
Accelerating Checkpoint Operation by Node-Level Write Aggregation on Multicore
Systems

Xiangyong Ouyang, Karthik Gopalakrishnan and DhabaleswarK. Panda
Department of Computer Science and Engineering

The Ohio State University
{ouyangx, gopalakk, panda}@cse.ohio-state.edu

Abstract—Clusters and applications continue to grow in
size while their mean time between failure (MTBF) is getting
smaller. Checkpoint/Restart is becoming increasingly impor-
tant for large scale parallel jobs. However, the performance
of the Checkpoint/Restart mechanism does not scale well with
increasing job size due to constraints within the file system.
Furthermore, with the advent of multi-core architecture, the
situation is aggravated due to larger number of processes
running on the same node, trying to checkpoint simultaneously.
This results in increased number of file writes at the time of
checkpointing which leads to performance degradation. As a
result, deployment of Checkpoint/Restart mechanisms for large
scale parallel applications is limited.

In this work, we explore the Checkpoint/Restart mecha-
nism in MVAPICH2, which uses BLCR as the checkpointing
library. Our profiling of the checkpoints for the NAS paralle l
benchmarks revealed a large number of small file writes
interspersed with large writes. Based on these observation
we propose to optimize checkpoint creation by classifying
checkpoint file writes into small writes, medium writes and
large writes based on their size of data to write, and use write
aggregation to optimize the small and medium writes. At the
aggregation threshold of 512KB, the implementation of our
design in BLCR shows improvements from 27% to 32% over
the original BLCR in terms of time cost to checkpoint an MPI
application.

I. I NTRODUCTION

Compute Clusters are continuously growing in terms
of their speed and size. With the advent of multi-core
processor architectures, the number of MPI processes that
can be executed within a single node increases substantially.
However, with increasing number of components in the
compute cluster, the Mean Time Between Failures (MTBF)
is also reduced. In [8], the authors studied existing clusters
and predict that the MTBF of peta-scale systems maybe as
short as 1.25 hours.

This research is supported in part by DOE grants #DE-FC02-06ER25755
and #DE-FC02-06ER25749, NSF Grants #CNS-0403342, #CCF-0702675
and #CCF-0833169; grant from Wright Center for Innovation #WCI04-010-
OSU-0; grants from Mellanox, Intel, Cisco, QLogic and Sun Microsystems;
Equipment donations from Intel, Mellanox, AMD, Advanced Clustering,
Appro, QLogic and Sun Microsystems.

To avoid wasting computational cycles caused by fail-
ures in the cluster, applications are checkpointed at regular
intervals. Checkpointing causes the complete state of the
process to be saved from memory to disk so that in the event
of a failure before the process completes its execution, the
process can be restarted from the image that was saved to
disk. In this way, only the computation performed by the
process after the most recent checkpoint is lost. Berkeley
Labs’ Checkpoint/Restart software package (BLCR) [6] is
a popular Checkpoint/Restart solution that is used by many
MPI implementations, including MVAPICH2 [1] [13],
OpenMPI [7] and LAM/MPI [14].

The process of checkpointing a parallel MPI application
involves three main steps:

1) Suspend communication between all processes in the
parallel application and bring them to a consistent
state.

2) Use the checkpoint library to checkpoint the processes
individually.

3) Re-establish connections between the processes and
continue execution.

Step (2) involves writing the process’ context and mem-
ory contents to a file on a reliable storage medium, usually
a local disk or a parallel file system. Hence, the time to
perform Step (2) dominates the time to create a checkpoint.

Modern file systems provide large storage capacity and
throughput. However, their performance on large clusters
can be vastly improved by optimizing the way in which the
checkpoint data is written to the file system. For example,
from a file system’s perspective, writing one large chunk of
data to disk is more efficient than writing a smaller amount
of data through multiple times, even though the total size of
data written is the same. Hence, coalescing writes to the file
system would yield a much better performance.

To understand the process of checkpointing better, we
ran several applications from the NAS parallel benchmark
suite [18] using MVAPICH2 [1] and checkpointed the
applications using a version of BLCR that we modified
to provide profiling information. Our traces revealed that
BLCR performs a substantial number of writes to file with

data less than 64 bytes. Furthermore, since checkpointing a
parallel application involves each process running on every
core to take a checkpoint concurrently, the number of writes
with small data is increased.

Based on these experiments, we propose enhancements
to the existing checkpointing mechanism by caching small
and medium writes within a node, drastically reducing the
number of writes to the file system. Our approach reduces
the checkpoint creation time on a 8-core system by 30.79%,
32.46%, 27.46% for LU, BT and CG respectively.

The rest of paper is organized as follows. In section
2, we describe the background of checkpoint and restart. In
section 3, we analyze the profiles of NAS parallel benchmark
to characterize checkpoint writing. In section 4, we present
our design in detail and discuss some design alternatives. In
section 5, we present the experiments and show the results
of improvement of our design. In section 6, we provide our
conclusion and state future work we are going to conduct.
Finally we discuss the related work.

II. BACKGROUND

A checkpoint saves the state of the process at a given
point of time during its execution. It includes enough infor-
mation to restart a process from that point. An application
maybe checkpointed periodically so that in an event of a
failure, it can be restored from the most recent checkpoint
to continue its execution, rather than start again from the
beginning.

There are two potential approaches to initiating a check-
point; application initiated and system initiated.

In application initiated checkpointing, the application
decides when to start a checkpoint and requests the system to
take the checkpoint on the application’s behalf. Transparent
application-level checkpointing may be achieved through
compiler techniques [15]. Additionally, a hybrid approach
is possible where the application participates in the creation
of a checkpoint but is assisted by a user-level library [11].

In system initiated checkpointing, the system directly
initiates the application checkpoint, without interaction
with the application. The application maybe unaware of
the fact that it is being checkpointed. This is usually
achieved through a kernel component, as with Berkeley
Lab Checkpoint Restart (BLCR) [6]. BLCR has been com-
bined with several Message Passing Libraries (MPI) such
as LAM/MPI [16], OpenMPI [7] and MVAPICH2 [13] to
checkpoint parallel jobs running on multiple nodes.

A. MVAPICH2 checkpoint/restart facility

MVAPICH2 is a message passing library for parallel ap-
plications with native support for InfiniBand [1]. It supports
checkpoint/restart (C/R) for the InfiniBand communication
channel [13], [12]. Support for C/R is achieved through

interaction between the MVAPICH2 library and the BLCR
kernel module [10].

Taking a checkpoint for a parallel job involves bringing
the processes to a consistent state using a coordination
algorithm. First, all the processes coordinate with one
another, and flush and lock the communication channel.
Then, all InfiniBand connections are torn-down. Next, the
MVAPICH2 library on each node requests the BLCR kernel
module to take a blocking checkpoint on the process. The
checkpoint data is independently written to a file on disk;
one file per process. Finally, all processes again coordinate
with each other to rebuild the InfiniBand connections and
the application continues its execution. MVAPICH2 supports
both system initiated and application initiated checkpointing.

III. C HARACTERIZING CHECKPOINT WRITING

In order to understand the characteristics of check-
point file IO, we run several applications LU/BT/SP/CG
from NAS parallel benchmark version 3.2.1 [18] using
MVAPICH2 C/R framework [1]. The BLCR is modified to
provide profiling information pertaining to checkpoint file
writing. The test is conducted on a 64 node cluster. Each
node has 8 processor cores on 2 Intel Xeon 2.33 GHz Quad-
core CPUs. We choose Class C with 64 processes. Each
process runs on a separate processor core, so 8 nodes are
used in the test. Each process writes its checkpoint data to
a checkpoint file on a local ext3 file system.

Table I
BASIC CHECKPOINT INFORMATION(CLASS C, 64PROCESSES)

LU BT SP CG
Time for one check-
point(seconds)

7.6 11.3 10.3 7.1

Total data size(MB) per
node

184.0 320.0 316.0 163.2

Number of VFS write
per process

975 1057 1367 820

Total number of VFS
writes per node

7800 8456 10936 6560

We profiled the checkpoint creation for these applica-
tions to understand the checkpoint file write patterns. Table
II gives an example of the application LU with class C
and 64 processes. It decomposes the checkpoint writing into
different categories according to the size of writes. The first
column is the size of write belonging to that category. The
second column is percentage of writes within that range.
The third column is percentage of data amount written by
that type of write. The fourth column is percentage of time
spent by VFS writes belonging to that category. We can
observe some characteristics of checkpoint file write from
this profiling.

(1) Most of the file writes only write small amount of
data (smaller than 4KB per write). These small writes make
up over 60% of all file writes, but they only write about
1.5% of total amount of data being dumped. It costs less
than 0.2% of total time to perform these small writes. We
investigated the BLCR, and found that these small writes are
primarily storing CPU registers, signal handler table, timers,
open-file tables, process/group/session ids, and various other
of BLCR data structures necessary to restore a process.

(2) There are a few large writes (greater than 512 KB
per write). These writes constitute only about 0.8% of all
writes, but they contribute about 79% of all data dumped.
These writes consume 35% of total write time.

(3) In between small and large writes are medium
writes, which make up about 38% of all writes. They
contribute about 20% of all data, but consume about 65%
of all time. The medium and large writes actually store
the virtual memory area (VMA) of a process. BLCR scans
all VMAs of a process, and saves non-zero contiguous
data pages to the checkpoint file. An application process
usually has many VMAs. Many VMAs contain a handful
contiguous pages that need to be dumped to file, which
become a medium write. A few VMAs contain large block
of contiguous pages to dump. They are the source of large
writes.

Table II
CHECKPOINTFILE WRITE PROFILE OFLU.C.64

% of Writes % of Data % of Time
0-64 50.86 0.04 0.17
64-256 0.61 0.00 0.00
256-1K 0.25 0.01 0.00
1K-4K 9.46 1.53 0.01
4K-16K 36.49 11.36 44.66
16K-64K 0.74 0.77 6.55
64K-256K 0.49 3.79 11.80
256K-512K 0.25 3.58 1.75
512K-1M 0.61 17.72 14.72
> 1M 0.25 61.21 20.35

The profiling above reveals patterns of a typical check-
point writing. Given these characteristics, we propose to
classify checkpoint file writes into 3 categories, and use
different approaches to handle them in order to improve
checkpoint creation performance.

(1) Although small writes can be buffered in the local
page cache if buffered IO is used, they can cause frequent
calls to write() system call. This can result in heavy over-
head. Therefore, we propose to use a local buffer to coalesce
these small writes, and flush this buffer to file when all
writes complete. The cost to copy small amount of data to
local buffer is very small compared to the VFS write. Our
experiment in later sections justify this idea.

(2) For large writes we have to treat them differently
for two reasons. First is the cost of memory copy compared
to file write. At large data size, the cost of memory copy
quickly becomes close to the cost of direct file write. Second
is memory consumption. If we treat large write in the
same way as small write, then local buffer will consume
significant amount of memory to store the large data. This
can severely hurt the memory scalability in a large parallel
application. Therefore we decide to flush large write directly
into checkpoint file.

(3) Medium writes are an important source of overhead
in checkpoint writing. One approach is to treat them like
small-writes to aggregate them in local buffer and flush them
to file at later time. There are two sources of overhead in this
approach. One is the memory copy cost, the other is cost to
flush the aggregated large data chunk to checkpoint file. The
alternative is to treat them as large-write to flush it directly
to file. Which method to take depends on the relative cost of
memory copy compared to file write. It’s critical to choose
a threshold upon which to make a decision. We conduct
detailed experiments to search the optimal division. This is
discussed in later sections.

IV. D ETAILED DESIGN

In this section we present our write aggregation opti-
mization design to improve checkpoint creation for parallel
jobs on multi-core systems.

One important idea of our design is to coalesce many
small and medium writes into a relatively large write.
Without write aggregation, the overhead of a file write comes
from two sources: (a.1) Overhead at the VFS layer and (a.2)
Overhead to actually move the data from memory to back-
end storage device. If a file write is aggregated, then the
overhead consists of: (b.1) Cost to copy the data to a buffer
(b.2) Overhead at the VFS layer when the aggregated buffer
is written to a file later (b.3) The overhead to move the data
from memory to back-end storage device. Given that the
VFS layer usually buffers data in the page cache and later
on moves data to storage device as large chunks, we assume
that the cost (b.3) is close to cost (a.2) of the non-aggregation
design. Most file systems do buffered IO automatically, so
we believe our assumption here is valid. So, the relative cost
of (a.1) comparing to the sum of (b.1) and (b.2) becomes
critical. To come up with an optimal design, we need to
know the relative cost of memory copy vs. VFS write. We
measure the VFS write latency and memory copy latency at
different data size.

Figure 1 compares their latency at different data size.
This measurement plays an important role as we propose
our write-aggregation design.

 0

 10

 20

 30

 40

 50

 60

 70

16k4k1k 256 64 16 4 1

La
te

nc
y

(u
s)

size of data

VFS write
memory copy

(a) size< 64KB

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1M256k64k

La
te

nc
y

(u
s)

size of data

VFS write
memory copy

(b) size>= 64KB

Figure 1. Latency of VFS Write and Memory Copy

A. Distinguish different write sizes

From Figure 1 we can see that the VFS overhead
remains relative constant at about 10 us when write size
is small (< 1K bytes). Given large number of small writes,
the total overhead of small writes will become significant.
On the other hand, memory copy cost is very low at small
data size. For data size ranging from 1 byte to 1k bytes, the
latency is close to 0. Therefore, we propose to use a local
buffer to accommodate all small writes.

If we aggregate these large writes and flush them to a
file later on, then the cost of memory copy plus cost of VFS
write for the aggregated data can exceed the original cost
to write the data without any aggregation. High memory
usage of large writes is another concern if aggregation is
used. Therefore, we choose to let each application process
perform a file write to send large data to checkpoint files.

Medium-sized writes happen quite frequently and their
size is big enough to make the cost of copying them to a
buffer noticeable. Therefore we decide to set a threshold size
in this category. All writes lower than this size are copied to
buffer, while writes larger than this size is directly written
to checkpoint file. The choice of this threshold size is very
critical.

A very large threshold size can cause too much data
being copied to local buffer. This can lead to extra usage
of memory, and high overhead to do memory copy. On
the contrary a too small threshold will make all medium
writes perform a VFS write, thus losing the opportunity to
coalesce some writes into a large one. In the next section we
conduct extensive experiments to measure the performance
with different thresholds.

B. Write aggregation design

We incorporate all the aforementioned considerations
into our design for multi-core systems.

Figure 2 illustrates our write-aggregation design. Each
node has an IO process (IOP) that is responsible for per-
forming aggregated writing. A parallel job usually has many
application processes (APs) running on one node. The IOP
creates a shared memory region that can be accessed by all
application processes (APs). At initialization time, an AP
allocates a piece of buffer local to the AP to accommodate
its small writes. Since total data amount of small writes is
not huge (usually less than 50 KB per process), the memory
usage dedicated for small writes for all processes in a same
node is not going to produce much pressure on available
system memory.

1) Application processes: When taking a checkpoint,
an AP will perform a series of data writes as described
below.

(1) If the data size is small, it’s put in a chunk with
a header prepended. Then this chunk is stored in a local
buffer. The structure of a header is illustrated in Fig 3. A
header records the rank of this process, the size of data,
as well as the original offset of this data if it was written
to an exclusive checkpoint file. This “original offset” field
is used to reconstruct an exclusive checkpoint file used
by the process at restart phase. Since we make use of
BLCR framework to restart a process, and BLCR parses
the checkpoint file according to the way it writes a file, this
“original offset” is necessary to rebuild a BLCR checkpoint
file from the aggregated data.

(2) If the data is regarded as “large”, then the AP won’t
perform any aggregation on it. Instead it performs a VFS
write to write it out to a checkpoint file. At the same time, a
header recording this large chunk is stored into the same
local buffer as small writes. The header contains similar
information as for small writes.

(3) If the data is regarded as “medium size”, then we
will store this data into the share memory created by IOP.
The shared memory comes with two pointers P1 and P2 in a
ring manner. P1 points to the beginning of available memory,
P2 points to the beginning of “dirty data” that have been
copied by APs and ready to be flushed to checkpoint file by
the IOP. Another pointer P3 points to the end of “dirty data”

�����
�����
�����

�����
�����
�����

������
������
������
������
������

������
������
������
������
������

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���������
���������
���������

���������
���������
���������

������
������
������

������
������
������

small small small

medium medium medium

IOP

AP0 AP1

AP0 AP1

shared−memory (for medium write)

Local buffer Local buffer

LargeLarge Large

P2

AP2

data file

Local buffer

data file data file

P1P3

AP2AP1

Figure 2. Node-level write-aggregation design

Data sizeProcess Rank Original Offset Data

Figure 3. Format of a chunk

that is ready for IOP to flush out in an aggregated manner.
P3 and P1 are different when some area in between is being
copied to by an AP.

The data between P2 and P3 can be flushed to check-
point file by IOP. All operations to manipulate pointers
P1/P2/P3 are protected by locks for mutual exclusion.

In case of a medium write, an AP grabs a piece of
buffer from shared memory, and increments P1 by an amount
which is the sum of data to be copied plus size of the header.
The AP also enters itself into a list. This list is designed to
keep track of the updates to pointer P3. Then the AP fills
in a header and copies the data into buffer. After the copy
finishes, the AP checks to see if it’s in the closest position to
P3. Then it examines whether its predecessor and successor
in the list have finished copying. P3 is moved to the end of
the newly copied data after careful cooperation by all APs
in that list.

At any given time, the shared memory may contain
dirty data from multiple APs. Figure 2 gives a possible
snapshot of the shared memory. At that moment the shared
memory contains data (shadowed areas) from AP0, AP1
and AP2 interwoven together. Each chunk of data is tagged
with a header so that the mixed data can be parsed and
returned to their owning APs at restart phase. After an AP
finishes copying data to the shared memory, it checks if the

share memory has accumulated enough dirty data. If it finds
enough data there, then it sends a signal to the IOP to notify
it of the pending dirty data.

2) IO process: An IOP’s task is relatively simple. At
initialization it creates shared memory region to be accessed
by all APs. Then it sits idle and becomes blocked waiting
for a signal from any one of APs. The arrival of a signal
indicates that the dirty data in shared memory has exceeded
a certain threshold. Then the IOP is unblocked. It creates a
new thread (IO thread), immediately returns back and waits
for the next signal. The IO thread performs a file write to
flush all dirty data between pointers P2 and P3 to a separate
checkpoint file. This file is meant for the aggregated data
flushed by IO threads.

C. Insights into the design

One alternative is to store small write data to the shared
memory instead of a local buffer. However each access to
shared memory region involves acquiring / release locks. If
the large number of small writes go to shared memory then
the synchronization cost becomes significant. Therefore we
choose to let each AP store its small writes to local buffer.

If all APs share the same data file, then we need a shared
variable (with protecting lock) to keep current position in
the file for write. Although the APs acquire this position in
ascending order, they issue write requests concurrently. The
order in which these requests come to the back-end storage
server is also unpredictable. Therefore the file server may
have to seek its disk head to service these requests going
to different positions in the same file. This can cause severe
overhead. Our experiment with shared checkpoint file shows
a significant performance degradation due to this reason.
Therefore we choose to let each AP write to a separate
checkpoint file.

D. Restart design

The restart process of our design follows the BLCR
framework. Since we have altered the file organization, we
have to reconstruct the checkpoint files to the structure that
can be interpreted by BLCR. First, the IOP reads from an
aggregation file to extract medium-sized data and hand it
over to their owner APs. Then each AP starts to read its
own data file to get small and large-sized data. All these
data are stored to a new checkpoint file at offsets specified
by the header coming with each piece of data. When the
new checkpoint file is ready, an AP makes a call to invoke
BLCR to perform a restart. Although an additional overhead
is involved in this process, it is fairly reasonable since the the
application is restarted from the checkpoint only in the event
of a failure, although the checkpoint maybe taken multiple
times during the lifetime of the application.

V. EXPERIMENTAL RESULTS

We have implemented the node-level write-aggregation
design into BLCR-0.8.0 kernel module. We also have in-
tegrated the modified BLCR into MVAPICH2 [1]. In this
section we conduct experiments on our design to evaluate
its performance. The experiments are conducted on a cluster
with 64 nodes. Each node has Intel Xeon 2.33 GHz 8 cores
CPU. All of them run RedHat Enterprise Linux 5 with kernel
2.6.18-53.1.13.el5. Checkpoint files are stored to a local ext3
file system.

A. Checkpoint Time of Different Applications

In this section we evaluate performance of our design
with NAS parallel benchmarks. We run NAS benchmark
applications (LU,BT,CG) of class C and 64 processes. Eight
nodes out of the 64 nodes are used to run one process on
one processor core. While the application is running, the
system initiates a checkpoint request to checkpoint the MPI
job. The time to take a complete checkpoint is measured.
In this experiment all MPI processes write their checkpoint
files to local disks. As a part of our next step, we plan to
extend our experiments to store checkpoint files to Luster [5]
file system. Lustre file system provides huge aggregated IO
throughput, so we expect higher IO performance in future
experiments with Lustre file system.

Original BLCR
thresh=16K
thresh=64K
thresh=256K
thresh=512K

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

LU.C.64 BT.C.64 CG.C.64

T
im

e
of

 O
ne

 C
he

ck
po

in
t (

m
ill

i−
se

co
nd

s)

Figure 4. Time to Take One Checkpoint

Figure 4 shows the time to do one checkpoint using
MVAPICH2 C/R framework for different applications in the
NAS parallel benchmark suite. The results with different
aggregation thresholds are compared against the time to take
one checkpoint using the original BLCR (marked “Original
BLCR”). Figure 4 demonstrates that write-aggregation can
reduce the total time to take a checkpoint. In the example of
LU.C.64, threshold=16K reduces one checkpoint time from

7601 ms to 6840 ms (a 10.01% improvement). Larger thresh-
olds can further drive down this cost. As with LU.C.64, the
improvements in checkpoint time are 13.32%, 26.39% and
30.79% for 64K, 256K and 512K thresholds respectively.
Similar improvements can be obtained for BT.C.64 and
CG.C.64 as shown in Figure 4. For BT.C.64, threshold
values of 16K,64K,256K,512K can improve checkpoint time
by 9.73%, 12.19%,18.05% and 32.46%. The corresponding
numbers for CG.C.64 are 9.41%, 14.11%, 25.02% and
27.46%.

B. Decomposition of Checkpoint Time

The time cost to take a checkpoint includes 3 phases as
described in section I: (1) Phase 1: synchronize all processes
and drain all in flight messages in the communication chan-
nels. (2) Phase 2: each process perform a local checkpoint
to save its image to a checkpoint file. (3) Phase 3: all
processes re-establish communication channels among them
and resume previous work. In order to understand the source
of improvement from write-aggregation, we decompose the
total time cost into the aforementioned three phases. This
enables us to know exactly the sources of time cost to
take a checkpoint, and gives us a better understanding of
improvement achieved by write-aggregation. Table III shows
the decomposed time cost (in milliseconds) at different
phases to checkpoint an application with or without write-
aggregation.

In table III, columns 2, 3 and 4 show the time cost
in phases 1, 2 and 3, respectively. The last column gives
the improvement achieved by write-aggregation in phase 2
at different aggregation thresholds. “LU-orig” indicatesthe
result of LU.C.64 using the original BLCR. “LU th=X”
indicates the LU.C.64 result produced by write-aggregation
using a threshold value of X. Similar legends are used
for BT.C.64 and CG.C.64. From this table we can ob-
serve some characteristics. The first and third phases are
relatively constant with or without write-aggregation. The
improvement in total time cost comes primarily from phase
2 where write-aggregation significantly reduces the cost to
save a process image to a file. Take LU.C.64 for example.
Write-aggregation reduces time cost in phase 2 by 14.88%,
18.99%, 35.88%, 43.13% for threshold values of 16K,
64K, 256K and 512K, respectively. Similar trends exist for
BT.C.64 and CG.C.64.

The improvement in phase 2 comes from several factors.
First, write-aggregation significantly reduces time cost for
small writes. In original BLCR, each small write causes
a VFS write that results in a system call. Although the
actual data is implicitly buffered in page cache by VFS
write, the total cost of so many small writes can sum up to
a considerable amount. On the contrary, write-aggregation

Table III
T IME DECOMPOSITION(MILLISECONDS)

Phase
1

Phase
2

Phase
3

Improvement in
phase 2 (%)

LU-orig 33 5418 2150
LU th=16K 59 4612 2169 14.88
LU th=64K 67 4389 2132 18.99
LU th=256K 74 3474 2047 35.88
LU th=512K 64 3081 2115 43.13
BT-orig 34 9136 2141
BT th=16K 34 8142 2034 10.88
BT th=64K 48 7725 2159 15.44
BT th=256K 48 7084 2137 22.46
BT th=512K 34 5463 2142 40.20
CG-orig 40 4987 2103
CG th=16K 42 4344 2073 12.89
CG th=64K 43 4055 2026 18.69
CG th=256K 44 3178 2124 36.27
CG th=512K 45 2959 2168 40.67

explicitly stores small data into a process’s local buffer.
This greatly reduces the overhead related to small writes.
Medium writes are also aggregated into memory. Even
the large writes benefit from write-aggregation, because
write-aggregation greatly reduces the total number of write
requests that are sent to the VFS layer.

C. Memory Usage at Different Thresholds

We also measured the memory usage on a node for
different applications at different threshold values. On each
node, enough memory is allocated into the shared memory
region at the beginning of a checkpoint, and the actual
memory usage is reported in Table IV. This simplifies our
design, while doesn’t change the question we are studying.
We can observe that larger amount of memory is required
by a larger threshold value. In large scale applications
that produce huge process image files at checkpointing,
a large threshold necessitates a huge memory usage that
quickly exhausts available memory. This implies that a large
threshold isn’t practical for very large parallel applications.

Table IV
MEMORY USAGE PERNODE(IN MB)

16 KB 64 KB 256 KB 512 KB
LU.C.64 42.6 50.0 78.2 81.1
BT.C.64 33.6 44.8 81.2 160.5
CG.C.64 39.2 48.8 64.8 76.0

VI. RELATED WORK

Checkpointing an application and restarting it from the
last checkpoint is a widely adopted mechanism to serve
fault tolerance. Many works have been done to provide
checkpoint/restart facilities for a single application [9]
[6] [19] [11] [3]. Checkpoint/restart mechanism has been
incorporated into some message-passing libraries such as

LAM/MPI [14], MVAPICH2 C/R [13], MPICH-V [4] and
OpenMPI [7]. The heavy burden to do file IO at check-
point/restart is already noticed in [8]. However existing
work hasn’t explicitly studied the multi-core characteristics
in terms of checkpoint operations. Hence they cannot ex-
ploit the benefits of multi-core systems that host multiple
processes in a same node. Milo et.al. [2] proposes to
use a log-based file structure at server side to serialize all
writing requests for checkpoint. It’s tuned for a checkpoint
writing pattern where multiple processes write to a single
file. The server needs to be altered to adopt this file structure.
This modification at file server side is usually not feasible
for many existing applications. Therefore its applicationis
severely constrained.

Another direction for fault tolerance is to proactively
migrate the processes on a failing node to a spare node
before the failure actually happens. The studies in [17] [16]
propose to migrate a process while the parallel application
keeps running. This approach can reduce the frequency to
write a checkpoint file and hence alleviate the overhead of
file IO. However, the effectiveness of migration approach
heavily depends on the accuracy to predict a pending failure.
If it fails to predict a failure, or if the warning is too late
and a failure happens while the migration is going on, then
the complete system has to do a restart to rollback to a
latest checkpoint. Checkpoint files are still required, andthe
problem of high cost with checkpoint file I/O still exists.

VII. C ONCLUSION AND FUTURE WORK

In this paper we aim to improve checkpoint operations
within a multi-core system by using write aggregation. We
profile the checkpoint data of the NAS parallel benchmarks
with MVAPICH2 Checkpoint / Restart on a multi-core
cluster, and characterize the checkpoint file writing patterns.
Based on these patterns we have designed and implemented
a framework to perform node-level write-aggregation to
optimize small and medium writes within BLCR. Using an
aggregation threshold of 512KB, the design shows improve-
ments ranging from 27% to 32% in terms of time to take
one checkpoint for the NAS parallel benchmarks used in our
experiments.

Further optimization is possible to aggregate data from
multiple nodes and perform a collective IO. We plan to
extend our write-aggregation design to perform inter-node
aggregation as the next step.

REFERENCES

[1] MPI over InfiniBand and iWarp. Inhttp://mvapich.cse.ohio-
state.edu/.

[2] Milo Polte and Jiri Simsa etc. . Fast log-based concurrent
writing of checkpoints . In PDSI 2008 workshop in
conjunction with SC08 , Nov. 2008.

[3] Micah Beck, Jack J. Dongarra, and Graham E. Fagg. Har-
ness: a next generation distributed virtual machine.Future
Generation Computer Systems, 15(5-6):571–582, 1999.

[4] George Bosilca, Aurelien Bouteiller, Samir Djilali, Gilles
Fedak, Cecile Germain, Thomas Herault, Vincent Neri, and
Anton Selikhov. MPICH-V: Toward a scalable fault tolerant
MPI for volatile nodes. InSupercomputing, pages 1–18, 2002.

[5] Cluster File System, Inc. Lustre: A Scalable, High Perfor-
mance File System. http://www.lustre.org/docs.html.

[6] Duell, J., Hargrove, P., and Roman, E. The Design and
Implementation of Berkeley Lab’s Linux Checkpoint/Restart.
Technical Report LBNL-54941, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, 2002.

[7] J. Hursey, J.M. Squyres, T.I. Mattox, and A. Lumsdaine. The
Design and Implementation of Checkpoint/Restart Process
Fault Tolerance for Open MPI. In12th IEEE Workshop
on Dependable Parallel, Distributed and Network-Centric
Systems, March 2007.

[8] I.R. Philp. Software failures and the road to a petaflop
machine. InFirst Workshop on High Performance Computing
Reliability Issues (HPCRI), February 2005.

[9] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron
Livny. Checkpoint and Migration of UNIX Processes in
the Condor Distributed Processing System. InTechnical
Report UW-CS-TR-1346, University of Wisconsin-Madison,
Computer Sciences Department, April 1997.

[10] Paul H. Hargrove and Jason C. Duell. Berkeley Lab Check-
point/Restart (BLCR) for Linux Clusters. InSciDAC, 6 2006.

[11] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li.
Libckpt: Transparent checkpointing under unix. Technical
report, Knoxville, TN, USA, 1994.

[12] Q. Gao, W. Huang, M. Koop, and D. K. Panda. Group-
based Coordinated Checkpointing for MPI: A Case Study
on InfiniBand. In Int’l Conference on Parallel Processing
(ICPP), XiAn, China, 9 2007.

[13] Q. Gao, W. Yu, W. Huang and D. K. Panda. Application-
Transparent Checkpoint/Restart for MPI Programs over In-
finiBand. In International Conference on Parallel Processing
(ICPP), August 2006.

[14] S. Sankaran and J. M. Squyres and B. Barrett etc. The
LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing.LACSI, October 2003.

[15] V. Strumpen. Compiler Technology for
Portable Checkpoints. submitted for publication
(http://theory.lcs. mit.edu/ strumpen/porch.ps.gz).
citeseer.ist.psu.edu/strumpen98compiler.html, 1998.

[16] Chao Wang, Frank Mueller, Christian Engelmann,
and Stephen L. Scott. A Job Pause Service under
LAM/MPI+BLCR for Transparent Fault Tolerance. In
IPDPS, pages 1–10, 2007.

[17] Chao Wang, Frank Mueller, Christian Engelmann, and
Stephen L. Scott. Proactive process-level live migration in
HPC environments. InSC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, 2008.

[18] Frederick C. Wong and Richard P. Martin etc. Architectural
requirements and scalability of the NAS parallel benchmarks.
In Supercomputing, page 41, 1999.

[19] Hua Zhong and Jason Nieh. CRAK: Linux Check-
point/Restart As a Kernel Module. Technical report, Depart-
ment of Computer Science, Columbia University, November
2001.

