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Abstract

Traditionally, operations with memory on other nodes
(remote memory) in cluster environments interconnected
with technologies like Gigabit Ethernet have been expen-
sive with latencies several magnitudes slower than local
memory accesses. Modern RDMA capable networks such
as InfiniBand and Quadrics provide low latency of a few
microseconds and high bandwidth of up to 10 Gbps. This
has significantly reduced the latency gap between access
to local memory and remote memory in modern clusters.
Remote idle memory can be exploited to reduce the mem-
ory pressure on individual nodes. This is akin to adding
an additional level in the memory hierarchy between lo-
cal memory and the disk, with potentially dramatic perfor-
mance improvements especially for memory intensive ap-
plications. In this paper, we take on the challenge to de-
sign a remote paging system for remote memory utilization
in InfiniBand clusters. We present the design and imple-
mentation of a high performance networking block device
(HPBD) over InfiniBand fabric, which serves as a swap de-
vice of kernel Virtual Memory (VM) system for efficient page
transfer to/from remote memory servers. Our experiments
show that using HPBD, quick sort performs only 1.45 times
slower than local memory system, and up to 21 times faster
than local disk. And our design is completely transparent to
user applications. To the best of our knowledge, it is the first
work of a remote pager design using InfiniBand for remote
memory utilization.

∗This research is supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506, and National Science Foundation’s grants #CCR-
0204429, and #CCR-0311542.

1 Introduction

According to Moore’s law, the computing power of mod-
ern CPUs doubles approximately every 18 months. Sim-
ilar trends apply to the capacity of modern memory and
disk systems. This allows modern systems to process large
amounts of data “in-memory” with an improved through-
put. It also enables developers to design and implement
algorithms previously considered impractical to exploit the
rich resources of these systems.

However, even with the dramatic increase in memory ca-
pacities, modern applications are quickly keeping pace with
and even exceeding the resources of these systems. For
example, modern databases typically maintain millions of
records. Keeping the working set in memory for database
transactions demands a high volume of memory space, and
could potentially strain memory resources. In these situ-
ations, modern systems with virtual memory management
start to swap memory regions to and from the disk. Swap-
ping to disk may severely impinge on the overall perfor-
mance for applications.

Modern networking technologies such as InfiniBand,
Myrinet and Quadrics [9, 17, 7] with their low-latency of
a few micro-seconds and high throughput of up to 10 Gbps,
especially the Remote Direct Memory Access (RDMA) op-
erations featuring low CPU utilization provide us a new
vision to utilize remote resources for local system perfor-
mance improvement. In this paper, we take on the challenge
to design a system that can utilize remote memory for local
memory hierarchy enhancement in InfiniBand based cluster
systems. We aim to achieve the following goals:

• Design a remote memory system exploiting the ef-
ficient low-latency high-bandwidth feature of Infini-
Band, which can deliver a comparable performance to
local memory system.
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• Evaluate the network performance impact on our re-
mote memory system.

• Enable applications to benefit from remote memory
transparently.

Some previous works have investigated methods to take
advantages of remote memory [1, 2, 4, 8, 11, 15]. In this
paper, we take the approach of remote memory paging to
improve system performance. There are several reasons for
this choice:

1. Remote paging automatically adds remote memory be-
tween main memory and disk in the local memory hi-
erarchy. Thus all the sophisticated caching techniques
evolved from the past for the memory hierarchy are
still in place for performance optimization.

2. Remote paging capability allows processes to take the
benefits of remote memory transparently.

3. Even though parallelizing applications is another way
to utilize cluster resources including memory re-
sources, it may not be an easy task to deliver best
performance for applications with mostly fine-grained
parallelism. Additionally, parallelization may not be
cost effective in some cases.

Remote paging provides an efficient way to boost appli-
cation performance in these cases. We implement our de-
sign of HPBD - an optimized remote pager using native In-
finiBand communication, and evaluate the performance us-
ing micro-benchmarks and applications. Our experiment re-
sults show that using HPBD, quick sort performs only 1.45
times slower than using abundant local memory, and up to
21 times faster than using local disk as the swap device.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 provides the relevant
background. Section 4 and 5 present the design and imple-
mentation of the remote memory pager. An experimental
evaluation of the remote memory pager is discussed in Sec-
tion 6. We conclude this paper in Section 7.

2 Related Work

Several works have studied the utilization of remote
memory in the context of cluster environment for differ-
ent purposes. we broadly differentiate these works by four
criteria: a) simulation or implementation based; b) global
resource management system or resource sharing tools; c)
user-level designs or kernel-level designs; and d) User-
Level Protocol(ULP) or TCP/IP based.

As shown in Table 1, the simulation based studies in-
clude “Job Migration and Network RAM” (JMNRM) [23],
“Parallel Network RAM” (PNR) [18] and “Cooperative

Caching” (COCA) [4]. In JMNRM and PNR, Xiao et al.
studied the impact of combining network memory and job
migration for system scalability and throughput improve-
ment, PNR is later proposed to utilize global memory for
parallel scientific programs. In COCA, Dahlin et al. studied
the performance benefits of cooperative file caching using
client memory, and evaluated several cooperative caching
algorithms using trace driven simulation.

Global 

Management

Kernel Level 

Design

TCP/IP 

Based ULP Based

COCA[4] Y N/A N/A N/A

PNR[17] Y N/A N/A N/A

JMNRM[24] Y N/A N/A N/A

NRAM[5] N N Y N

NRD[12] N Y Y N

RRMP[14] N Y Y N

MOSIX[3] Y Y Y N

GMM[7] Y Y Y(UDP) N

DoDo[10] Y N Y Y

HPBD N Y N Y

Simulation 

Based

Implementation 

Based

Table 1. Modern work in designing remote
memory system

Studies on MOSIX [3] and the Global Memory Manage-
ment (GMM) [8] address the problem of remote memory
utilization by cluster-wide resource management. Both are
based on kernel level implementation. MOSIX is a load
balancing system with transparent job migration. It uses a
memory ushering algorithm [2] to choose target nodes and
avoid disk swapping. GMM is a global memory system
for OSF/1 workstation clusters. It is designed as a kernel
module to function together with the node’s VM system,
page-out daemon and unified buffer cache. S. Koussih et al.
designed a run time system DoDo [11] to use remote mem-
ory from a user level perspective. It is implemented on top
of a U-NET [21] communication architecture and provide a
socket interface for portability.

Network RAM Disk (NRD) [13] and Reliable Remote
Memory Pager (RRMP) [15] focus on reliability studies of
remote memory utilization. E. Anderson and J. Neefe stud-
ied design issues of Network RAM and proposed a user-
level signal handling based implementation [5]. All these
three works are based on TCP/IP.

Another related work is GNBD/VIA [10], in which K.
Kim et. al. proposed a kernel level socket interface over
VIA KVIPL library for GNBD (A Network Block Device
for GFS [19]) to exploit the raw performance provided by
Virtual Interface Architecture(VIA) for file system perfor-
mance improvement. It focuses on matching communica-
tion semantics between socket and VIA design for file block
transfer.

Our work is different from the previous works in that we
focus on the study of network performance impact on re-
mote paging. We propose an optimized design to use the
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InfiniBand features such as RDMA operations and asyn-
chronous event handling, which can deliver a performance
comparable to local memory system. It is a kernel level de-
sign, and is completely transparent to user applications.

3. Background

3.1. InfiniBand Overview

The InfiniBand Architecture (IBA) [9] is an open spec-
ification designed for interconnecting compute nodes, I/O
nodes and devices in a system area network. It defines
a communication architecture from the switch-based net-
work fabric to transport layer communication interface for
inter-processor communication. In an InfiniBand network,
compute nodes are connected to the fabric by Host Channel
Adapters (HCA). HCA exposes a queue-pair based trans-
port layer interface to the hosts. The send queue keeps con-
trol information for outgoing messages, while the receive
queue keeps descriptions for incoming messages. Commu-
nication requests are submitted to the queues through de-
scriptors in a non-blocking fashion. Completion of requests
are reported through Completion Queues (CQs), which can
be shared among different queue pairs.

Communication over InfiniBand requires message
buffers to be registered with the OS. This allows message
delivery to application buffers directly withzero-copyalong
the communication path. This is a salient feature for mod-
ern interconnects which enables the high bandwidth low la-
tency capabilities of InfiniBand, especially for large mes-
sages. Yet for system memory management,zero-copy
can’t be exploited directly. Memory registration is based on
virtual memory addresses to pin down pages for DMA op-
erations with the HCA. While for remote memory exploita-
tion, pages needs to be swapped in/out to remote nodes.
Thus if we choose to use thezero-copyfeature for page
transfer, registration on-the-fly is needed. More details are
discussed in Section 4.1 for the trade-offs.

Two communication semantics are supported in IBA:
channel semantics with traditional send/receive operations
and memory semantics with RDMA operations. RDMA op-
erations allow one side of the communication parties to ex-
change information directly with the remote memory with-
out the involvement of the remote host. This enables better
computation and communication overlap, thus provide po-
tentials for performance improvements.

To meet the needs of QOS, several service levels are pro-
vided in InfiniBand, such as Reliable Connection based ser-
vice(RC), Unreliable Connection based service(UC), Re-
liable Datagram based service(RD), Unreliable Datagram
based service(UD) and RAW Datagram. To reduce the com-
plexity of reliability issues for paging requests, we focus on
RC in this paper.

InfiniBand supports IP emulation IPoIB. IP based ap-
plication can run directly over the same InfiniBand fabric.
Figure 1 shows the basic latency performance formemcpy,
RDMA write operation, IPoIB and GigE with data segment
of size up to 128K. It shows that RDMAWRITE latency
between two nodes is quite comparable to localmemcpyla-
tency. Thus using RDMA operations provides the potential
of significant performance improvement for remote paging.
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Figure 1. Latency Comparison of Different
Networks and Memcpy Up to 128K

3.2. Linux Swapping Mechanism

Paging is an important function of Linux virtual memory
system (VM). VM manages all physical memory resources.
When free pages available to VM fall below a threshold,
page-out requests are triggered by the kernel threadkswapd
to swap pages out to the back-store on swap devices. Page-
in requests are invoked on demand as page faults occur.
Multiple swap devices are supported by Linux kernel. Page-
out data are placed to these devices based on their priorities.
The device driver for each swap device serves the swap re-
quests as normal I/O requests and deals with device specific
operations. Thus, designing a block device driver which
supports I/O requests to/from remote nodes is a viable so-
lution for remote pager design. This mechanism puts re-
mote memory between local memory and local disk system
in the memory hierarchy with the caching mechanisms en-
abled at no additional costs. It is completely transparent to
applications, and can be beneficial to overall system perfor-
mance. In this paper, we use this approach to design a native
InfiniBand-capable network block device driver for remote
paging.
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3.3. Network Block Device

Network Block Device is a software emulation for lo-
cal block storage using remote resources at the block level.
The idea is to provide a local block level interface to upper
OS management layer, while allocate and deallocate remote
resources over network. It is widely used in file systems
for data storage such as in [19]. NBD [14] is a Linux im-
plementation of Network Block Device over TCP/IP using
kernel-level socket interface for network communication. It
is available in the Linux kernel source code.

As motivated by the network performance impact studies
on remote paging, we compare the performance of HPBD
with NBD. We activate NBD over GigE and IPoIB for our
experiments. As of Linux-2.4.18 kernel, a single NBD de-
vice can only be served by a single remote server. We note
that although we are able to use NBD as a swap device in
our experiment, deadlock is reported [14] because of mem-
ory allocation in TCP networking.

4. Proposed Design

In this section, we analyze the design issues and present
our design of HPBD.

4.1 Design Issues

• Kernel level vs. user level design:

To implement a remote pager, two general approaches
can be considered: a) kernel level design or b) user
level design. The kernel level approach of a device
driver design is introduced in Section 3.2. For user
level designs, the general idea is to implement a modi-
fied dynamic memory allocator for the run-time library
system and provide remote memory allocation capa-
bilities, such as [5, 11]. Although it is relatively easy
to implement, there are several inherent disadvantages
for a user level design: a) pages are still subject to disk
paging by the underlying OS; b) the memory protec-
tion mechanism as the basic implementation technique
involves high overhead; and c) user space design is not
completely application transparent and can only bene-
fit applications using the library.

With the device driver approach, we can avoid the
above problems. Additionally, portability across dif-
ferent platforms can be achieved with a kernel module
implementation. Classic kernel mechanisms for per-
formance optimization such as page replacement algo-
rithms are also in place. Figure 2 presents the system
architecture of our remote paging system.

• Memory registration and buffer management:

Kernel−Space

User−Space

HPBD

Fault

Page

Node 1
Page Fault

Local Disk

Network

SWAP DEVICE

Virtual Memory Manager

Apps
Node 2 Node 3

Thread
Server

Thread
Server

Figure 2. Remote Memory System Architec-
ture

As other high performance interconnects, InfiniBand
depends on Network Interface (NI) aware DMAable
buffers to implementzero-copydata transfer. It re-
quires that communication buffers must be registered
with the HCA before message passing can start.

As shown in Figure 3, memory registration operation is
a costly operation. Thus in most designs, applications
allocate a large memory buffer pool and pre-register
it, avoiding the repetitive registration cost on the crit-
ical path to minimize the overhead. This can be done
by a user application in a transparent way as in [12],
which implements amallochook to keep track of reg-
istered buffer entries, and cache registered buffers on
deallocation for future use. Though this method is vi-
able with user space application, it can’t be used for
remote paging. Paging requests can potentially come
from anywhere in the paged memory system. The
same physical page could be associated with differ-
ent virtual address between requests. Therefore, no
persistent address association exists to allow registered
page caching. While registration on-the-fly remains a
choice, it is very costly compared with copy cost as
shown in Figure 3, especially within the range of 4K -
127K where the page requests reside.

We design a pre-registered memory pool allocator, and
copy pages to/from this area for communication. For
most applications, the average page request size is
much smaller than 127K, thus the benefit of the copy-
ing solution is more significant.

• Asynchronous communication:

In a client-server architecture, the swapping process
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Figure 3. Memory Registration vs. Memcpy
Cost

sends out paging requests to remote memory server
and waits to be served. In user space InfiniBand
design, this can be accomplished by simply polling
the completion queue(CQ). With a kernel based ap-
proach, it is not practical as most OSes are not pre-
emptive in kernel mode(Linux is not preemptive until
2.5 version). Asynchronous communication must be
supported in this scenario. At the server side, asyn-
chronous mode can also significantly decrease the host
CPU usage.

• Thread safety:

As a device driver, HPBD client is a shared resource,
thread safety must be ensured. Since we take advan-
tage of the thread safety feature of VAPI [16], the verb
interface provided by our InfiniBand stack, our focus
will be mainly on exclusion of the internal device data
structures, such as internal request queues and buffer
management primitives.

• Reliability and error handling:

Reliability is an important issue for swap device de-
sign. Failure in page handling can adversely impact
system stability and even crash the system. We choose
RC service as our network transport, it excludes most
of the reliability issues from network and message sig-
nature is used to validate requests and responses. In
[6] and [13], other reliability techniques such as mir-
roring and parity are studied. These issues are out of
the scope of this paper.

4.2. Designing HPBD

HPBD is based on client-server architecture, as shown in
Figure 2. It serves the kernel’s paging requests by commu-
nicating with remote memory servers using native Infini-
Band communication verbs. The client is a block device
driver, which serves I/O requests stream from the VM sys-
tem by sending requests to the remote memory servers. The
server is a RamDisk based user space program, which pro-
vides it own local memory for paging store and push/pull
pages from client using RDMA operations.

4.2.1 RDMA Operations and Remote Server Design

In HPBD, there are two types of messages: control mes-
sage and data message. Control messages are used to send
page requests and acknowledge request completions. Data
messages are for actual page transfers. In our design, we
use both RDMA read and RDMA write operations for data
message traffic. The remote memory server decides the type
of RDMA operations based on the request type. As shown
in Figure 4, RDMA read operation is used for swap-out pag-
ing requests to pull data out of the client, and RDMA write
operation for swap-in requests to push data into client. By
allowing multiple outstanding RDMA operations, RDMA
and memcpyoverlap is supported, which improves server
side CPU utilization.

Figure 4. RDMA Design for Remote Memory
Server

We choose to make the server initiate the RDMA opera-
tion for several reasons:

In our current design, RamDisk is used as a memory
provider. Since RamDisk is exposed by a file system in-
terface, we can’t directly obtain the memory address of the
server for the client to initiate RDMA operations.
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Second, with this architecture the server can potentially
provide any device attached for page store instead of using
main memory only, thus more flexibility is allowed for fu-
ture work.

Third, as we plan to provide a more flexible server de-
sign, which can provide idle memory dynamically. For sim-
ilar reasons discussed in Section 4.1, pre-registration is not
a feasible here. Thus, the server can’t export memory ad-
dress as a priori for client initiated RDMA operations.

4.2.2 Registration Buffer Pool Management

Registration buffer pool is a pre-registered memory area for
data message transfer. It is initialized at device load time
with a default pool size of 1MB. Memory buffers are allo-
cated from the pool by a first-fit algorithm.

Buffer allocation failure must be carefully dealt with,
since swap request failure will potentially crash applications
or even the entire system. A memory allocation wait queue
is used to accommodate the allocation requests that can not
be filled temporarily. Deallocation of data buffers will wake
up any threads that is in the queue.

One problem with the allocation algorithm is external
fragmentation of the registration buffer pool. This can cause
lots of the complexities in the implementation, and may
cause multiplememcpyoperations for a single request, thus
negatively impact our system’s performance. To solve the
problem, a merging algorithm is used at buffer deallocation
time. The algorithm checks with neighbor regions of the
current buffer and merges with them if they are free. This
algorithm ensures contiguous buffer allocation for page re-
quests. Its simplicity incurs little overhead.

4.2.3 Event Based Asynchronous Communication

The client side performs asynchronous communication us-
ing two threads. One thread is in charge of sending requests
to servers as soon as they are issued by the kernel. The
other thread is in charge of receiving replies from servers.
The receiver works in a bursty manner. It sleeps until a re-
ceive completion event is triggered. When it wakes up, it
processes all the replies that are available and goes back to
sleep for the next event. By this way, the overhead of repet-
itive event triggering for clustered replies is avoided.

The server works in a similar way. It processes requests
and issues RDMA operations asynchronously. When all
outstanding RDMA operations and replies are completed,
the server goes to sleep after idling for 200µsec.

4.2.4 Flow Control

The user-level networking[21] idea of InfiniBand requires
pre-posted receive buffers for control messages. This intro-

duces the problem of flow control, which is not an issue for
TCP based design for its stream semantics.

Here we use a water-mark to represent available receive
buffer credits. A client is allowed to send requests to servers
only if the outstanding request number is less than a thresh-
old (which means the water-mark is above it). If water-mark
falls below, requests will be queued until credits are avail-
able.

4.2.5 Multiple Server Support

Multiple server support allows multiple nodes to export
their memory for page store demands. It also enables a
larger address space for the client that can be accommo-
dated in the remote memory level of its memory hierarchy.

In multiple servers scenario, load balancing is a new de-
sign issue. Data striping and request multiplexing are tra-
ditional ways to exploit parallelism. In our case, it could
potentially be used to reduce the impact of copy cost at the
server side. But the 128K bound of a single request size lim-
its the benefit of such parallelism, as for a single outstand-
ing RDMA operation, multiplememcpycan be completed
with the overlap capability provided. Also because of the
high bandwidth feature of InfiniBand, splitting a single re-
quest to multiple ones may offset the benefit as well. Thus
we choose non-striping scheme in our design, and distribute
the swap area across the servers in a blocking pattern.

5. Implementation

In this section, we discuss the implementation details of
the HPBD client driver and the server program.

In the HPBD client driver, we associate each minor de-
vice an IBA context, which contains the IBA communica-
tion specific information, such as HCA information, com-
pletion queue, shared registered memory pool and queue
pair arrays. The completion queues are shared among queue
pairs connecting different servers. A socket interface is cre-
ated at the initialization phase for queue pair information
exchange. Each device maintains a request queue, which
contains the outstanding requests to servers. A single re-
quest in the queue may represent multiple physical requests
to different servers depending on the address range and
size of the request. A request is successfully served when
each physical request is replied with successful acknowl-
edgment.

To implement the event based asynchronous han-
dling of replies, an event handler is associated with
the receive completion queue using the VAPI interface
EVAPI set compeventh. The handler, when invoked, can
wake up the reply processing kernel thread. To support this
mechanism, the server needs to set the solicitation control
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field of the send descriptor, thus the HCA driver at the client
can execute the correspondent handler.

The mutual exclusion of accesses to request queue
and pre-registered memory pool are ensured using locking
mechanisms.

The server is a typical daemon program. It is able to
serve multiple clients using different swap areas. For each
server process, receive queue is checked periodically for re-
quests. The requests are served by manipulating RamDisk
based files and RDMA operations. RDMA operation com-
pletions are checked asynchronously to supportmemcpy
overlap. Finally, a timer is used to count the server idle
time. The server yields the CPU after idling for 200µsec, a
similar VAPI interface described above is used to wake up
the server and notify the new incoming requests.

6. Performance Experiments and Evaluation

6.1. Experiment Setup

The experiments are conducted on a cluster of dual Intel
Xeon 2.66 GHz nodes. Each node has 512 KB L2 cache,
2GB physical memory and PCI-X 133 MHz bus. All nodes
are connected to InfiniBand network using Mellanox 144-
port switch (MTS 14400) and Mellanox MT23108 HCA.
Each node has a 40GB ST340014A ATA/ATAPI-6 hard
disk. The operating system is RedHat 9.0 Linux.

To compare the performance impact of remote paging
with local memory performance and study the impact of
network performance on remote paging, we change the total
local memory size available to the OS and vary the swap-
ping devices.

Two testing scenarios are used in our evaluation. In
each scenario, we test with “enough” local memory, swap-
ping over HPBD, NBD and local disk. We use the perfor-
mance of applications running “in-memory” as the baseline
for evaluation. For NBD, only one server case is reported,
since as of Linux-2.4 kernel, a single NBD device can only
be served by a single remote server directly.

For both test scenarios, we use all of the 2GB memory
physically available for local memory performance test.

• Single server test swap area setup

In this scenario, we set the local memory size as
512MB and 1GB RamDisk at remote server as swap
area. We use this setup both for micro-benchmark and
application benchmarks.

• Multiple server test swap area setup

We use this scenario for application benchmark tests,
we set the local memory size as 512MB. For sin-
gle application execution instance, the 512MB total
swap area is evenly distributed among the servers; for

multiple application execution instances, each memory
server is configured with 512MB swap area.

We use 3 different test programs. One is a micro-
benchmark “testswap”, which allocates a 1GB array and se-
quentially write integers into this array. Second is an imple-
mentation of a quick-sort algorithm[20], which sorts 256M
random generated integers, whose data set is around 1GB
on our IA-32 platform as well. We choose this application,
because quick-sorting is a frequently used algorithm for var-
ious applications. Improvements for sorting over HPBD
may provide a ground for benefits of other applications. An-
other application is “Barnes”, which is an application in the
Stanford SPLASH-2 suite [22]. It implements the Barnes-
Hut method to simulate the interaction of a system of bod-
ies. We simulate the interaction between 2097152 bodies.
For this configuration, the memory usage of this applica-
tion incrementally increases with a largest size of 516MB
observed. For each of the tests, we run these applications
multiple times and report the average performance number.

6.2 Micro-benchmark Performance Results

As shown in Figure 5, the execution time of testswap in
local memory is around 5.8 seconds; HPBD is 8.4 seconds.
Thus local memory is only 1.45 times faster than HPBD,
while HPBD is 2.2 times faster than the disk. At the same
time HPBD performs 1.45 times better than GigE, and 1.29
times better than IPoIB.
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Figure 5. Testswap Execution Time

These results show that network performance has a sig-
nificant impact on the remote pager and that as network
speed approaches what the memory system can deliver, the
host overhead along the path for swapping becomes an im-
portant performance factor. The performance improvement
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of HPBD over IPoIB by 1.29 times shows that simply us-
ing TCP/IP protocol over high performance network can not
benefit from the low latency feature efficiently. And TCP/IP
stack processing becomes an important overhead on the crit-
ical path.
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Since NBD-IPoIB and NBD-GigE follow identical code
path above the IP protocol layer, and according to our pro-
filing for “testswap” shown in Figure 6, “testswap” involves
mostly with messages around 120K. By applying Amdahl’s
law, we find out that network overhead is about 48% percent
of the overhead of GigE and only 34.5% for IPoIB.

We can not make a direct comparison with HPBD us-
ing Amdahl’s law, because: a) HPBD does not go through
the TCP/IP stack, which means the host overhead for net-
work processing is less; b) HPBD does some optimization
to overlap the copy overhead and the RDMA time at the
server side, while NBD simply uses blocking mode transfer
for each request and response. Due to the asynchrony of
different components in the system, such as page prefetch-
ing and flushing, an accurate measurement of the network
latency on the critical path is not possible without thorough
analysis of the swapping mechanism of the kernel and each
run case, which is beyond the scope of this paper. But a
rough estimate with Amdahl’s law would show that with
HPBD, the network cost is less than 30%, thus host over-
head is more dominant for the performance.

6.3 Application Performance Results

In this section, we present the performance result for ap-
plication tests.

6.3.1 Single Server Performance
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For quick sort test, as shown in Figure 7, local memory
execution time is 94 seconds, while HPBD delivers 138 sec-
onds. Thus memory is only 1.47 times faster than HPBD,
and HPBD is 4.5 times faster than local disk. Among dif-
ferent remote pagers, HPBD is 1.36 times faster than NBD
GigE and 1.13 times faster than IPoIB.

For Barnes shown in Figure 8, similar trends are ob-
served. Since Barnes does not perform an intensive swap-
ping activity as quick sort for its relatively small memory
usage, the improvement is less evident.
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Figure 8. Barnes Execution Time

6.3.2 Multiple Server Performance

Multiple server support allows applications to take advan-
tages of more idle memory from multiple servers. This is

8



important when memory resources are scarce on a compute
node and contention is intensive. Figure 9 shows the case,
where two quick sort applications sorting 256M integers re-
spectively are run on a single node in a dual processor sys-
tem, thus CPU contention is not an issue. It shows that with
HPBD, both applications are able to give reasonable perfor-
mance compared with the 2GB local memory case. When
50% of local memory is available, HPBD performs only 1.7
times slower, when only 25% of local memory is available,
HPBD performs 2.5 times slower. While with only disk
paging, the execution time is tremendously high, which is
36 times of local memory case.
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Figure 9. Quick Sort Execution Time for Two
Concurrent Execution Instances

Dealing with multiple servers involves some extra over-
head to maintain multiple connections. Figure 10 presents
the execution time up to 16 servers for quick sort. The num-
ber shows HPBD performs similarly up to 8 servers. For 16
nodes server there is some degradation. This is due to the
HCA design for multiple queue pair processing.

7. Conclusion and Future Work

In this paper, we study the design issues involved
in utilizing remote memory in InfiniBand based high-
performance clusters. We take the approach of remote
memory paging to enhance local memory hierarchy, and an-
alyze the pros and cons between a kernel level design and a
user level design. We propose HPBD, a high performance
network block device for InfiniBand networks and imple-
ment it as a kernel module for Linux 2.4. Our experiment
results show that using HPBD for remote paging, quick sort
runs only 1.45 times slower than local memory system, and
up to 21 times faster than swapping using local disk. We
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Figure 10. Quick Sort Execution Time With
Multiple Servers

also identify that host overhead is a key issue for further
performance improvement for remote paging over high per-
formance interconnects clusters.

In our future work, we plan to investigate ways of mini-
mizing host overhead on the swapping critical path and en-
able HPBD to utilize cluster wise idle memory in a dynamic
and cooperative manner. We also intend to investigate de-
signs that can eliminate copy cost and fully utilize thezero-
copyfeature of RDMA operations.
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