight processor cores on two Intel
Xeon 2.33 GHz Quad-core CPUs. Each node has 6GB
main memory and a 250GB ST3250620NS disk drive.
The nodes are connected with Mellanox MT25208 DDR
InfiniBand HCAs for high performance MPI communi-
cation and process migration. The nodes are also con-
nected with a 1 GigE network for interactive logging and
maintenance purposes. Each node runs Linux 2.6.30 with
FUSE library 2.8.1. We have enabled the “big writes”
mode for FUSE to perform large writes to deliver full

performance. “Shared” migration protocol uses PVFS-
2.8.2 [16] with InfiniBand transport and four dedicated
nodes to store both data and metadata.

B. Raw Data Bandwidth

PPMR’s performance is eventually bounded by how
fast it’s able to aggregate data at the source node and
how quick the data can be pipelined to the target node.
Multiple elements can play a role here. In this section
we examine PPMR’s raw performance including:

Aggregation Bandwidth: how fast the data from user
processes can be aggregated via FUSE module into
the shared buffer pool at the source node, assuming
the buffer pool is large enough to hold all data. This
corresponds to letter “A” in Figure 5.

Network Transfer Bandwidth: how fast PPMR is
able to transfer data from the source node’s buffer pool
to target node’s buffer pool. This is letter “B” in Figure 5.

Pipeline Bandwidth: how fast the data from user
processes on the source node can be pumped through
the whole PPMR pipeline to the buffer pool on the target
node. This is represented by letter “C” in Figure 5.

Since PPMR relies on RDMA Read to transfer data,
we first measure the raw bandwidth of RDMA Read
using a microbenchmark “ib read bw” which is part
of the InfiniBand Driver stack OFED-1.5.1 [23]. This
microbenchmark issues 100 back-to-back RDMA Read
requests to read a certain sized data chunk from another
node, and measures the attained bandwidth. Figure 6
shows the results for varying chunk sizes. The network
is saturated with chunk size≥16KB. This indicates that
PPMR’s data transfer chunk size should be ≥16KB to
better utilize InfiniBand bandwidth.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 256 1K 4K 16K 64K 128K 256K 512K 1M 2M 4M

T
hr

ou
gh

pu
t (

M
B

/s
)

Chunk Size

Fig. 6. InfiniBand RDMA Read Bandwidth

1) Aggregation Bandwidth: In this section we ex-
amine the Aggregation Bandwidth as defined before.
In one compute node we start multiple IO processes.
Every process makes a series of write() system calls
to write 1GB data. Each write() contains 128KB data
since FUSE internally coalesces data into 128KB units
in “big writes” mode. Once a buffer chunk is filled up

6

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 4 8 16 32

T
o
ta

l
B

a
n
d
w

id
th

 (
M

B
/s

)

Num of IO Processes

Chunk Size=64K
Chunk Size=128K
Chunk Size=256K
Chunk Size=512K
Chunk Size=1M

(a) Buffer Pool=1MB

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 4 8 16 32

T
o
ta

l
B

a
n
d
w

id
th

 (
M

B
/s

)

Num of IO Processes

Chunk Size=64K
Chunk Size=128K
Chunk Size=256K
Chunk Size=512K
Chunk Size=1M

(b) Buffer Pool=8MB

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 4 8 16 32

T
o
ta

l
B

a
n
d
w

id
th

 (
M

B
/s

)

Num of IO Processes

Buffer Pool=1M
Buffer Pool=2M
Buffer Pool=4M
Buffer Pool=8M
Buffer Pool=16M
Buffer Pool=32M

(c) Chunk Size=128K
Fig. 7. Aggregation Bandwidth (Higher is Better)

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

1 2 4 8 16 32

A
g
g
re

g
a
te

d
 B

a
n
d
w

id
th

 (
M

B
/s

)

Num of IO Processes

Buffer Pool=8M
Buffer Pool=16M
Buffer Pool=32M

(a) Network Transfer Bandwidth (Chunk=128KB)

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

1 2 4 8 16 32

T
o
ta

l
B

a
n
d
w

id
th

 (
M

B
/s

)

Num of IO Processes

Chunk Size=64K
Chunk Size=128K
Chunk Size=256K
Chunk Size=512K
Chunk Size=1M

(b) Pipeline Bandwidth (Buffer Pool=8MB)

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

1 2 4 8 16 32

T
o
ta

l
B

a
n
d
w

id
th

 (
M

B
/s

)

Num of IO Processes

Buffer Pool=8M
Buffer Pool=16M
Buffer Pool=32M

(c) Pipeline Bandwidth (Chunk=128KB)
Fig. 8. Network Transfer Bandwidth and Pipeline Bandwidth (Higher is Better)

with data, the data is discarded and the chunk is returned
to the pool immediately to be reused.

Figure 7(a) and Figure 7(b) show the total achieved
Aggregation Bandwidth with 1MB/8MB buffer pool
respectively at varied buffer chunk sizes. We observe
poor bandwidth with scarce memory (1MB) and large
chunk size (>256K). In this case the IO processes
are frequently blocked waiting for a free chunk from
buffer pool, which detrimentally affects the performance.
When 8MB buffer pool is used in Figure 7(b), the total
write bandwidth reaches the peak of about 800MB/s
at 16 processes, and 128KB chunk size can yield the
best throughput. This is understandable since 128KB
chunk size matches FUSE’s internal 128KB write units.
As the number of IO processes increases to 32, the
FUSE internal worker threads are overloaded with more
frequent lock/unlock overhead, hence the performance
begins to drop.

In Figure 7(c) we vary the buffer pool from 1MB
to 32MB with chunk size fixed to 128KB. We observe
that Aggregation Bandwidth isn’t very sensitive to buffer
size as long as there are reasonable number of buffer
chunks in the pool. All these results strongly imply
that the performance of PPMR is more likely bounded
by the capability of FUSE module to coalesce user
processes’ write streams instead of the buffer size, as
long as a moderate buffer pool (8MB for example) is
provisioned. FUSE intercepts write() system calls from

the user processes and every such call incurs multiple
memory copy overhead to move user data through FUSE
internal memory to the buffer pool. Recently FUSE
developers have realized such a performance hit, and
zero-copy protocol has been proposed [24]. Our design
can transparently benefit from such a light-weight im-
plementation once it’s available.

2) Network Transfer Bandwidth: In order to mea-
sure Network Transfer Bandwidth we ran multiple IO
processes on a source node. Each process grabs a free
memory chunk from the buffer pool and sends a request
to the target node. The latter performs a RDMA Read
to pull the chunk. Once RMDA Read is complete, the
data is discarded and the target node sends a reply to
the source node to recycle its data chunk. Figure 8(a)
shows the obtained transfer bandwidth with fixed chunk
size(128KB) and varied buffer pool size. With fewer IO
process we see an under-utilization of the network band-
width because of PPMR’s control message overhead.
With >= 8 IO processes we are able to saturate the
InfiniBand network with 8MB buffer pool.

3) Pipeline Bandwidth: It is bounded by the smaller
one of Aggregation Bandwidth and Network Transfer
Bandwidth. We ran multiple IO processes on a source
node. Each process performs write() system call to write
1GB data in different chunk sizes. These write system
calls are coalesced by FUSE module and redirected to
the buffer pool. Then the data chunks in the buffer pool

7

is RDMA Read by the target node, in a way similar
to how we measure Network Transfer Bandwidth. As
shown in Figure 8(b), Pipeline Bandwidth reaches a
peak of around 750MB/s with 8 IO processes and chunk
size=128KB using 8MB buffer pool. Figure 8(c) also
asserts that Pipeline Bandwidth isn’t sensitive to buffer
pool sizes.

C. Process Migration Performance

In this section we evaluate the process migration
performance on a set of applications taken from NAS
parallel benchmark (NPB) [25] suite version 3.2. All
experiments use MVAPICH2 1.6RC1 [13] as the MPI
library and BLCR 0.8.2 [21]. The buffer pool is set to be
8MB on all nodes with chunk size 128KB. Due to space
constraints, we choose applications LU, BT and SP with
class C input and 64 processes running on 8 compute
nodes. Three spare nodes are prepared as migration
targets. In one migration 8 processes are moved from a
compute node to a spare node. We simulate the migration
trigger by firing a user signal to the Job Manager. Other
mechanisms such as node health monitoring events can
also be used to kick off a migration.

Figure 9 illustrates the time cost to perform a process
migration with different strategies. In the example of
application BT.C.64, PPMR is able to complete one
migration in 3.1 seconds. This translates into 10.7X
speedups over the “Local” approach (33.3 seconds). It’s
also 2.3X faster than the “Shared” approach (7.1 sec-
onds), and 4.3X faster than “RDMA+Local” mechanism
(13.5 seconds).

We have also assessed the application execution time
without any migration and with three migrations using
different migration strategies. As shown in Figure 10,
PPMR extends the base execution time by 5.1% for
LU.C.64. As a contrast, “Shared” and ”Local” strategies
prolong LU.C.64’s execution by 9.2% and 38%, respec-
tively.

 0

 5

 10

 15

 20

 25

 30

 35

Local

Shared

RDM
A+Local

PPM
R

Local

Shared

RDM
A+Local

PPM
R

Local

Shared

RDM
A+Local

PPM
R

T
im

e
 (

se
co

n
d
s)

LU.C.64 BT.C.64 SP.C.64

Reconnect
Read
Transfer
Write
Suspend

Fig. 9. Time to Complete One Migration (Lower is Better)

 0

 50

 100

 150

 200

 250

 300

LU.C.64 BT.C.64 SP.C.64

T
im

e
(s

ec
on

ds
)

No Migration
3 Migrations(PPMR)
3 Migrations(Shared)
3 Migrations(Local)

Fig. 10. Application Execution Time with and without 3 Migrations
(Lower is better)

Application Migrated Data Time (seconds)
PPMR Shared

BT.C.64 320 MB 3.5 7.4
BT.D.64 3472 MB 9.1 54.4

TABLE I
MIGRATION TIME COST WITH DIFFERENT MEMORY FOOTPRINT

(BT.C/D, 64 PROCESSES ON 8 COMPUTE NODES)

D. Scalability of PPMR

In this section we evaluate PPMR’s scalability from
two aspects: (1) Efficiency to migrate applications with
different memory footprints (Memory scalability). (2)
Efficiency to migrate varying number of process from
a given node (Multiplex scalability).

First we run the NAS BT class C and D benchmarks
on 8 compute nodes (8 processes per node), with each
node generating 320MB and 3472MB memory content
respectively to be transfered in one migration (a 10.9X
increase in memory footprint). As indicated in Table I,
PPMR finishes a migration in 3.5 and 9.1 seconds for
class C and D respectively, which represents a 2.6X
increase in time cost. The “Shared” strategy spends 7.4
seconds for class C and 54.4 seconds for class D to
handle a node migration (increased by a factor of 7.3).

We then run application LU.D on 8 compute nodes
with 2n processes (8 to 64). This leads to different
number of processes (1 to 8) to be moved in one mi-
gration but with approximately the same amount of data
(around 1500MB). As revealed in Section III, process

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8

T
im

e
(s

ec
on

ds
)

Number of Processes per Node

Reconnect
Pipeline
Suspend

Fig. 11. Migration Time Cost at Different Number of Processes per
Node (8 Compute Nodes, LU.D with 8/16/32/64 Processes)

8

multiplexing is a major cause of IO overhead, and this
experiment is able to expose the efficiency of different
migration protocols to handle this bottleneck. Figure 11
illustrates the decomposed cost to complete a migration
with PPMR. As the number of processes increase from 1
to 4 the data movement cost (tagged as “Pipeline”) drops
slightly because better Pipeline Bandwidth is achieved
(as seen in Figure 8(b) and 8(c)). The performance stays
constant at 8 processes. As the number of processes per
node keeps increasing in multicore platforms, process
multiplexing is becoming more challenging. Figure 11
indicates that the PPMR mechanism is able to deliver
good performance to address this challenge.

VI. RELATED WORK

In the field of High Performance Computing systems,
many efforts have been carried out to provide fault toler-
ance to MPI applications. Generally, the application state
is periodically saved and used to restart the application
when a failure occurs and the checkpoint is coordinated
among the processors [26]. CoCheck [15], Starfish [27],
LAM/MPI [28], among others, implement this class of
checkpointing. These coordinated checkpoint approaches
share a downside in that all processes must save their
process images in a coordinated manner, which imposes
a heavy burden on the IO subsystem. On the other side,
message logging fault-tolerance protocols have tried to
re-build the state that the application had before the fail-
ure. This is achieved by replaying the nondeterministic
events (usually messages) to processes that failed. The
different variants are called optimistic, pessimistic or
causal [29] and are notably implemented in MPICH-V
[30]. However, message logging protocols have a large
memory overhead and may cause latency in the message
processing.

Recent research directions have focussed on proactive
Fault Tolerance proposing to migrate a process on a
spare node before the failure happens. This approach
can reduce the frequency to take a checkpoint and alle-
viate the overhead of file IO. We propose to categorize
these different migration strategies according to several
metrics.

Data to migrate. The data transferred during migration
can be user-specified data which implies application-
level checkpoint [31], or it can be the whole process im-
ages [7–9] generated by transparent system-level check-
point like BLCR [21]. In a similar way, AMPI proposes
a mechanism based on processor virtualization [6] in
which a classic MPI process is represented by a user-
level thread that can be migrated when a failure is
predicted. With Virtual Machine (VM) migration [32–
34], the entire memory used by the VM is transmitted.
However, this last approach comes with the inextricable

cost to migrate the complete memory content used by
the guest OS.

How the data is transfered from the source to the
target. The checkpoint data can be stored as a file
in local/shared filesystem [31]. Simple as it is, this
approach has the drawback of additional filesystem IO
overhead, especially in modern multicore architectures
where multiple processes running on the same node
generate checkpoint data simultaneously. In such a case
the concurrent IO contentions can lead to degraded IO
throughput [35, 36]. A more efficient alternative is to
convert it into a data stream [7, 15] which is seamlessly
transmitted over the network.

Network transport used to move data. The checkpoint
data can be transferred using different network trans-
ports, such as conventional socket [7] or advance net-
work transports such as RDMA [33]. A recent study [37]
with 10GigE network revealed that data copy, buffer
release and driver processing were the dominant factors
of data move overhead. With InfiniBand RDMA protocol
such overhead can be largely alleviated.

According to this taxonomy, the new pipelined mi-
gration strategy that we presented in this paper corre-
sponds to a process-based migration using data streaming
through RDMA transport.

VII. CONCLUSIONS

In this paper we conduct extensive profiling on several
process migration implementations, and reveal that inef-
ficient IO and network transfer are the principal factors
responsible for the high overhead. We have proposed and
implemented Pipelined Process Migration with RDMA
(PPMR) strategy into MVAPICH2 [13] to optimize the
inefficient data IO and network transfer at various aspects
in a process migration. Our new protocol fully pipelines
data writing, data transfer, and data read on all aspects
of a migration. PPMR aggregates data writings on mi-
gration source node and transfers data to target node via
high throughput RDMA transport. PPMR implements an
efficient process restart mechanism in the target node to
restart processes from RDMA data streams. Experimen-
tal results show that PPMR achieves a 10.7X speedup
to complete a process migration over the conventional
approach at a moderate (8MB) memory usage. Process
migration overhead is significantly minimized from 38%
to 5% by PPMR when three migrations are performed
in succession during application execution.

Another benefit of our Pipelined Process Migration
with RDMA (PPMR) framework is that, thanks to its
modular design based on FUSE, it could be easily used
in other projects that perform process migration. It only
requires that the checkpoint/restart library behaves like
BLCR by processing the process images sequentially like
streams.

9

As part of our future work, we plan to explore incre-
mental checkpoint capability provided by the upcoming
BLCR release to investigate its benefits in our design. We
plan on investigating how the PPMR strategy can benefit
other more general applications such as cluster-wide
load balancing and server consolidation. We also plan
on studying how the diskless cluster architectures [38,
39] and other GreenHPC systems can fully utilize and
adopt out PPMR protocol to support proactive process
migration for MPI jobs.

VIII. FUNDING ACKNOWLEDGE

This research is supported in part by U.S. Depart-
ment of Energy grants #DE-FC02-06ER25749 and #DE-
FC02-06ER25755; National Science Foundation grants
#CCF-0621484, #CCF-0833169, #CCF-0916302, #OCI-
0926691 and #CCF-0937842; grant from Wright Center
for Innovation #WCI04-010-OSU-0; grants from In-
tel, Mellanox, Cisco, QLogic, and Sun Microsystems;
Equipment donations from Intel, Mellanox, AMD, Ad-
vanced Clustering, Appro, QLogic, and Sun Microsys-
tems.

IX. SOFTWARE DISTRIBUTION

The proposed design will be included in the upcoming
MVAPICH2 release.

REFERENCES

[1] Schroeder, Bianca and Gibson, Garth A., “A large-scale study of
failures in high-performance computing systems,” in ICDSN ’06,
2006.

[2] Glosli, J. N. and Richards, D. F. and Caspersen, K. J. and Rudd,
R. E. and Gunnels, J. A. and Streitz, F. H., “Extending stability
beyond CPU millennium: a micron-scale atomistic simulation of
Kelvin-Helmholtz instability,” in SC ’07, 2007.

[3] “MPI 3.0 Standardization Effort,” http://meetings.
mpi-forum.org/MPI_3.0_main_page.php.

[4] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Trans-
parent checkpointing under Unix,” in Usenix Winter Technical
Conference, January 1995.

[5] E. N. Elnozahy and J. S. Plank, “Checkpointing for peta-scale
systems: A look into the future of practical rollback-recovery,”
IEEE Transactions on Dependable and Secure Computing, 2004.

[6] S. Chakravorty, C. Mendes, and L. Kale, “ Proactive fault
tolerance in MPI applications via task migration ,” in HiPC, 2006.

[7] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
process-level live migration in HPC environments,” in SC ’08.

[8] Xiangyong Ouyang, Sonya Marcarelli, Raghunath Rajachan-
drasekar and Dhabaleswar K. Panda, “RDMA-Based Job Migra-
tion Framework for MPI over InfiniBand,” in Cluster, 2010.

[9] “A Transparent Process Migration Framework for Open
MPI,” http://www.open-mpi.org/papers/sc-2009/jjhursey-cisco-
booth.pdf.

[10] “Intelligent Platform Management Interface (IPMI),” http://www.
intel.com/design/servers/ipmi/.

[11] H. Song, C. b. Leangsuksun, and R. Nassar, “Availability Mod-
eling and Analysis on High Performance Cluster Computing
Systems,” in ARES ’06, 2006.

[12] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma,
R. Vilalta, and A. Sivasubramaniam, “Critical event prediction for
proactive management in large-scale computer clusters,” in KDD
’03, 2003, pp. 426–435.

[13] “MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RoCE,”
http://mvapich.cse.ohio-state.edu/.

[14] “Open MPI:Open Source High Performance Computing,”
http://mvapich.cse.ohio-state.edu/.

[15] G. Stellner, “CoCheck: Checkpointing and Process Migration
for MPI,” in Proc. of the 10th International Parallel Processing
Symposium (IPPS ’96), 1996.

[16] “PVFS2,” http://www.pvfs.org/.
[17] InfiniBand Trade Association, “The InfiniBand Architecture,”

http://www.infinibandta.org.
[18] “Top 500 Supercomputers,” http://www.top500.org.
[19] Q. Gao, W. Huang, M. J. Koop, and D. K. Panda, “Group-

based Coordinated Checkpointing for MPI: A Case Study on
InfiniBand,” in ICPP ’07.

[20] Q. Gao, W. Yu, W. Huang, and D. K. Panda, “Application-
Transparent Checkpoint/Restart for MPI Programs over Infini-
Band,” in ICPP ’06.

[21] P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters,” in SciDAC, 6 2006.

[22] “Filesystem in Userspace,” http://fuse.sourceforge.net/.
[23] “OFED: OpenFabrics Alliance,” http://www.openfabrics.org/.
[24] “FUSE: implement zero copy read,” http://lwn.net/Articles/

385100/.
[25] F. C. Wong and R. P. M. etc., “Architectural requirements and

scalability of the NAS parallel benchmarks,” in Supercomputing
’99, 1999.

[26] K. M. Chandy and L. Lamport, “Distributed snapshots: determin-
ing global states of distributed systems,” ACM Transactions on
Computer Systems, 1985.

[27] A. Agbaria and R. Friedman, “Starfish: Fault-Tolerant Dynamic
MPI Programs on Clusters of Workstations,” High-Performance
Distributed Computing, International Symposium on, 1999.

[28] S. Sankaran and J. M. Squyres and B. Barrett etc, “The Lam/Mpi
Checkpoint/Restart Framework: System-Initiated Checkpoint-
ing,” LACSI, Oct. 2003.

[29] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,
“A survey of rollback-recovery protocols in message-passing
systems,” 2002.

[30] A. Bouteiller, T. Hérault, G. Krawezik, P. Lemarinier, and F. Cap-
pello, “MPICH-V project: a multiprotocol automatic fault tolerant
MPI,” IJHPCA, 2006.

[31] S. S. Vadhiyar and J. J. Dongarra, “Self adaptivity in grid
computing,” Concurr. Comput. : Pract. Exper., 2005.

[32] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott,
“Proactive fault tolerance for HPC with Xen virtualization,” in
ICS ’07.

[33] W. Huang, Q. Gao, J. Liu, and D. K. Panda, “High performance
virtual machine migration with RDMA over modern intercon-
nects,” in CLUSTER ’07, 2007.

[34] Scarpazza, D. P., Mullaney, P., Villa, O., Petrini, F., Tipparaju,
V., Brown, D. M. L. and Nieplocha, J., “Transparent system-
level migration of PGAS applications using Xen on InfiniBand,”
in Cluster ’07, 2007.

[35] X. Ouyang, K. Gopalakrishnan, and D. K. Panda, “Accelerating
Checkpoint Operation by Node-Level Write Aggregation on
Multicore Systems,” ICPP 2009.

[36] X. Ouyang, K. Gopalakrishnan, T. Gangadharappa, and D. K.
Panda, “Fast Checkpointing by Write Aggregation with Dynamic
Buffer and Interleaving on Multicore Architecture,” HiPC 2009,
December 2009.

[37] Guangdeng Liao, Xia Zhu, Laxmi Bhuyan, “A New Server I/O
Architecture for High Speed Networks,” in HPCA, 2011.

[38] J. H. L. Iii and L. H. Ward, “Implementing scalable disk-less
clusters using the network file system (nfs),” in LACSI 2003,
2003.

[39] “HPC Diskless Cluster on Sun Blade 6000,” http:
//wikis.sun.com/display/BladeSystems/HPC+Diskless+Cluster+
on+Sun+Blade+6000.

10

