
Supporting Strong Coherency for Active Caches in Multi-Tier Data-Centers over
InfiniBand

�
S. Narravula P. Balaji K. Vaidyanathan S. Krishnamoorthy J. Wu D. K. Panda

Computer and Information Science,
The Ohio State University,

2015 Neil Avenue,
Columbus, OH-43210�

narravul, balaji, vaidyana, savitha, wuj, panda � @cis.ohio-state.edu

Abstract

It has been well acknowledged in the research community
that in order to provide or design a data-center environ-
ment which is efficient and offers high performance, one
of the critical issues that needs to be addressed is the ef-
fective reuse of cache content stored away from the origin
server. In the current web, many cache eviction policies and
uncachable resources are driven by two server application
goals: Cache Coherence and Cache Consistency. The prob-
lem of how to provide consistent caching for dynamic con-
tent (Active Caches) has been well studied and researchers
have proposed several weak as well as strong consistency
algorithms. However, the problem of maintaining cache co-
herence has not been studied as much. In this paper, we pro-
pose an architecture for achieving strong cache coherence
for multi-tier data-centers over InfiniBand using the previ-
ously proposed client-polling mechanism. The architecture
as such could be used with any protocol layer. We have also
proposed some optimizations to the algorithm to take ad-
vantage of the advanced features provided by InfiniBand.
We evaluate this architecture using three protocol plat-
forms: (i) TCP/IP over InfiniBand (IPoIB), (ii) Sockets Di-
rect Protocol over InfiniBand (SDP) and (iii) the native In-
finiBand Verbs layer (VAPI) and compare it with the perfor-
mance of the no-caching based coherence mechanism. Our
experimental results show that the InfiniBand-Optimized ar-
chitecture can achieve an improvement of nearly an order
of magnitude compared to the throughput achieved by the
TCP/IP based architecture (over IPoIB), the SDP based ar-
chitecture and the no-cache based coherence scheme.

1 Introduction

With increasing adoption of the Internet as primary means
of electronic interaction and communication, E-portal and
E-commerce, highly scalable, highly available and high�

This research is supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506, and National Science Foundation’s grants #EIA-
9986052, #CCR-0204429, and #CCR-0311542

performance web servers, have become critical for com-
panies to reach, attract, and keep customers. Multi-tier
Data-centers have become a central requirement to provid-
ing such services. Figure 1 represents a typical multi-tier
data-center. The front tiers consist of front-end servers such
as proxy servers that provide web, messaging and various
other services to clients. The middle tiers usually comprise
of application servers that handle transaction processing and
implement data-center business logic. The back-end tiers
consist of database servers that hold a persistent state of the
databases and other data repositories. As mentioned in [16],
a fourth tier emerges in today’s data-center environment:
a communication service tier between the network and the
front-end server farm for providing edge services such as
load balancing, security, caching, and others.

��	�	�		�	�		�	�		�	�		�	�		�	�		�	�	

�

�

�

�

�

�

�
���

��
��
�� � � � � � � � �

!!!!""""#�#�#�#�##�#�#�#�##�#�#�#�#$�$�$�$�$$�$�$�$�$$�$�$�$�$%�%�%�%�%&�&�&�&�&
'''''(((
(()�)�)�)�))�)�)�)�)*�*�*�*�**�*�*�*�*
++++,,,,-�-�-�-�--�-�-�-�--�-�-�-�-.�.�.�.�..�.�.�.�..�.�.�.�./�/�/�/�//�/�/�/�/0�0�0�0�00�0�0�0�0
111122223�3�3�3�33�3�3�3�33�3�3�3�34�4�4�4�44�4�4�4�44�4�4�4�45�5�5�5�55�5�5�5�56�6�6�6�66�6�6�6�6
777788889�9�9�9�99�9�9�9�99�9�9�9�99�9�9�9�9:�:�:�:�::�:�:�:�::�:�:�:�::�:�:�:�:;�;�;�;�;;�;�;�;�;<�<�<�<�<<�<�<�<�<
====>>>>?�?�?�?�??�?�?�?�??�?�?�?�??�?�?�?�?@�@�@�@�@@�@�@�@�@@�@�@�@�@@�@�@�@�@A�A�A�A�AA�A�A�A�AB�B�B�B�BB�B�B�B�B

C�CC�CC�CC�CC�CD�DD�DD�DD�DD�DE�E�E�E�E�E�EE�E�E�E�E�E�EE�E�E�E�E�E�EE�E�E�E�E�E�EF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FG�G�G�G�G�G�G�GG�G�G�G�G�G�G�GH�H�H�H�H�H�HH�H�H�H�H�H�H

IIIIIJJJ
JJ

K�K�K�K�K�KK�K�K�K�K�KK�K�K�K�K�KK�K�K�K�K�KL�L�L�L�L�LL�L�L�L�L�LL�L�L�L�L�LL�L�L�L�L�L

MMMMMNNN
NN

O�O�O�O�O�OO�O�O�O�O�OO�O�O�O�O�OO�O�O�O�O�OO�O�O�O�O�OP�P�P�P�P�PP�P�P�P�P�PP�P�P�P�P�PP�P�P�P�P�PP�P�P�P�P�PQ�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�QQ�Q�Q�Q�Q�Q�QR�R�R�R�R�R�RR�R�R�R�R�R�RR�R�R�R�R�R�R S�S�SS�S�SS�S�SS�S�SS�S�SS�S�SS�S�ST�TT�TT�TT�TT�TT�TT�TU�U�U�U�U�U�U�U�UU�U�U�U�U�U�U�U�UU�U�U�U�U�U�U�U�UU�U�U�U�U�U�U�U�UU�U�U�U�U�U�U�U�UU�U�U�U�U�U�U�U�UV�V�V�V�V�V�V�V�VV�V�V�V�V�V�V�V�VV�V�V�V�V�V�V�V�VV�V�V�V�V�V�V�V�VV�V�V�V�V�V�V�V�VV�V�V�V�V�V�V�V�VW�W�W�W�W�W�W�W�WW�W�W�W�W�W�W�W�WW�W�W�W�W�W�W�W�WX�X�X�X�X�X�X�X�XX�X�X�X�X�X�X�X�XX�X�X�X�X�X�X�X�X
Y�YY�YY�YY�YZZZZ [�[�[�[�[[�[�[�[�[[�[�[�[�[\�\�\�\�\\�\�\�\�\\�\�\�\�\

]�]�]�]�]�]�]]�]�]�]�]�]�]]�]�]�]�]�]�]^�^�^�^�^�^�^^�^�^�^�^�^�^^�^�^�^�^�^�^
Internet

Network
Enterprise

Applications Applications

Services
Edge

Front−end
Mid−tier Back−end

Applications

Figure 1. A Typical Multi-Tier Data-Center
(Courtesy CSP Architecture design [16])

With ever increasing on-line businesses and services and
the growing popularity of personalized Internet services,
dynamic content is becoming increasingly common [7, 21,
17]. This includes documents that change upon every ac-
cess, documents that are query results, documents that em-
body client-specific information, etc. Large-scale dynamic
workloads pose interesting challenges in building the next-
generation data-centers [21, 16, 9, 18]. Significant compu-

1

tation and communication may be required to generate and
deliver dynamic content. Performance and scalability issues
need to be addressed for such workloads.
Reducing computation and communication overhead is

crucial to improving the performance and scalability of
data-centers. Caching dynamic content, typically known as
Active Caching [7] at various tiers of a multi-tier data-center
is a well known method to reduce the computation and com-
munication overheads. However, it has its own challenges:
issues such as cache consistency and cache coherence be-
come more prominent. In the state-of-art data-center envi-
ronment, these issues are handled based on the type of data
being cached. For dynamic data, for which relaxed con-
sistency or coherency is permissible, several methods like
TTL [10], Adaptive TTL [8], and Invalidation [11] have
been proposed. However, for data like stock quotes or air-
line reservation, where old quotes or old airline availability
values are not acceptable, strong consistency and coherency
is essential.
Providing strong consistency and coherency is a neces-

sity for Active Caching in many web applications, such as
on-line banking and transaction processing. In the current
data-center environment, two popular approaches are used.
The first approach is pre-expiring all entities (forcing data
to be re-fetched from the origin server on every request).
This scheme is similar to a no-cache scheme. The second
approach, known as Client-Polling, requires the front-end
nodes to inquire from the back-end server if its cache entry
is valid on every cache hit. Both approaches are very costly,
increasing the client response time and the processing over-
head at the back-end servers. The costs are mainly associ-
ated with the high CPU overhead in the traditional network
protocols due to memory copy, context switches, and inter-
rupts [16, 9, 4]. Further, the involvement of both sides for
communication (two-sided communication) results in per-
formance of these approaches heavily relying on the CPU
load on both communication sides. For example, a busy
back-end server can slow down the communication required
to maintain strong cache coherence significantly.
The InfiniBand Architecture (IBA) [1, 2] is envisioned as

the default interconnect for the future data-center environ-
ments. It is targeted for both Inter-Processor Communica-
tion (IPC) and I/O. Therefore, a single IBA interconnect can
be used for different purposes. This significantly eases net-
work management in data-center servers. In addition, IBA
is designed to achieve low latency and high-bandwidth with
low CPU overhead. It also provides rich features to greatly
improve RAS (Reliability, Availability, and Scalability) of
the data-center servers. IBA relies on two key features,
namely User-level Networking and Remote Direct Mem-
ory Access (RDMA). User-level Networking allows appli-
cations to directly and safely access the network interface
without going through the Operating System. RDMA al-
lows the network interface to transfer data between local
and remote memory buffers without any interaction with

the Operating System or processor intervention by using
DMA engines. These two features have been leveraged in
designing high performance message passing systems [12]
and cluster file systems [20].
In this paper, we focus on leveraging these two features

to support strong coherency for caching dynamic content in
the data-center environment. In particular, we study mecha-
nisms to take advantage of InfiniBand’s features to provide
strong cache consistency and coherency with low overhead
and to provide scalable dynamic content caching.
This work contains several research contributions. Primar-

ily, it takes the first step toward understanding the role of
the InfiniBand architecture in next-generation data-centers.
The main contributions are:

1. We propose an architecture for achieving strong cache
coherence for multi-tier data-centers. This architecture
requires minimal changes to legacy data-center appli-
cations. It could be used with any protocol layer; at
the same time, it allows us to take advantage of the
advanced features provided by InfiniBand to further
improve performance and scalability of caching in the
data-center environment.

2. We implement the proposed architecture using three
protocol platforms: TCP/IP over InfiniBand (IPoIB),
Sockets Direct Protocol over InfiniBand (SDP) and
the native InfiniBand Verbs layer (VAPI) and evalu-
ate their performance compared to that achieved by the
no-caching based coherence mechanism.

3. Our experimental results show that the VAPI based ar-
chitecture can achieve an improvement of nearly an or-
der of magnitude over the throughput achieved by the
other implementations of the architecture and the no-
cache based coherence scheme. Our results also show
that this one-sided communication based architecture
is mostly resilient and well-conditioned to the load on
the application servers as compared to two-sided pro-
tocols such as IPoIB and SDP. This feature becomes
more important because of the unpredictability of load
in a typical data-center environment which supports
large-scale dynamic services.

4. InfiniBand provides several opportunities to revise the
design and implementation of many subsystems, pro-
tocols, and communication mechanisms in the data-
center environment. The rich features of IBA offer a
flexible design space and tremendous optimization po-
tential.

The rest of the paper is organized as follows. Section 2 de-
scribes the background and related work. In Section 3, we
detail the design and challenges of our approach. The ex-
perimental results are presented in Section 4. We draw our
conclusions and discuss possible future work in Section 5.

2

2 Background

In this section, we briefly describe the various schemes
previously proposed by researchers to allow bounded stale-
ness to the accessed documents, maintaining strong consis-
tency, etc. Background details about InfiniBand and SDP
have been skipped due to space restrictions and can be
found in [15].

2.1 Web Cache Consistency and Coherence

Traditionally, frequently accessed static content was
cached at the front tiers to allow users a quicker access to
these documents. In the past few years, researchers have
come up with approaches of caching certain dynamic con-
tent at the front tiers as well [7]. In the current web, many
cache eviction events and uncachable resources are driven
by two server application goals: First, providing clients
with a recent or coherent view of the state of the applica-
tion (i.e., information that is not too old); Secondly, provid-
ing clients with a self-consistent view of the application’s
state as it changes (i.e., once the client has been told that
something has happened, that client should never be told
anything to the contrary). Depending on the type of data
being considered, it is necessary to provide certain guaran-
tees with respect to the view of the data that each node in the
data-center and the users get. These constraints on the view
of data vary based on the application requiring the data.
Consistency: Cache consistency refers to a property of

the responses produced by a single logical cache, such that
no response served from the cache will reflect older state
of the server than that reflected by previously served re-
sponses, i.e., a consistent cache provides its clients with
non-decreasing views of the server’s state.
Coherence: Cache coherence refers to the average stal-

eness of the documents present in the cache, i.e., the time
elapsed between the current time and the time of the last up-
date of the document in the back-end. A cache is said to be
strong coherent if its average staleness is zero, i.e., a client
would get the same response whether a request is answered
from cache or from the back-end.

2.1.1 Web Cache Consistency

In a multi-tier data-center environment many nodes can ac-
cess data at the same time (concurrency). Data consistency
provides each user with a consistent view of the data, in-
cluding all visible (committed) changes made by the user’s
own updates and the updates of other users. That is, either
all the nodes see a completed update or no node sees an up-
date. Hence, for strong consistency, stale view of data is
permissible, but partially updated view is not.
Several different levels of consistency are used based on

the nature of data being used and its consistency require-
ments. For example, for a web site that reports football
scores, it may be acceptable for one user to see a score, dif-
ferent from the scores as seen by some other users, within

some frame of time. There are a number of methods to im-
plement this kind of weak or lazy consistency models.
The Time-to-Live (TTL) approach, also known as the � -

consistency approach, proposed with the HTTP/1.1 speci-
fication, is a popular weak consistency (and weak coher-
ence) model currently being used. This approach associates
a TTL period with each cached document. On a request
for this document from the client, the front-end node is al-
lowed to reply back from their cache as long as they are
within this TTL period, i.e., before the TTL period expires.
This guarantees that document cannot be more stale than
that specified by the TTL period, i.e., this approach guaran-
tees that staleness of the documents is bounded by the TTL
value specified.
Researchers have proposed several variations of the TTL

approach including Adaptive TTL [8] and MONARCH [13]
to allow either dynamically varying TTL values (as in Adap-
tive TTL) or document category based TTL classification (as
in MONARCH). There has also been considerable amount
of work on Strong Consistency algorithms [6, 5].

2.1.2 Web Cache Coherence

Typically, when a request reaches the proxy node, the cache
is checked for the file. If the file was previously requested
and cached, it is considered a cache hit and the user is served
with the cached file. Otherwise the request is forwarded to
its corresponding server in the back-end of the data-center.
The maximal hit ratio in proxy caches is about 50% [17].

Majority of the cache misses are primarily due to the dy-
namic nature of web requests. Caching dynamic content
is much more challenging than static content because the
cached object is related to data at the back-end tiers. This
data may change, thus invalidating the cached object and
resulting in a cache miss. The problem providing consis-
tent caching for dynamic content has been well studied and
researchers have proposed several weak as well as strong
cache consistency algorithms [6, 5, 21]. However, the prob-
lem of maintaining cache coherence has not been studied as
much.
The two popular coherency models used in the current web

are immediate or strong coherence and bounded staleness.
The bounded staleness approach is similar to the previously
discussed TTL based approach. Though this approach is ef-
ficient with respect to the number of cache hits, etc., it only
provides a weak cache coherence model. On the other hand,
immediate coherence provides a strong cache coherence.
With immediate coherence, caches are forbidden from re-

turning a response other than that which would be returned
were the origin server contacted. This guarantees seman-
tic transparency, provides Strong Cache Coherence, and
as a side-effect also guarantees Strong Cache Consistency.
There are two widely used approaches to support immedi-
ate coherence. The first approach is pre-expiring all enti-
ties (forcing all caches to re-validate with the origin server
on every request). This scheme is similar to a no-cache

3

scheme. The second approach, known as client-polling,
requires the front-end nodes to inquire from the back-end
server if its cache is valid on every cache hit.
The no-caching approach to maintain immediate coher-

ence has several disadvantages:

� Each request has to be processed at the home node tier,
ruling out any caching at the other tiers

� Propagation of these requests to the back-end nodes
over traditional protocols can be very expensive

� For data which does not change frequently, the amount
of computation and communication overhead incurred
to maintain strong coherence could be very high, re-
quiring more resources

These disadvantages are overcome to some extent by the
client-polling mechanism. In this approach, the proxy
server, on getting a request, checks its local cache for the
availability of the required document. If it is not found, the
request is forwarded to the appropriate application server in
the inner tier and there is no cache coherence issue involved
at this tier. If the data is found in the cache, the proxy server
checks the coherence status of the cached object by contact-
ing the back-end server(s). If there were updates made to
the dependent data, the cached document is discarded and
the request is forwarded to the application server tier for
processing. The updated object is now cached for future
use. Even though this method involves contacting the back-
end for every request, it benefits from the fact that the ac-
tual data processing and data transfer is only required when
the data is updated at the back-end. This scheme can po-
tentially have significant benefits when the back-end data is
not updated very frequently. However, this scheme also has
disadvantages, mainly based on the traditional networking
protocols:

� Every data document is typically associated with a
home-node in the data-center back-end. Frequent ac-
cesses to a document can result in all the front-end
nodes sending in coherence status requests to the same
nodes potentially forming a hot-spot at this node

� Traditional protocols require the back-end nodes to be
interrupted for every cache validation event generated
by the front-end

In this paper, we focus on this model of cache coherence
and analyze the various impacts of the advanced features
provided by InfiniBand on this.

3 Providing Strong Cache Coherence

In this section, we describe the architecture we use to sup-
port strong cache coherence. We first provide the basic de-
sign of the architecture for any generic protocol. Next, we
point out several optimizations possible in the design using
the various features provided by InfiniBand.

3.1 Basic Design

As mentioned earlier, there are two popular approaches to
ensure cache coherence: Client-Polling and No-Caching.
In this paper, we focus on the Client-Polling approach to
demonstrate the potential benefits of InfiniBand in support-
ing strong cache coherence.
While the HTTP specification allows a cache-coherent

client-polling architecture (by specifying a TTL value of
NULL and using the ‘‘get-if-modified-since’’
HTTP request to perform the polling operation), it has sev-
eral issues: (1) This scheme is specific to sockets and cannot
be used with other programming interfaces such as Infini-
Band’s native Verbs layers (e.g.: VAPI), (2) In cases where
persistent connections are not possible (HTTP/1.0 based re-
quests, secure transactions, etc), connection setup time be-
tween the nodes in the data-center environment tends to take
up a significant portion of the client response time, espe-
cially for small documents.

Coherency status

 Proxy
 Server

 App
 Server

 Data
Repository

A
pp

M
odule

D
ata R

ep
M

odule

A
pp

Server

Server
D

atabase

 Query

 Query

 Coherency Status

Coherency status

 reply

 reply

Actual Request

Response

Response

Coherency status

Actual Request

Client Request

Cache Hit

Response

Proxy Server

Proxy M
odule

Figure 2. Strong Cache Coherence Protocol

In the light of these issues, we present an alternative archi-
tecture to perform Client-Polling. Figure 2 demonstrates
the basic coherency architecture used in this paper. The
main idea of this architecture is to introduce external helper
modules that work along with the various servers in the
data-center environment to ensure cache coherence. All is-
sues related to cache coherence are handled by these mod-
ules and are obscured from the data-center servers. It is to
be noted that the data-center servers require very minimal
changes to be compatible with these modules.
The design consists of a module on each physical node in

the data-center environment associated with the server run-
ning on the node, i.e., each proxy node has a proxy mod-
ule, each application server node has an associated appli-
cation module, etc. The proxy module assists the proxy
server with validation of the cache on every request. The
application module, on the other hand, deals with a num-

4

read
 Queue Queue

update

Proxy module

Proxy server
Application Module

Tier2

Application Server

Version Control thread

Update Thread

Update server

Tier3Tier 1

asynchronous update

IP
C

IPC READ REQ

IPC READ PROCEED

IP
C

 U
PD

A
T

E
 R

E
Q

IP
C

 U
PD

A
T

E
 P

R
O

C
E

E
D

IP
C

 U
PD

A
T

E
 D

O
N

E

IPC READ DONE

Figure 3. Interaction between Data-Center
Servers and Modules

ber of things including (a) Keeping track of all updates on
the documents it owns, (b) Locking appropriate files to al-
low a multiple-reader-single-writer based access priority to
files, (c) Updating the appropriate documents during update
requests, (d) Providing the proxy module with the appro-
priate version number of the requested file, etc. Figure 3
demonstrates the functionality of the different modules and
their interactions.
Proxy Module: On every request, the proxy server con-

tacts the proxy module through IPC to validate the cached
object(s) associated with the request. The proxy module
does the actual verification of the document with the appli-
cation module on the appropriate application server. If the
cached value is valid, the proxy server is allowed to proceed
by replying to the client’s request from cache. If the cache is
invalid, the proxy module simply deletes the corresponding
cache entry and allows the proxy server to proceed. Since
the document is now not in cache, the proxy server contacts
the appropriate application server for the document. This
ensures that the cache remains coherent.
Application Module: The application module is slightly

more complicated than the proxy module. It uses multi-
ple threads to allow both updates and read accesses on the
documents in a multiple-reader-single-writer based access
pattern. This is handled by having a separate thread for han-
dling updates (refered to as the update thread here on). The
main thread blocks for IPC requests from both the applica-
tion server and the update thread. The application server
requests to read a file while an update thread requests to
update a file. The main thread of the application module,
maintains two queues to ensure that the file is not accessed
by a writer (update thread) while the application server is
reading it (to transmit it to the proxy server) and vice-versa.
On receiving a request from the proxy, the applica-

tion server contacts the application module through an
IPC call requesting for access to the required docu-
ment (IPC READ REQUEST). If there are no ongoing
updates to the document, the application module sends
back an IPC message giving it access to the document
(IPC READ PROCEED), and queues the request ID in its
Read Queue. Once the application server is done with read-

ing the document, it sends the application module another
IPC message informing it about the end of the access to the
document (IPC READ DONE). The application module,
then deletes the corresponding entry from its Read Queue.
When a document is to be updated (either due to an update

server interaction or an update query from the user), the up-
date request is handled by the update thread. On getting
an update request, the update thread initiates an IPC mes-
sage to the application module (IPC UPDATE REQUEST).
The application module on seeing this, checks its Read
Queue. If the Read Queue is empty, it immediately sends
an IPC message (IPC UPDATE PROCEED) to the update
thread and queues the request ID in its Update Queue. On
the other hand, if the Read Queue is not empty, the up-
date request is still queued in the Update Queue, but the
IPC UPDATE PROCEED message is not sent back to the
update thread (forcing it to hold the update), until the Read
Queue becomes empty. In either case, no further read-
requests from the application server are allowed to proceed;
instead the application module queues them in its Update
Queue, after the update request. Once the update thread
has completed the update, it sends an IPC UPDATE DONE
message to the update module. At this time, the application
module deletes the update request entry from its Update
Queue, sends IPC READ PROCEED messages for every
read request queued in the Update Queue and queues these
read requests in the Read Queue, to indicate that these are
the current readers of the document.
It is to be noted that if the Update Queue is not empty, the

first request queued will be an update request and all other
requests in the queue will be read requests. Further, if the
Read Queue is empty, the update is currently in progress.
Table 1 tries to summarize this information.

3.2 Strong Coherency Model over InfiniBand

In this section, we point out several optimizations possible
in the design described, using the advanced features pro-
vided by InfiniBand. In Section 4 we provide the perfor-
mance achieved by the InfiniBand-optimized architecture.
As described earlier, on every request the proxy module

needs to validate the cache corresponding to the document
requested. In traditional protocols such as TCP/IP, this re-
quires the proxy module to send a version request message
to the version thread1, followed by the version thread ex-
plicitly sending the version number back to the proxy mod-
ule. This involves the overhead of the TCP/IP protocol
stack for the communication in both directions. Several re-
searchers have provided solutions such as SDP to get rid
of the overhead associated with the TCP/IP protocol stack
while maintaining the sockets API. However, the more im-
portant concern in this case is the processing required at the
version thread (e.g. searching for the index of the requested
file and returning the current version number).

1Version Thread is a separate thread spawned by the application module
to handle version requests from the proxy module

5

Table 1. IPC message rules
IPC TYPE Read Queue State Update Queue State Rule

IPC READ REQUEST Empty Empty 1. Send IPC READ PROCEED to proxy
2. Enqueue Read Request in Read Queue

IPC READ REQUEST Not Empty Empty 1. Send IPC READ PROCEED to proxy
2. Enqueue Read Request in Read Queue

IPC READ REQUEST Empty Not Empty 1. Enqueue Read Request in Update Queue
IPC READ REQUEST Not Empty Not Empty Enqueue the Read Request in the Update Queue

IPC READ DONE Empty Not Empty Erroneous State. Not Possible.
IPC READ DONE Not Empty Empty 1. Dequeue one entry from Read Queue.
IPC READ DONE Not Empty Not Empty 1. Dequeue one entry from Read Queue

2. If Read Queue is now empty, Send
IPC UPDATE PROCEED to head of Update Queue

IPC UPDATE REQUEST Empty Empty 1. Enqueue Update Request in Update Queue
2. Send IPC UPDATE PROCEED

IPC UPDATE REQUEST Empty Not Empty Erroneous state. Not Possible
IPC UPDATE REQUEST Not Empty Empty 1. Enqueue Update Request in Update Queue
IPC UPDATE REQUEST Not Empty Not Empty Erroneous State. Not possible

IPC UPDATE DONE Empty Empty Erroneous State. Not possible
IPC UPDATE DONE Empty Not Empty 1. Dequeue Update Request from Update Queue

2. For all Read Requests in Update Queue:
- Dequeue Read Requests from Update Queue
- Send IPC READ PROCEED
- Enqueue in Read Queue

IPC UPDATE DONE Not Empty Not Empty Erroneous State. Not Possible.

Application servers typically tend to perform several com-
putation intensive tasks including executing CGI scripts,
Java applets, etc. This results in a tremendously high CPU
requirement for the main application server itself. Allow-
ing an additional version thread to satisfy version requests
from the proxy modules results in a high CPU usage for the
module itself. Additionally, the large amount of computa-
tion carried out on the node by the application server results
in significant degradation in performance for the version
thread and other application modules running on the node.
This results in a delay in the version verification leading to
an overall degradation of the system performance.
In this scenario, it would be of great benefit to have a one-

sided communication operation where the proxy module
can directly check the current version number without inter-
rupting the version thread. InfiniBand provides the RDMA
read operation which allows the initiator node to directly
read data from the remote node’s memory. This feature of
InfiniBand makes it an ideal choice for this scenario. In our
implementation, we rely on the RDMA read operation for
the proxy module to get information about the current ver-
sion number of the required file. Figure 4 demonstrates the
InfiniBand-Optimized coherency architecture.

3.3 Potential Benefits

Using RDMA operations to design and implement client
polling scheme in data-center servers over InfiniBand has
several potential benefits.

Improving response latency: RDMA operations over In-

finiBand provide very low latency of about 5.5 � s and a high
bandwidth up to 840Mbytes per second. Protocol commu-
nication overhead to provide strong coherence is minimal.
This can improve response latency.

Increasing system throughput: RDMA operations have
very low CPU overhead in both sides. This leaves more
CPU free for the data center nodes to perform other pro-
cessing, particularly on the back-end servers. This ben-
efit becomes more attractive when a large amount of dy-
namic content is generated and significant computation is
needed in the data-center nodes. Therefore, clients can ben-
efit from active caching with strong coherence guarantee at
little cost. The system throughput can be improved signifi-
cantly in many cases.

Enhanced robustness to load: The load of data center
servers with support of dynamic web services is very bursty
and unpredictable [17, 19]. Performance of protocols to
maintain strong cache coherency over traditional network
protocols can be degraded significantly when the server load
is high. This is because both sides should get involved in
communication and afford considerable CPU to perform
communication operations. However, for protocols based
on RDMA operations, the peer side is transparent to and
nearly out of the communication procedure. Little overhead
is paid on the peer server side. Thus, the performance of
dynamic content caching with strong coherence based on
RDMA operations is mostly resilient and well-conditioned
to load.

6

Coherency status

 Proxy
 Server

 App
 Server

 Data
Repository

A
pp

M
odule

D
ata R

ep
M

odule

A
pp

Server

Server
D

atabase

 Coherency Status

Actual Request

Response

Response

Coherency status

Actual Request

Client Request

Cache Hit

Response

Proxy Server

Proxy M
odule

RDMA Write

RDMA Write

RDMA Read

Figure 4. Strong Cache Coherency Protocol:
InfiniBand based Optimizations

4 Experimental Results

In this section, we first show the micro-benchmark level
performance given by VAPI, SDP and IPoIB. Next, we ana-
lyze the performance of a cache-coherent 2-tier data-center
environment. Cache coherence is achieved using the Client-
Polling based approach in the architecture described in Sec-
tion 3.
All our experiments used a cluster system consisting of

8 nodes built around SuperMicro SUPER P4DL6 mother-
boards and GC chipsets which include 64-bit 133 MHz PCI-
X interfaces. Each node has two Intel Xeon 2.4 GHz pro-
cessors with a 512 kB L2 cache and a 400 MHz front side
bus. The machines are connected with Mellanox InfiniHost
MT23108 DualPort 4x HCA adapter through an InfiniScale
MT43132 Eight 4x Port InfiniBand Switch. The Mellanox
InfiniHost HCA SDK version is thca-x86-0.2.0-build-001.
The adapter firmware version is fw-23108-rel-1 18 0000.
We used the Linux 2.4.7-10 kernel.

4.1 Micro-benchmarks

In this section, we compare the ideal case performance
achievable by IPoIB and InfiniBand VAPI using a number
of micro-benchmark tests.
Figure 5 a shows the one-way latency achieved by IPoIB,

VAPI Send-Receive, RDMA Write, RDMA Read and SDP
for various message sizes. Send-Receive achieves a latency
of around 7.5 � s for 4 byte messages compared to a 30 � s
achieved by IPoIB, 27 � s achieved by SDP and 5.5 � s and
10.5 � s achieved by RDMA Write and RDMA Read, re-
spectively. Further, with increasing message sizes, the dif-
ference between the latency achieved by native VAPI, SDP
and IPoIB tends to increase.
Figure 5b shows the uni-directional bandwidth achieved

by IPoIB, VAPI Send-Receive and RDMA communica-

tion models and SDP. VAPI Send-Receive and both RDMA
models perform comparably with a peak throughput of up
to 840Mbytes/s compared to the 169Mbytes/s achieved by
IPoIB and 500Mbytes/s achieved by SDP. We see that VAPI
is able to transfer data at a much higher rate as compared to
IPoIB and SDP. This improvement in both the latency and
the bandwidth for VAPI compared to the other protocols
is mainly attributed to the zero-copy communication in all
VAPI communication models.

4.2 Strong Cache Coherence

In this section, we analyze the performance of a cache-
coherent 2-tier data-center environment consisting of three
proxy nodes and one application server running Apache-
1.3.12. Cache coherency was achieved using the Client-
Polling based approach described in Section 3. We used
three client nodes, each running three threads, to fire re-
quests to the proxy servers.
Three kinds of traces were used for the results. The first

trace consists of a single 8Kbyte file. This trace shows the
ideal case performance achievable with the highest possi-
bility of cache hits, except when the document is updated at
the back-end. The second trace consists of 20 files of sizes
varying from 200bytes to 1Mbytes. The access frequencies
for these files follow a Zipf distribution [22]. The third trace
is a 20000 request subset of the WorldCup trace [3]. For all
experiments, accessed documents were randomly updated
by a separate update server with a delay of one second be-
tween the updates.
The HTTP client was implemented as a multi-threaded

parallel application with each thread independently firing
requests at the proxy servers. Each thread could either be
executed on the same physical node or on a different phys-
ical nodes. The architecture and execution model is similar
to the WebStone workload generator [14].
As mentioned earlier, application servers are typically

compute intensive mainly due to their support to several
compute intensive applications such as CGI script execu-
tion, Java applets, etc. This typically spawns several com-
pute threads on the application server node using up the
CPU resources. To emulate this kind of behavior, we run
a number of compute threads on the application server in
our experiments.
Figure 6a shows the client response time for the first trace

(consisting of a single 8Kbyte file). The x-axis shows
the number of compute threads running on the application
server node. The figure shows an evaluation of the proposed
architecture implemented using IPoIB, SDP and VAPI and
compares it with the response time obtained in the absence
of a caching mechanism. We can see that the proposed ar-
chitecture performs equally well for all three (IPoIB, SDP
and VAPI) for a low number of compute threads; All three
achieve an improvement of a factor of 1.5 over the no-cache
case. This shows that two-sided communication is not a
huge bottleneck in the module as such when the application

7

Latency

0

20

40

60

80

100

120

140

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Message Size

L
at

en
cy

 (
u

s)

Send/Recv

RDMA Write

RDMA Read

IPoIB

SDP

Bandwidth

0

100

200

300

400

500

600

700

800

900

4 16 64 256 1024 4096 16384 65536

Message Size

B
an

d
w

id
th

 (
M

B
p

s)

Send/Recv

RDMA Write

RDMA Read

IPoIB

SDP

Figure 5. Micro-Benchmarks: (a) Latency, (b) Bandwidth

Datacenter: Response Time

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

R
es

po
ns

e
tim

e
(m

s)

NoCache IPoIB VAPI SDP

DataCenter: Throughput

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

(T
P

S
)

No Cache IPoIB VAPI SDP

Figure 6. Data-Centers Performance Analysis

Throughput: ZipF distribution

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100 200

Number of Compute Threads

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

(T
P

S
)

No Cache IPoIB VAPI SDP

ThroughPut: World Cup Trace

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90 100 200
Number of Compute Threads

T
ra

ns
ac

tio
ns

 P
er

 S
ec

on
d

(T
P

S
)

NoCache IPoIB VAPI SDP

Figure 7. Data-Center Throughput: (a) Zipf Distribution, (b) WorldCup Trace

8

Response Time Splitup - 0 Compute Threads

0

1

2

3

4

5

6

7

8

Client
Communication

Proxy
Processing

Module
Processing

Backend version
check

T
im

e
(m

s) IPoIB

SDP

VAPI

Response Time Splitup - 200 Compute Threads

0

1

2

3

4

5

6

7

8

Client
Communication

Proxy
Processing

Module
Processing

Backend version
check

T
im

e
(m

s) IPoIB

SDP

VAPI

Figure 8. Data-Center Response Time Breakup: (a) 0 Compute Threads, (b) 200 Compute Threads

server is not heavily loaded.
As the number of compute threads increases, we see a con-

siderable degradation in the performance in the no-cache
case as well as the Socket-based implementations using
IPoIB and SDP. The degradation in the no-cache case is
quite expected, since all the requests for documents are for-
warded to the back-end. Having a high compute load on the
back-end would slow down the application server’s replies
to the proxy requests.
The degradation in the performance for the Client-Polling

architecture with IPoIB and SDP is attributed to the two
sided communication of these protocols and the context
switches taking place due to the large number of threads.
This results in a significant amount of time being spent by
the application modules just to get access to the system
CPU. It is to be noted that the version thread needs to get
access to the system CPU on every request in order to reply
back to the proxy module’s version number requests.
On the other hand, the Client-Polling architecture with

VAPI does not show any significant drop in performance.
This is attributed to the one-sided RDMA operations sup-
ported by InfiniBand. For example, the version number re-
trieval from the version thread is done by the proxy mod-
ule using a RDMA Read. That is, the version thread does
not have to get access to the system CPU; the proxy thread
can retrieve the version number information for the re-
quested document without any involvement of the version
thread. These observations are re-verified by the response
time breakup provided in Figure 8.
Figure 6b shows the throughput achieved by the data-

center for the proposed architecture with IPoIB, SDP, VAPI
and the no-cache cases. Again, we observe that the architec-
ture performs equally well for both Socket based implemen-
tations (IPoIB and SDP) as well as VAPI for a low number
of compute threads with an improvement of a factor of 1.67
compared to the no-cache case. As the number of threads
increases, we see a significant drop in the performance for
both IPoIB and SDP based client-polling implementations
as well as the no-cache case, unlike the VAPI-based client-

polling model, which remains almost unchanged. This is
attributed to the same reason as that in the response time
test, i.e., no-cache and Socket based client-polling mech-
anisms (IPoIB and SDP) rely on a remote process to as-
sist them. The throughput achieved by the WorldCup trace
(Figure 7b) and the trace with Zipf distribution (Figure 7a)
also follow the same pattern as above. With a large num-
ber of compute threads already competing for the CPU, the
wait time for this remote process to acquire the CPU can be
quite high, resulting in this degradation of performance. To
demonstrate this, we look at the component wise break-up
of the response time.
Figure 8a shows the component wise break-up of the re-

sponse time observed by the client for each stage in the
request and the response paths, using our proposed archi-
tecture on IPoIB, SDP and VAPI, when the backend has no
compute threads and is thus not loaded. In the response time
breakup, the legends Module Processing, and Backend Ver-
sion Check are specific to our architecture. We can see that
these components together add up to less than 10% of the
total time. This shows that the computation and commu-
nication costs of the module as such do not add too much
overhead on the client’s response time.
Figure 8b on the other hand, shows the component wise

break-up of the response time with a heavily loaded back-
end server (with 200 compute threads). In this case, the
module overhead increases significantly for IPoIB and SDP,
comprising almost 70% of the response time seen by the
client, while the VAPI module overhead remains unchanged
by the increase in load. This indifference is attributed to the
one-sided communication used by VAPI (RDMA Read) to
perform a version check at the backend. This shows that for
two-sided protocols such as IPoIB and SDP, the main over-
head is the context switch time associated with the multiple
applications running on the application server which skews
this time (by adding significant wait times to the modules
for acquiring the CPU).

9

5 Conclusions and Future Work

Caching content at various tiers of a multi-tier data-center
is a well known method to reduce the computation and com-
munication overhead. In the current web, many cache poli-
cies and uncachable resources are driven by two server ap-
plication goals: Cache Coherence and Cache Consistency.
The problem of how to provide consistent caching for dy-
namic content has been well studied and researchers have
proposed several weak as well as strong consistency algo-
rithms. However, the problem of maintaining cache coher-
ence has not been studied as much.
In this paper, we proposed an architecture for achieving

strong cache coherence based on the previously proposed
client-polling mechanism for multi-tier data-centers. The
architecture as such could be used with any protocol layer;
we also proposed optimizations to better implement it over
InfiniBand by taking advantage of one sided operations
such as RDMA. We evaluated this architecture using three
protocol platforms: (i) TCP/IP over InfiniBand (IPoIB), (ii)
Sockets Direct Protocol over InfiniBand (SDP) and (iii) the
native InfiniBand Verbs layer (VAPI) and compared it with
the performance of the no-caching based coherence mech-
anism. Our experimental results show that the InfiniBand-
optimized architecture can achieve an improvement of upto
a factor of two for the response time and nearly an order of
magnitude for the throughput achieved by the TCP/IP based
architecture, the SDP based architecture and the no-cache
based coherence scheme. The results also demonstrate that
the implementation based on RDMA communication mech-
anism can offer better performance robustness to the load of
the data-center servers.
As a future work, we propose to combine InfiniBand

RDMA and Atomic operations to efficiently support load
balancing and virtualization in the data-center environment.

References

[1] InfiniBand Trade Association. http://www.infinibandta.com.

[2] InfiniBand Trade Association, InfiniBand Archi-
tecture Specification, Volume 1, Release 1.0.
http://www.infinibandta.com.

[3] The Internet Traffic Archive. http://ita.ee.lbl.gov/html/traces.
html.

[4] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy,
J. Wu, and D. K. Panda. Sockets Direct Protocol over Infini-
Band in Clusters: Is it Beneficial? In the Proceedings of the
IEEE International Symposium on Performance Analysis of
Systems and Software, Austin, Texas, March 10-12 2004.

[5] Adam D. Bradley and Azer Bestavros. Basis Token Consis-
tency: Extending and Evaluating a Novel Web Consistency
Algorithm. In the Proceedings of Workshop on Caching, Co-
herence, and Consistency (WC3), New York City, 2002.

[6] Adam D. Bradley and Azer Bestavros. Basis token consis-
tency: Supporting strong web cache consistency. In the Pro-

ceedings of the Global Internet Worshop, Taipei, November
2002.

[7] Pei Cao, Jin Zhang, and Kevin Beach. Active cache: Caching
dynamic contents on the Web. In Middleware Conference,
1998.

[8] Michele Colajanni and Philip S. Yu. Adaptive ttl schemes
for load balancing of distributed web servers. SIGMETRICS
Perform. Eval. Rev., 25(2):36–42, 1997.

[9] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini. User-
Level Communication in Cluster-Based Servers. In the 8th
IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA 8), Feb. 2002.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP 1.1. RFC 2616. June, 1999.

[11] D. Li, P. Cao, and M. Dahlin. WCIP: Web Cache Invalidation
Protocol. IETF Internet Draft, November 2000.

[12] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyck-
off, and Dhabaleswar K. Panda. High Performance RDMA-
Based MPI Implementation over InfiniBand. In 17th Annual
ACM International Conference on Supercomputing, June
2003.

[13] Mikhail Mikhailov and Craig E. Wills. Evaluating a New
Approach to Strong Web Cache Consistency with Snapshots
of Collected Content. In WWW2003, ACM, 2003.

[14] Inc Mindcraft. http://www.mindcraft.com/webstone.

[15] S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy,
J. Wu, and D. K. Panda. Supporting Strong Coherency for
Active Caches in Multi-Tier Data-Centers over InfiniBand.
Technical Report OSU-CISRC-11/03-TR65, The Ohio State
University, 2003.

[16] Hemal V. Shah, Dave B. Minturn, Annie Foong, Gary L.
McAlpine, Rajesh S. Madukkarumukumana, and Greg J.
Regnier. CSP: A Novel System Architecture for Scalable
Internet and Communication Services. In the Proceedings of
the 3rd USENIX Symposium on Internet Technologies and
Systems, pages pages 61–72, San Francisco, CA, March
2001.

[17] Weisong Shi, Eli Collins, and Vijay Karamcheti. Modeling
Object Characteristics of Dynamic Web Content. Special Is-
sue on scalable Internet services and architecture of Journal
of Parallel and Distributed Computing (JPDC), Sept. 2003.

[18] Mellanox Technologies. InfiniBand and TCP in the Data-
Center.

[19] Matt Welsh, David Culler, and Eric Brewer. SEDA: An Ar-
chitecture for Well-Conditioned, Scalable Internet Services.
In the Eighteenth Symposium on Operating Systems Princi-
ples (SOSP-18), Oct. 2001.

[20] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda.
PVFS over InfiniBand: Design and Performance Evaluation.
In the 2003 International Conference on Parallel Processing
(ICPP 03), Oct. 2003.

[21] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineer-
ing Web Cache Consistency. ACM Transactions on Internet
Technology, 2:3,, August. 2002.

[22] George Kingsley Zipf. Human Behavior and the Principle of
Least Effort. Addison-Wesley Press, 1949.

10

