
DESIGNING EFFICIENT INTER-CLUSTER COMMUNICATION
LAYER FOR DISTRIBUTED COMPUTING

A Thesis

Presented in Partial Fulfillment of the Requirements for

the Degree Master of Science in the

Graduate School of The Ohio State University

By

Vijay Kota, B.Tech, PGDM

* * * * *

The Ohio State University
2001

Master’s Examination Committee:
 Approved by
Dr. Dhabaleswar K. Panda, Adviser

Dr. P. Sadayappan
 Adviser

Department of Computer and Information Science

 ii

ABSTRACT

User-level network interface protocols such as GM, FM, VIA have become

increasingly popular to achieve low latency in cluster computing. However,

communication with most of these protocols is restricted to a System Area Network

(SAN) and the wide area interconnectivity of clusters remains under-explored. In

spite of demonstrably superior performance due to features like zero-copy and OS

bypassing, these protocols haven’t been deployed in a wide-area context. Distributed

programming models such as CORBA, Legion, I-WAY, Legion etc. still rely on

traditional WAN protocols like TCP despite its inherent overheads. In this thesis, we

explore the design space for inter-cluster communication models based on existing

SAN protocols and identify several design issues that need to addressed such as end-

to-end reliability, message fragmentation, protocol conversion, routing policy,

addressing issues and support for multi-point connections.

We design, develop and implement Inter-Cluster GM (ICGM) - an experimental

deployment of the GM messaging system in an inter-cluster environment. In

particular, we describe how nodes lying in separate clusters could exchange messages

using gateway nodes. Such an environment promises potential for applications

written on top of GM to be directly ported to geographically distributed clusters

 iii

without any additional middleware layer. This will allow applications to take

advantage of high performance intra-cluster communication as well as harnessing the

computing power from distributed clusters.

Extensive performance evalution of ICGM vis-à-vis the corresponding sockets

implementation has been performed. The ICGM implementation has been shown to

deliver latency benefits of around 45 us for message sizes upto 1K using Fast/Gigabit

Ethernet in the wide-area. Over Gigabit Ethernet, ICGM delivers a peak bandwidth of

23 Mbytes/s – a 15% improvement over TCP. Our experiments with MPICH and

Gigabit Ethernet have demonstrated latency and bandwidth benefits of 120 us and 11

Mbytes/s respectively.

 iv

DEDICATION

Dedicated to my family

 v

ACKNOWLEDGMENTS

I wish to thank my adviser, Dr. Dhabaleswar Panda, for his support and guidance

during the course of my research. I am also grateful to Dr. P. Sadayappan and Dr.

Pete Wycoff of the OSC for helping me in ironing out a lot of technical difficulties.

I also wish to thank Darius Buntinas, Abhishek Gulati, Jiuxing Liu and Igor Grobman

from the NOWLab for their help on issues concerning GM and TCP.

I am indebted to my friends Ajay Joshi, Mandar Joshi, Prashant Nikam, Sidharth

Kapileshwar, Ramesh Jagannathan, Praveen Holenarsipur, Nagasuresh Reddy,

Prakash Krishnamurthy and Nikhil Chandhok for their support during the course of

my studies at OSU.

 vi

VITA

August 31, 1973 .…………………… Born – Kotipalli, INDIA

1994 ………………………………… B.Tech, Electronics & Communication Engg.,

 I.I.T, Madras, INDIA

1995 – 1997.………………………… P.G.D.M, I.I.M, Lucknow, INDIA

FIELDS OF STUDY

Major Field: Computer and Information Science

 vii

TABLE OF CONTENTS

ABSTRACT .. i

DEDICATION.. iv

ACKNOWLEDGMENTS ..v

VITA..vi

LIST OF FIGURES ... ix

1 INTRODUCTION..1

1.1 Goal ...1
1.2 Motivation ...1
1.3 Outline of Thesis ...4

2 ISSUES IN INTER-CLUSTER COMMUNICATIONS.......................................5

2.1 End-to-end Reliability ...7
2.2 Message Fragmentation and Reassembly ...10
2.3 Protocol Conversion..11
2.4 Routing Policy...11
2.5 Addressing...12
2.6 Multi-point Connections ...12
2.7 Conclusion...13

3 OVERVIEW OF GM...14

3.1 Message-passing in GM ..14
3.2 Sending messages..16
3.3 Receiving messages...17

4 IMPLEMENTATION OF ICGM...20

4.1 Basic Concept..20
4.2 A Detailed Example of ICGM usage ..21
4.3 ICGM Design Choices ..23
4.4 Data Structure Changes ...24
4.5 MCP Software Changes ..27
4.6 Gateway software outline..28

5 PERFORMANCE EVALUATION ..31

5.1 Experimental Testbed and Setup...32
5.2 Latency Results ...34

5.2.1 Latency Results over Fast Ethernet ...35

 viii

5.2.2 Latency Results over Gigabit Ethernet..36
5.2.3 MPICH latency over Gigabit Ethernet ..37

5.3 Bandwidth Results...38
5.3.1 Bandwidth Results over Fast Ethernet ..38
5.3.2 Bandwidth Results over Gigabit Ethernet ...39
5.3.3 MPICH bandwidth over Gigabit Ethernet...40

5.4 ICGM overhead...41
5.4.1 Latency for intra-cluster messages ..42
5.4.2 Bandwidth for intra-cluster messages ...43
5.4.3 MPICH-GM vs MPICH-ICGM ..44

5.5 NAS Parallel Benchmarks...45
5.6 Conclusions ...48

6 RELATED WORK ..50

6.1 Virtual Machine Interface ...50
6.2 The PacketWay Specification ...51
6.3 MPICH/Madeleine ..52
6.4 MPI/Pro ...52

7 CONCLUSIONS AND FUTURE WORK ...54

7.1 Summary ...54
7.2 Future Work ..55

BIBLIOGRAPHY ...56

 ix

LIST OF FIGURES

Figure 1.1 An example of inter-cluster communication using SAN protocols3

Figure 2.1. Clusters communicating using gateways : P1 and P3 represent

protocols used within the clusters. P2 denotes a protocol used over

the wide area. The gray circles represent gateway nodes....................6

Figure 2.2 : Piece-wise acks: The numbers indicate the sequence of operations.

Data exchanges are shown by solid lines and dotted lines represent

acks. ...8

Figure 2.3 : Chained acks ..9

Figure 3.1 : End-to-end communications in GM. Ports represent the end-points

and the dotted lines represent logical connections15

Figure 3.2 : Steps involved in sending messages with GM.................................17

Figure 3.3 : Steps involved in receiving messages in GM18

Figure 4.1 : Inter-cluster and Intra-cluster communication with ICGM21

Figure 4.2: ICGM Packet Header format ..25

Figure 4.3 : Changes to the GM send token structure are shown in bold27

Figure 4.4 : Pseudocode of software running on the gateway nodes29

Figure 5.1 : Experimental setup for comparative performance evaluation34

Figure 5.2 : Comparison of latency over Fast Ethernet.......................................35

Figure 5.3 : Comparison of latency on Gigabit Ethernet36

 x

Figure 5.4 : Comparison of MPICH latency ...37

Figure 5.5 : Comparison of bandwidth on Fast Ethernet39

Figure 5.6 : Comparison of bandwidth on Gigabit Ethernet40

Figure 5.7 : Comparison of MPICH bandwidth ..41

Figure 5.8 : Latency overhead...42

Figure 5.9 : ICGM bandwidth overhead ...43

Figure 5.10 : MPICH latency overhead...44

Figure 5.11 : MPICH bandwidth overhead ...45

Figure 5.12 : Performance of NPB applications across the cluster using ICGM

and Sockets implementations. ...46

Figure 5.13 : Performance of NPB applications within a single cluster using GM

and TCP...48

 1

CHAPTER 1

INTRODUCTION

1.1 Goal

In this work we propose an inter-cluster communication scheme based on existing

System Area Network (SAN) protocols. The objective is to provide low-latency and

high-bandwidth communication across clusters using wide-area interconnects thus

allowing truly distributed computing over the wide-area. We modify a user-level

protocol to provide inter-cluster communication facilities in a transparent manner in

order to avoid recoding of existing applications that wish to exploit this feature.

1.2 Motivation

Developments in high-speed network technologies and low-overhead communication

protocols have led to increasing acceptance of networks of workstations (or simply

clusters) in many high-performance distributed computing environments. Cluster

computing is increasingly becoming a viable alternative to massively parallel

processor architectures (MPPs) with the availability of gigabit-per-second networking

technologies such as Gigabit Ethernet [1] and Myrinet [2]. The inherent overheads of

 2

general-purpose wide-area protocols such as TCP/IP [3] have encouraged research in

development of user-level networking protocols such as FM [4], GM [5] and VIA [6].

However, distributed computing over the wide-area has not received an equal amount

of attention. Most of the work on cluster computing has been limited to

communication within a single cluster of workstations. Thus, application

programmers have not been able to harness the computing power of geographically

distributed clusters. Notable efforts in truly distributed computing include distributed

programming models such as CORBA, Legion [7] and other general remote method

invocation systems. Other wide-area computing scenarios have been tried out using

the I-WAY [8] software environment and the Globus meta-computing toolkit [9].

Our work tries to explore issues involved in adding wide-area capabilities to existing

user-level network protocols. In general, applications that require frequent but not

intense communication would benefit from our work. Secondly, distributed

computing on clusters is not limited to geographically separated clusters. A single

organization may have multiple clusters sharing a physical facility for administrative

reasons. They may have to be separated due to heterogeneous hardware or the

administration might want to separate them on the basis of cost centers. Physical

space constraints may force the use of multiple rooms too distant to use short-haul

network cables. In this scenario, using TCP-based multi-protocol communication

systems such as PBS or Condor would involve additional overhead financially –

providing wide-area connections at all the computing nodes – and administratively –

assigning an IP address to each computing node. Moreover, an organization cannot

 3

use private IP spaces for security or convenience. This is another area where we

believe the work described in this thesis could have a significant impact.

Figure 1.1 An example of inter-cluster communication using SAN protocols

As shown in Figure 1.1, we accomplish communication across clusters through the

use of dedicated “gateway” nodes – with hardware for connecting to the cluster as

well as the wide-area. In the above figure, P1 and P3 are SAN protocols that have

wide-area features e.g. modified versions of GM, VIA etc. P2 is a traditional WAN

protocol such as TCP and is used by the gateways for forwarding inter-cluster traffic.

SAN 1 SAN 2

Gateways

P2

Receiver

P1 P3
Sender

P1 P3

P1,P3 – GM,VIA, FM etc. P2 – TCP, UDP, ATM etc.

 4

1.3 Outline of Thesis

The rest of this thesis is organized as follows: Chapter 2 discusses the design issues

involved in developing inter-cluster communication protocols. Chapter 3 provides

some background information on the GM message passing system. The specifics of

the ICGM implementation are discussed at length in Chapter 4. In an effort to

quantify the contribution made by ICGM, several performance evaluations have been

conducted and the results of these experiments are presented in Chapter 5. We discuss

related work on inter-cluster communications in Chapter 6 and highlight how our

work differs from these efforts. Chapter 7 summarizes our experiences with this

project and identifies areas for future work related to ICGM.

 5

CHAPTER 2

ISSUES IN INTER-CLUSTER COMMUNICATIONS

Several design issues need to be addressed when extending communications to

include nodes outside the cluster. This can be attributed to the fact that different

protocols are used within a cluster and over the WAN. The following discussion of

design issues will assume the inter-cluster communication scheme shown in Figure

2.1. The figure shows two System Area Networks (SANs) which are connected by a

non-SAN technology. Designated nodes, henceforth referred to as “gateway” nodes

form the end-points of this inter-cluster connection. For convenience, we shall use

some protocol aliases for the rest of this chapter. P1 refers to the user-level protocol

that is used for communication within the sender’s cluster. P2 refers to the protocol

used over the WAN connection. P3 (which could be same as P1) refers to the SAN

protocol used within the receiver’s cluster. P1 and P3 are low-latency, high-

bandwidth user-level protocols like GM, VIA etc. on top of high-performance inter-

connects like Myrinet. P2 is a traditional WAN protocol like TCP/IP or UDP/IP

which can be used over a variety of networking technologies like Fast Ethernet,

ATM, Gigabit Ethernet etc. The gateway software needs to be carefully designed

 6

after taking into consideration the various issues that might arise due to such

differences in protocols. Another factor that complicates the gateway software design

is the various link speeds within and between clusters. A detailed discussion of these

design issues follows in the sections below. We also propose design alternatives for

prospective implementers.

Figure 2.1. Clusters communicating using gateways : P1 and P3 represent protocols

used within the clusters. P2 denotes a protocol used over the wide area. The gray

circles represent gateway nodes.

P1 P3

P2
Receiver Sender

 7

2.1 End-to-end Reliability

Most user-level network interface protocols provide the user application with reliable,

ordered delivery of messages using acknowledgements (ACKs and NACKs) and

timeout mechanisms. Protocols like VIA leave this as an option for the user to

exercise. Any inter-cluster communication scheme should preserve the original

semantics of the user level protocol. Otherwise, the application would have to

distinguish between traffic within the cluster and outside the cluster. This would

mean loss of transparency to the user application. There are two alternatives for

implementing the acknowledgement scheme:

Piece-wise acknowledgments : In this scheme, no changes are made to the current

acknowledgment mechanisms used by P1 and P3 for intra-cluster communications.

This implies that as soon as the sender’s gateway receives a message from the sender,

the sender is acknowledged. Thus the sender assumes that the packet has reached the

final destination. As long as P2 provides reliable, ordered delivery between the

gateways, this poses no problem in terms of retransmission of packets or in-order

delivery. Again, reliable and ordered delivery over the final hop between the

receiver’s gateway and the receiver is ensured by P3. This process is

diagrammatically shown in Figure 2.2. The sequence numbers indicate the temporal

ordering of the messages and acknowledgments.

 8

 1 3 5

 2 4 6

Figure 2.2 : Piece-wise acks: The numbers indicate the sequence of operations. Data

exchanges are shown by solid lines and dotted lines represent acks.

Chained acknowledgements : Per this scheme, the acknowledgement mechanism of

P1 is modified such that the sender’s gateway does not immediately acknowledge a

message received from the sender. Instead, it awaits a special message from the

receiver’s gateway stating that the receiver has actually received the message. When

this message is received by forwarder process at the gateway, it is passed down to the

protocol layer of P1 which then sends out an acknowledgement to the sender. Figure

2.3 depicts this and the solid lines, dashed lines and sequence numbers have the same

meaning as before.

Sender Gateway Gateway Receiver

 9

 1 2 3

 6 5 4

Figure 2.3 : Chained acks

Ideally, the latter scheme of chained acknowledgements seems a more appropriate

design choice because it preserves the semantics of reliable transmission. A sender is

acknowledged only after the message has reached the final destination. However,

there is a price attached to this scheme. Many user-level protocols use “registered”

memory for send and receive operations to ensure DMA transfers from the user space

to NIC memory without kernel intervention and swap outs. Since there is a limit on

the amount of memory that can be registered, these buffers can be reused only after

acknowledgements are received. Thus, using chained acknowledgements delays

buffer reuse and might cause blocking in the send/receive processes due to lack of

available registered buffers. The chained acknowledgement scheme also requires

significant changes to the protocol software.

While the piece-wise acknowledgement scheme does not have the above drawbacks,

it does suffer from the disadvantage of not being able to notify a sender about failures

on subsequent hops. In practice, however, most distributed programs (including

Sender Receiver Gateway Gateway

 10

MPICH/GM) do not check for NACKs. A NACK causes an abort of the entire

parallel process and is considered sufficiently rare and fatal. So, this semantic change

would affect only those few programs that do handle node or link failures gracefully.

A compromise between the two schemes would be to make software changes to

support either scheme and subsequently allow the user to choose the appropriate

scheme while configuring the protocol software.

2.2 Message Fragmentation and Reassembly

Packet-based protocols typically split up large messages into more manageable

chunks using the Message Transfer Unit (MTU). Large messages are fragmented at

the sender side while recording the appropriate information in the packet header. The

protocol stack at the receiver is responsible for reassembling these fragments before

passing it on to the application process. Unless proper care is exercised while

designing the gateway software, mixing various protocols could cause loss of

important header information. One option is to retain the fragmentation and

reassembly scheme used by P1 which means that the fragments are reassembled at the

sender gateway before they are forwarded by the gateway process. But this would be

wasteful since the gateway has to wait for all the fragments that belong to a large

message before it can be forwarded. This approach is sub-optimal given that each

fragment has sufficient information to initiate the forwarding process. A better

alternative is to pipeline the computation and the communication. The protocol

software at the gateway could be modified not to reassemble the fragments, but

instead pass them on the gateway software at the upper layer. The reassembly of the

fragments is thus postponed till all of them are received at the final destination.

 11

2.3 Protocol Conversion

Using several protocols on various hops can complicate matters if some of these are

packet-based and the others are stream-based. Consider a scenario where P1 and P3

are packet-based and P2 is a stream-based protocol like TCP. P1 would encode all the

source-destination information in the packet header but P2 does not respect packet

boundaries. Thus, P2 might send only a portion of a large packet if its send buffers

cannot accommodate the entire packet. Alternatively, it could try optimizing

bandwidth by transmitting several small packets in a single data stream – potentially

mixing up disparate data flows. In this case, the gateway at the receiving end needs to

have some means of distinguishing between the various packets. Even if all the

protocols use packets, the implementor still needs to take care of the differences

between the packet formats of each protocol.

2.4 Routing Policy

To support inter-cluster communication, the routing policy used by P1 needs to be

modified. Many SAN protocols store point-to-point routes and rely on the NIC to

make routing decisions. One alternative for routing in such a scenario would be to

store the routes for all possible source-destination pairs and leave the routing modules

of the protocol intact. However, this is very expensive because the routing tables are

usually maintained in expensive SRAM on the NIC and maintaining point-to-point

routing information for even a few medium-sized clusters would easily exhaust this

memory. Moreover, this is not a scalable design choice. With increasing number of

nodes and/or clusters, the routing tables would soon become unwieldy. The increased

size would also have an adverse effect on the memory requirements and latency. An

 12

alternative is to modify the routing module of the protocol software to make

forwarding decisions depending on the target node. Thus, P1 would need

modifications to distinguish between local and remote nodes and identify the gateway

required for the communication. The challenge is to design a routing policy that is

scalable without having an adverse effect on the performance of intra-cluster

communications.

2.5 Addressing

Since the routing policy depends on the manner in which addresses are assigned to

the hosts, the addressing scheme has to be chosen carefully to avoid conflicts. This

may not be very easy – especially if the clusters involved in the communication are

under different administrative domains. One alternative is to use a global address

space under the control of a single authority and requiring each participating cluster

to register with this entity to get a range of unique node ids. Another option is to let

each cluster have its own addressing scheme and add a proxy mechanism to the

gateway software. Virtual addresses could be used for nodes outside the cluster and

the gateways would take care of translating these to the actual addresses used on the

remote cluster. This also needs development of a protocol between the gateways to

agree on the virtual addresses to be used.

2.6 Multi-point Connections

Some user-level protocols assume point-to-point connections between

communicating nodes. Depending on how the protocol software sets up the data

structures, a connection might be identified by the physical end-points instead of the

source-destination pair. In such cases, introducing the gateway in the communications

 13

path would complicate issues. For instance, a node that needs to communicate to

more than one remote node might need to use the same gateway for all the data flows.

As a result, the implementer has to introduce some mechanism for the gateway to be

able to distinguish between the multiple data flows across the same connection. This

would necessitate changes to the data structures – for instance, to maintain state

information per logical connection (identified by sender-receiver) rather than a

physical connection.

2.7 Conclusion

As discussed in the preceding subsections, the usage of heterogeneous protocols in a

wide-area context presents several challenges for the implementor. In Chapter 4, we

revisit these issues and provide a detailed description of the design choices made in

our implementation. Where applicable, we also discuss the motivation to choose one

design alternative over another.

 14

CHAPTER 3

OVERVIEW OF GM

GM is a message-based communication system over Myrinet which is a gigabit-per-

second interconnect technology increasingly deployed in many clusters [5]. Like

many user-level network protocols, GM’s design objectives include low CPU

overhead, portability, low latency and high bandwidth. In achieving these objectives,

GM takes advantage of the Myrinet Network Interface Card (NIC). The Myrinet NIC

is “intelligent” in the sense that it has on-board SRAM and a processor (called

LANai) which executes a monitor program called the Myrinet Control Program

(MCP). The MCP is loaded into the NIC memory by the driver (bundled with GM)

and the MCP then handles all communications over the Myrinet interface thus

bypassing the operating system and the host CPU.

3.1 Message-passing in GM

GM provides reliable, ordered delivery between communication endpoints with two

levels of priority. The communication endpoint is called a port and is associated with

a host node. All communications are “connectionless” and the sender builds a

message alongwith the receiver’s node id and port number. GM maintains reliable

 15

connections between each pair of hosts in the network and multiplexes the traffic

between ports over these connections. Figure 3.1 shows the resulting reliable logical

connections – the dotted lines – between peer processes as well as processes

belonging to different hosts. Sends and receives in GM are regulated by implicit

tokens which represent space allocated to the client in various internal GM queues.

Figure 3.1 : End-to-end communications in GM. Ports represent the end-points and

the dotted lines represent logical connections

Port

Port

Host Host

Port

Process
Port

Process

 16

3.2 Sending messages

A user process that wishes to send a message needs to issue a gm_send() primitive.

This results in a send descriptor being written to a send queue maintained in LANai

memory. Figure 3.2 illustrates this process. Among other fields, the send descriptor

contains the destination node, destination port and a pointer to the message buffer.

The send state machine in the MCP polls the send queue for outgoing messages. On

finding a pending send descriptor, the MCP constructs a GM “packet” and initiates a

DMA to transfer the data to be sent. The sender process needs to ensure that the pages

containing the data are not swapped out in the midst of a DMA by “pinning” the

memory via a gm_register_memory() primitive. The sender is also responsible for not

reusing the data buffer before the send is complete. The sender can optionally specify

a completion handler for each send. Since all sends are regulated by tokens, it is the

responsibility of the sender process to ensure the availability of a token before

attempting a send. The send completion handler helps the sender in keeping track of

the send tokens and recycling registered buffers.

 17

gm_send_with_callback(…,ptr,size,…);

Figure 3.2 : Steps involved in sending messages with GM

3.3 Receiving messages

Receiving messages in GM is again regulated by receive tokens. A receive token

represents a buffer in user space where the MCP can DMA a message received from

the network. The list of receive tokens is maintained in LANai memory and stores the

size and priority of expected messages. It should be noted that a priori information

about all possible combinations of size and priorities is assumed. As in the case of

sending, the receive buffers should be registered as well to allow uninterrupted DMA

Send State
Machine

Send Queue

Receive Event Queue

User Virtual Memory

LANai Memory

Sent Packet

 18

of message data from LANai buffers to user memory. Figure 3.3 shows the sequence

of events during message receipt.

gm_provide_receive_buffer(…,ptr,…)
………
gm_receive(…)

Figure 3.3 : Steps involved in receiving messages in GM

Upon receiving a message from the network, the MCP checks if a matching receive

token is available. If so, it initiates a DMA of message data and creates a receive

Receive Queue
User Virtual Memory

LANai Memory

Receive Buffer Pool

Receive State
Machine

Incoming Packet

 19

descriptor – essentially a data structure with sender information and pointers to

message data – which is also DMAed to a receive queue in user space. Finally, the

MCP queues an acknowledgment to be sent to the sender. If a matching receive token

was not found, the MCP discards the message and queues a negative

acknowledgment to the sender to indicate failure of receipt. The receiver process

polls for events in its receive queue to check for availability of data.

 20

CHAPTER 4

IMPLEMENTATION OF ICGM

While GM satisfies the original design objectives of low-latency and high-bandwidth

over Myrinet, it also requires each host to be physically connected to every other host

it wants to communicate with. As a result, developers interested in truly distributed

computing are forced to either recode the applications written in GM to use

traditional WAN protocols or use additional layers of software to dynamically choose

from a variety of available protocols. Our work on ICGM attempts to address this

issue by extending the scope of the GM communication model to allow nodes

residing in different clusters to communicate.

4.1 Basic Concept

In our implementation, we modify the MCP to make forwarding decisions based on

the target node. Each cluster has dedicated nodes called “gateway” nodes which are

connected to gateways of other clusters using standard WAN interconnects like ATM,

Fast Ethernet etc. All inter-cluster traffic is routed through these gateways which have

daemon processes running on them to take care of forwarding. The gateway software

 21

at the application level closely interacts with changes at the MCP level to achieve

forwarding over the wide area.

4.2 A Detailed Example of ICGM usage

The following example illustrates the role played by ICGM in the critical path of

communication. Figure 4.1 depicts a typical inter-cluster communication scenario.

Figure 4.1 : Inter-cluster and Intra-cluster communication with ICGM

MCP

N3

G2

MCP

MCP

N2

Myrinet
Cluster 1

Myrinet
Cluster 2

Fast Ethernet
MCP

MCP

TCP Header

 N1 G1

 GM Header ICGM fields User Data

 22

In the above figure, sender N1 attempts to send messages to receiver N2 that lies in a

different cluster and receiver N3 which lies in the same cluster. Clusters 1 and 2 use

ICGM over Myrinet internally and are interconnected by a Fast Ethernet link. The

gateway nodes for each cluster are represented by G1 and G2, respectively. In the

case of intra-cluster communication between N1 and N3 – shown in the figure by a

gray arrow - ICGM decides that the destination lies in the same cluster. It then

constructs a GM packet and prepends a source route to it before sending it out on the

Myrinet link. The case of inter-cluster communication between N1 and N2 –

represented by black arrows - is more interesting. A message sent from N1 to N2

undergoes the following additional processing:

• The MCP on N1 decides that N2 lies on a different cluster and hence needs

forwarding. It constructs an ICGM packet – which uses a new packet type for

demultiplexing and contains additional header fields used in subsequent hops. It

then source routes it to the gateway required to reach N2 (G1 in this case).

• The MCP on G1 receives the ICGM packet and DMAs the data to the buffer

allocated by the forwarder process on G1.

• The forwarder process on G1 polls for incoming packets using the gm_receive()

primitive. When it finds a packet that has been received, it forwards it across the

non-Myrinet link to the gateway responsible for the receiver’s cluster. Our current

implementation establishes a TCP connection between the two gateways and uses

socket calls to read/write data.

 23

• The forwarder process on G2 polls for incoming data over the non-Myrinet link.

Upon receiving some data, it issues a gm_send() primitive to deliver the message

to the actual destination.

• The MCP on G2 constructs an ICGM packet and source routes it to N2.

• The MCP on N2 receives the packet. It uses the fields in the ICGM packet header

to identify the original sender and constructs an appropriate receive descriptor

before the message data and the receive descriptor are DMAd to the receiving

process’ memory.

4.3 ICGM Design Choices

The most important consideration while designing ICGM was an appropriate protocol

over the wide-area. Since GM provides reliable ordered delivery, we felt that the

changes to ICGM could be simplified by using a reliable protocol like TCP between

the gateways. Our implementation takes advantage of the reliable transport layer of

TCP and enforces end-to-end reliability through the piece-wise acknowledgement

scheme thus optimizing the reuse of registered buffers. Message fragmentation in

ICGM is handled using delayed reassembly of fragments as described earlier. Fields

were added to the ICGM packet header to identify fragments and the MCP was

modified to reassemble these fragments only at the final destination. The entire

process is transparent to the user processes while allowing pipelining. For routing, we

made minor changes to the routing module to implement forwarding. Every GM

cluster has a “mapper” node that dynamically keeps track of the routes within the

cluster and shares this information with the other nodes in the cluster. Thus ICGM did

not require any extra code to make the nodes aware of the cluster topology. Assuming

 24

a simple addressing scheme like contiguous address spaces (eg: Nodes 1 thru 64 in

cluster 1; nodes 65 thru 100 in cluster 2 etc.) , the forwarding logic can be coded with

a few instructions without significantly increasing the latency on the critical path. The

current version of ICGM uses hardcoded gateway ids and future versions should

allow more flexible routing.

The ICGM implementation involved modifications to GM at the MCP level as well as

development of gateway software which runs on the gateway nodes. While the MCP

is executed by the LANai processor, the gateway software runs like any other

application program making use of the send and receive primitives provided by the

GM API and the sockets library.

4.4 Data Structure Changes

Among the most important changes to the GM data structures is the modification of

the GM packet header format. ICGM relies on a new type of GM packet – henceforth

referred to as the ICGM packet. This is very similar to the original GM packet except

that we use a new value for the packet type field in the header to distinguish it from

the GM packets carrying intra-cluster data. The ICGM packet header also contains

additional fields to aid in demultiplexing. Figure 4.2 shows the structure of the ICGM

packet header. The fields in gray represent the fields that are not present in GM

packets. These fields are available to the gateway software to make routing decisions.

 25

Figure 4.2: ICGM Packet Header format

The packet type is used by GM to identify valid GM packets. The packet subtype is

used to distinguish between various packets such as data packets, ACKs, NACKs, etc.

In the case of data packets, this field also stores the fragmentation information when a

large message is split up into smaller packets. The node id fields are used to uniquely

identify the hosts while the subport field is used to differentiate between disparate

simultaneous connections on a single host. The sequence number is used in

implementing GM’s “go back N” protocol for reliable transmission. The length and

checksum fields are self-explanatory.

Packet type Packet subtype
Target Node Id Sender Node Id

Sequence Number

Length
Target
subport

Id

Sender
subport

Id
Header checksum (optional)

IP checksum
(optional)

Reserved
(optional)

Source Node Id Destination Node
Id

Source
subport

Id

Destination
subport Id Length

Packet subtype Unused

 26

The sender and target fields correspond to the physically-connected end-points in the

current hop of the communication whereas the source and destination fields

correspond to the original sender of the information and the final destination of the

message. For instance, in Figure 4.1, the first hop from N1 to G1 would have sender

and source values set to N1; target value set to G1 and destination value set to N2.

Similarly, when the ICGM packet is on its final hop from G2 to N2, the sender value

is set to G2; the target and destination values are set to N2 and the source value stays

at N1. The length field is repeated so that the receiver gateway can reconstruct a GM

packet from an incoming TCP byte stream. It should be noted that the fields that are a

part of the original GM packet header format are stripped off before delivery to the

application layer. An alternative to making fairly complex changes to the MCP to

modify this behaviour, is to include the relevant information alongwith the packet

data. The packet subtype field is required since fragments are not reassembled at the

gateway but are instead forwarded to the destination which then uses this field to

reassemble the message.

Another data structure that was changed for ICGM was the send token. The send

token is used to store all the information passed by the user by invoking a gm_send()

primitive and this information is used for retransmissions if any. We added the

destination information to the send token as shown in Figure 4.3. The bold fields in

the figure represent our additions to the original structure.

 27

typedef union gm_send_token {

.

.

struct gm_st_reliable {

gm_send_token_lp_t next;

GM_SEND_TOKEN_TYPE_8 (type);

gm_s8_t size;

gm_u16_t target_subport_id;

gm_u32_t send_len;

gm_subport_lp_t subport;

gm_up_t orig_ptr;

gm_up_t send_ptr;

gm_u16_t dest_node_id;

gm_u16_t dest_subport_id;

} reliable;

.

.

}

gm_send_token_t;

Figure 4.3 : Changes to the GM send token structure are shown in bold

All the changes described in this subsection were made in the file include/gm_types.h

of the GM software distribution.

4.5 MCP Software Changes

All send and receive logic in the GM MCP is governed by four state machines –

SEND, SDMA, RECV and RDMA. The respective source files are mcp/gm_send.h,

 28

mcp/gm_sdma.h, mcp/gm_recv.h and mcp/gm_rdma.h. The ICGM implementation

required changes to the following modules:

gm_sdma.h

• Modify the handler that polls for sends. Upon finding a send event, the handler

checks if forwarding is needed and if so, populates the destination fields in the

send event structure

• Change the SHORTCUT macro as well as send and resend logic in the SDMA

handler to construct ICGM packets when inter-cluster communication is needed

gm_rdma.h

• Manipulate packet subtype at gateways to bypass reassembly of fragments

• Modify the RDMA handler to offset the DMAs by the overhead introduced by the

ICGM packet type

• Use the extra ICGM fields at the final destination to populate the receive event

structure (used by the application program) to reflect the identity of the original

sender and not the receiver’s gateway

gm_recv.h

• Add ICGM packet type to the list of valid packet types expected by the MCP

4.6 Gateway software outline

The gateway process runs in user virtual memory and is not very different from a

typical GM client application. The only difference is that it also uses the Sockets API

to handle communication over the non-Myrinet link. Figure 4.4 lists the pseudocode

for the gateway software.

 29

while (true) // Run forever

e = gm_receive() // Poll for packets on Myrinet

if (e->type = GM_RECV_EVENT) // Got an ICGM packet

Read destination information from first few bytes

Choose appropriate gateway

write(e->buffer, e->len) on corresponding socket

gm_provide_receive_buffer (e->buffer) // Allow buffer reuse

endif

/* # of TCP connections = # of non-Myrinet links */

for each TCP connection

tcplen = read(tcpbuffer) // Non-blocking read

if(tcplen > 0) // some data has been received

 entire_buffer_processed = false

while (entire_buffer_processed = false)

 Read length from header fields

 if(length <= remaining portion of tcpbuffer)

/* Header fields have destination information */

gm_send(dest_id,dest_port,length)

 else // wait for the entire packet

 save the partial GM packet

 entire_buffer_processed = true

endif

Advance pointer in tcpbuffer // Chk for other ICGM packets

Set entire_buffer_processed if done

endwhile

endif

endfor

endwhile

Figure 4.4 : Pseudocode of software running on the gateway nodes

 30

It should be noted that the GM receive() calls and the Socket read() calls are non-

blocking to allow the gateway to process data from other interfaces. From the

structure of the gateway code, one can observe that all operations are serialized.

Ideally, the gateway should be running as multiple threads with one thread per

interface over which data is expected. In this case, we could have used blocking

receive primitives. However, current versions of GM do not allow a thread-safe

programming model and hence the gateway process runs in a monolithic fashion.

Despite this, we are able to obtain reasonable performance as can be gathered from

the experimental results shown in the next chapter.

 31

CHAPTER 5

PERFORMANCE EVALUATION

During the ICGM implementation, numerous tests were run to check for protocol

correctness and to ensure that there is no deviation from the semantics of the original

GM protocol. However, correctness is not sufficient to allow researchers to exploit

the wide-area computing capabilities of ICGM. It is desirable that ICGM offers better

performance in comparison to the existing wide-area models of inter-cluster

communication. To this end, several experiments were conducted to quantify how

ICGM fares relative to the current practices in distributed computing. Currently,

applications that perform distributed computing over the wide-area communicate use

sockets over TCP at the transport layer and thus it was a natural choice for a reference

benchmark. In the rest of this chapter, we describe the results of our experiments and

try to weigh the pros and cons of ICGM. In particular, we ran test GM applications to

measure the round-trip latency and the bandwidth offered by ICGM and compared

these with the corresponding figures for test applications written using sockets.

Moreover, we also had test applications written using MPICH [10]. MPICH is

 32

quickly becoming the de-facto platform for development of high-performance

distributed applications. This means that an application developer is more likely to

use the MPICH API in the development process than coding with the low-level GM

or sockets primitives. Hence, it is our opinion that it would be worthwhile to measure

exactly how much of the benefits – if any – at the ICGM layer are passed on to the

higher layers of MPICH and applications written using MPICH. For this purpose, we

used test applications written using MPICH-GM as well as MPICH on sockets and

compared the performance. We also ran the NAS parallel benchmarks [23] on the two

versions of MPICH for comparative evaluation. Finally, we checked if the ICGM

logic added too much overhead for the case of intra-cluster communication or not.

5.1 Experimental Testbed and Setup

The results presented here were obtained using a cluster of PCs. All the PCs are 300

MHz Pentium II processor nodes and have 100 MHz system bus. Each node has 128

MB of SDRAM, 16 KB of L1 data cache, 16 KB of L2 instruction cache and 512 KB

of L2 data cache. Each node has a 33 MHz/32-bit PCI bus and runs the Linux 2.2.5-

15 operating system. All the nodes had Myrinet NICs running LANai version 7.

Every node has a Fast Ethernet card and a Gigabit Ethernet card. On the software

front, we used GM 1.1.3, MPICH-GM 1.2..3 and NPB 2.3 [23] for our testing

purposes. MPICH-GM 1.2..3 ships with a default switch-point – the message size at

which it crosses over from an “eager” protocol to “rendezvous” protocol – of 16K.

Our initial tests with GM and ICGM showed a drop in MPICH bandwidth at 16K due

to this switch. This was affecting our analysis of effects – if any - of ICGM and/or

gateway software overheads for message sizes greater than 16K. Hence, we modified

 33

the above cutoff to 32K. For the “p4” device used in sockets communications, we

also increased the TCP send and receiver socket buffer sizes to 4 GB to make optimal

use of the higher bandwidths provided by Gigabit Ethernet.

The above cluster was used to simulate two clusters by logically grouping the PCs

into different clusters by assigning a unique block of node ids to each “cluster”. One

PC from each cluster was then used as a gateway node and the gateway software was

installed on these. The sender and receiver nodes communicate with their respective

gateways using ICGM over Myrinet while the gateways communicate with each other

using socket calls over the Ethernet interfaces. Thus, each data path consists of 3 hops

– the first and the last over Myrinet and the middle one over non-Myrinet. For a fair

comparison, all IP traffic from the sender node to receiver node was also forced

through three hops so that TCP applications on either the sender or receiver node also

go through two hops of Myrinet and one hop of non-Myrinet in between. To achieve

this, IP forwarding was turned on at the gateway nodes and the routing tables at the

sender and receiver were updated with static routes passing through the gateway.

Figure 5.1 shows the set up for the experiments. It is our belief that this represents a

fairly common inter-cluster configuration - namely two Myrinet clusters connected by

Fast Ethernet/ Gigabit Ethernet links.

 34

ICGM Experimental Setup

Sockets Experimental Setup

Figure 5.1 : Experimental setup for comparative performance evaluation

5.2 Latency Results

In the latency experiments, we determine message latency to be one half of the

measured round-trip time taken by a packet from the sender to the receiver. The test

application on the sender node starts a timer; sends a message to a receiver

application running on the receiver and awaits a reply. Upon receipt of this message,

 ICGM

 Myrinet

GM
send app

Sender
Gateway

Receiver
Gateway

GM
receive app

 ICGM

 Myrinet

TCP Fast/Gigabit
Ethernet

Socket
send app

IP
Router

TCP Fast/Gigabit
Ethernet

 TCP

 Myrinet

IP
Router

GM
receive app

 TCP

 Myrinet

 35

the receiver replies using the same message. When this reply reaches the sender, it

stops the timer and repeats this process a number of times and finally averages the

time taken over the number of runs. The latency is then determined to be one-half of

this average. This “pingpong” test is then repeated for varying message sizes (from 64

bytes to 1K in increments of 64 bytes). The pingpong tests for latency were run using

both 100 Mbps Fast Ethernet and 1 Gbps Gigabit Ethernet on the second hop.

5.2.1 Latency Results over Fast Ethernet

In Figure 5.2, we compare the latency results for the ICGM pingpong application and

the TCP pingpong application. From the figure, it can be seen that ICGM has lower

Latency on Fast Ethernet

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600 700 800 900 1000 1100
Message size (bytes)

L
at

en
cy

 (
u

s)

ICGM TCP

Figure 5.2 : Comparison of latency over Fast Ethernet

 36

latency than TCP for message sizes upto 1K. ICGM latency is about 45 microseconds

lower than the TCP latency for the same message size.

5.2.2 Latency Results over Gigabit Ethernet

Performance of the pingpong applications using Gigabit Ethernet as the cluster

interconnect are shown in Figure 5.3. ICGM again performs better than TCP though

the latency difference is slightly lower (40 microseconds on the average) as compared

to the Fast Ethernet case.

Latency on Gigabit Ethernet

100
120
140
160
180
200
220
240
260
280
300

0 100 200 300 400 500 600 700 800 900 1000 1100
Message size (bytes)

L
at

en
cy

 (
u

s)

ICGM TCP

Figure 5.3 : Comparison of latency on Gigabit Ethernet

 37

5.2.3 MPICH latency over Gigabit Ethernet

The performance of MPICH over ICGM relative to MPICH over sockets was

compared using Gigabit Ethernet on the middle hop. Figure 5.4 demonstrates that

MPICH over ICGM shows significant improvement in latency over the sockets

implementation of MPICH. MPICH-ICGM reduces latency by about 120

microseconds.

MPICH Latency

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000 1100
Message size (bytes)

L
at

en
cy

 (
u

s)

MPICH/ICGM MPICH/Sockets

Figure 5.4 : Comparison of MPICH latency

 38

5.3 Bandwidth Results

The bandwidth applications measure the portion of raw bandwidth that is available at

the application level. In our test application for bandwidth, the sender starts a timer

and pumps several messages for a given message size and waits for an

acknowledgment from the receiver. When the receiver’s acknowledgment is received

by the sender, the timer is stopped. The bandwidth is then measured using the

message size and the duration between the start of data transmission and receipt of

acknowledgment after adjusting for the time taken to send the acknowledgment itself

- using the values obtained from the latency experiments. This test is conducted for

messages ranging in size from 200 to 20000 bytes. The results of the bandwidth tests

are presented below.

5.3.1 Bandwidth Results over Fast Ethernet

In Figure 5.5, we compare the performance of the ICGM bandwidth application

against the TCP application using a Fast Ethernet interconnect. It can be observed that

ICGM slightly outperforms TCP for most of the message sizes. Both ICGM and TCP

peak at around 11 Mbytes/sec which is reasonable given the fact the raw bandwidth

on Fast Ethernet is only 100 Mbps.

 39

Bandwidth on Fast Ethernet

4

5

6

7

8

9

10

11

12

0 4000 8000 12000 16000 20000
Message size (bytes)

B
an

d
w

id
th

 (
M

b
yt

es
/s

)

ICGM TCP

Figure 5.5 : Comparison of bandwidth on Fast Ethernet

5.3.2 Bandwidth Results over Gigabit Ethernet

The bandwidth measurements were also taken using Gigabit Ethernet at the datalink

layer. Our belief was that this would help us identify the bottlenecks – if any – in the

gateway software, other than those due to the inherent limitations of TCP. From

Figure 5.6, we find that ICGM performs much better than TCP especially at large

message sizes. ICGM delivers a peak bandwidth of around 23 Mbytes/sec while TCP

peaks at slightly higher than 20 Mbytes/sec.

 40

Bandwidth on Gigabit Ethernet

6

8

10

12

14

16

18

20

22

24

0 4000 8000 12000 16000 20000
Message size (bytes)

B
an

d
w

id
th

 (
M

b
yt

es
/s

)

ICGM TCP

Figure 5.6 : Comparison of bandwidth on Gigabit Ethernet

5.3.3 MPICH bandwidth over Gigabit Ethernet

As in the latency experiments, we try to ensure that the benefits at the ICGM layer are

reflected at the higher layers. Test bandwidth applications were written for MPICH

over ICGM as well as the sockets implementation of MPICH. As shown in Figure

5.7, the MPICH implementation on ICGM again outperforms its counterpart over

sockets. MPICH-ICGM delivers a peak bandwidth of about 23 Mbytes/sec against a

peak bandwidth of 12 Mbytes/sec using the sockets implementation of MPICH.

 41

MPICH Bandwidth

0

5

10

15

20

0 4000 8000 12000 16000 20000
Message size (bytes)

B
an

d
w

id
th

 (
M

b
yt

es
/s

)

MPICH/ICGM MPICH/Sockets

Figure 5.7 : Comparison of MPICH bandwidth

5.4 ICGM overhead

In the ICGM implementation we also need to ensure that the common case of intra-

cluster communication does not suffer due to the changes at the MCP level. It is vital

that ICGM does not add too much overhead to the critical path of message

transmission when the message does not require any forwarding. To observe the

effects of the MCP changes on intra-cluster communications, we compared the

performance of test applications with the original GM layer and that obtained using

the ICGM layer.

 42

5.4.1 Latency for intra-cluster messages

Figure 5.8 shows the effect of ICGM on the latency for intra-cluster messages. As

expected, there is a slight overhead associated with ICGM due to the additional

checks. However, this difference is not very significant and is limited to 1-3

microseconds.

Intra-cluster Latency

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900 1000 1100
Message size (bytes)

L
at

en
cy

 (
u

s)

GM ICGM(Intra)

Figure 5.8 : Latency overhead

 43

5.4.2 Bandwidth for intra-cluster messages

The bandwidth for messages within a cluster is measured for ICGM and GM. The

results are shown in Figure 5.9. ICGM bandwidth shows more variability than GM

for lower message sizes but delivers higher bandwidth as the message size increases.

The reason for the variability can be attributed to changes in the GM fragmentation

scheme. GM tries to split a large message into roughly equal chunks that would fit

within the MTU of 4K. This explains the saw-toothed shape of the plots at roughly

4K intervals. At these points, additional overhead is incurred for the extra DMA for a

new packet. In the ICGM implementation however, we modified the default

fragmentation scheme by just splitting a message into chunks of 4K. The reason was

Intra-cluster Bandwidth

0

10

20

30

40

50

60

70

80

90

0 4000 8000 12000 16000 20000
Message size (bytes)

B
an

d
w

id
th

 (
M

b
yt

es
/s

)

GM ICGM(intra)

Figure 5.9 : ICGM bandwidth overhead

 44

that our preliminary tests for the inter-cluster case showed better bandwidth with this

scheme. Probably, a hybrid scheme would deliver smoother bandwidth for intra-

cluster messages.

5.4.3 MPICH-GM vs MPICH-ICGM

MPICH performance is not adversely affected for intra-cluster traffic as can be seen

from the Figure 5.10 and Figure 5.11. The latency is slightly higher in the ICGM case

around 2 microseconds) while the bandwidth is almost the same for GM and ICGM.

MPICH Intra-cluster Latency

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000 1100
Message size (bytes)

L
at

en
cy

 (
u

s)

MPICH/GM MPICH/ICGM(intra)

Figure 5.10 : MPICH latency overhead

 45

Intra-cluster Bandwidth

0

10

20

30

40

50

60

70

0 4000 8000 12000 16000 20000
Message size (bytes)

B
an

d
w

id
th

 (
M

b
yt

es
/s

)

MPICH/GM MPICH/ICGM(intra)

Figure 5.11 : MPICH bandwidth overhead

5.5 NAS Parallel Benchmarks

Applications from the NAS parallel benchmark (NPB) were used to test the

performance of ICGM. The purpose of using the NPB suite was two-fold. Firstly, we

wanted to test whether the benefits at the MPICH layer are passed on to the upper

layers. Secondly, we wanted to test how the gateway software responds to multiple

data flows. We ran the NPB suite using a 4-node configuration as well as an 8-node

configuration. It should be noted that the 8-node figures for SP and BT are not

available since these applications require the number of nodes to be a perfect square.

 46

The experimental setups are the same as those for the MPICH tests – two Myrinet

clusters interconnected by Gigabit Ethernet.

For the inter-cluster test case, we chose half the nodes from one cluster and the other

half from the other cluster. The results of running the NPB applications are shown in

Figure 5.12. The suffix indicates the number of nodes used for the run.

NPB Inter-cluster (4 and 8 nodes)

0

150

300

450

600

750

900

1050

1200

1350

1500

CG IS EP MG LU SP BT
Application

T
im

e
(s

ec
o

n
d

s)

ICGM-4 Sockets-4 ICGM-8 Sockets-8

Figure 5.12 : Performance of NPB applications across the cluster using ICGM and

Sockets implementations.

 47

The results indicate that ICGM performs as well or better than the Sockets

implementation for CG, IS, SP and BT. The percentage reduction in execution time

with ICGM for the 4-node case is 8%, 28%, 6% and 2% for CG, IS, SP and BT

respectively. In case of EP, there is a slight increase (< 1%) in execution time using

ICGM. When MG is run with a 4-node configuration, ICGM takes almost 85% longer

than Sockets. However, when 8 nodes are used, ICGM reduces the execution time by

6%. For the LU application, Sockets performs consistently better than ICGM which

takes almost twice as long to execute.

To analyse the reason for ICGM’s poor performance in the case of MG and LU, we

ran “intra-cluster” tests to study the behaviour of the NPB applications over

unmodified GM. Thus, the intra-cluster results – shown in Figure 5.13 – compare the

performance of GM vis-à-vis TCP. It should be noted that all traffic is inside the

cluster and the source and destination are separated by a single Myrinet hop. GM

performs better than TCP for CG, IS, SP and BT with percentage benefits of 14%,

43%, 7% and 2% with 4-nodes. The 8-node execution times for CG and IS are

respectively 15% and 50% lower for GM. In the case of EP, there is a very slight

difference (< 1%) between the times obtained with the two implementations. MG

over 4-nodes takes one-and-a-half times as long as TCP. However, MG over GM

performs better with 8-nodes reducing the execution time by 12%. TCP significantly

reduces the execution time for LU (by nearly 50%) for the 4-node as well as 8-node

configurations.

 48

NPB Intra-cluster (4 and 8 nodes)

0

150

300

450

600

750

900

1050

1200

1350

1500

CG IS EP MG LU SP BT
Application

T
im

e
(s

ec
o

n
d

s)

GM-4 TCP-4 GM-8 TCP-8

Figure 5.13 : Performance of NPB applications within a single cluster using GM and

TCP

From the above results, we can conclude that for applications that do benefit from

GM - CG, IS, EP, SP and BT- the ICGM implementation delivers equal or better

performance than the equivalent Sockets implementation. We have also established

that the poor performance with MG and LU is not related to the ICGM

implementation.

5.6 Conclusions

The experimental results discussed above indicate that ICGM delivers better

performance than TCP in general in latency as well as bandwidth. For raw

 49

applications written over ICGM or Sockets, ICGM reduces the latency by around 45

us on Fast and Gigabit Ethernet. The delivered bandwidth is also higher with ICGM

especially over Gigabit Ethernet where we realize a benefit of about 3 Mbytes/s. Test

applications written over MPICH and using Gigabit Ethernet in the wide-area also

benefit in terms of latency – around 120 us lower with ICGM – and bandwidth – a

gain of almost 11 Mbytes/s. We also demonstrate that the common case of intra-

cluster communication does not incur a performance penalty due to the forwarding

logic incorporated in ICGM. Comparative tests with the NPB suite also show that

ICGM is able to pass on the performance gains from using GM to the application

layer. Depending on the application and number of computing nodes, ICGM delivers

2%-50% reduction in execution time.

 50

CHAPTER 6

RELATED WORK

In this chapter, we discuss related efforts in the domain of inter-cluster

communication models that rely on existing user-level protocols. For each approach,

we highlight the conceptual differences relative to our approach. We also indicate ,

where applicable, similarities in the approaches. A description of the various

approaches is presented below.

6.1 Virtual Machine Interface

Virtual Machine Interface (VMI) is a high level messaging library developed by

members of NCSA’s cluster computing group. A recent effort at NCSA [12] attempts

to address the issue of inter-cluster communication through the design of a gateway

protocol called the Exterior Gateway Protocol. A project was undertaken to augment

the VMI [13] library to support communications across clusters. VMI is intended to

support multiple underlying communication protocols (shared memory, Sockets etc.)

while providing a uniform API to application programmers. The VIA-based Exterior

Gateway Protocol allows nodes belonging to different clusters to communicate by

 51

interfacing with a gateway interconnecting the two clusters. The project also involves

development of a load balancing strategy when multiple gateways can service a

particular connection. The gateway in this case is a multi-homed host lying on both

the clusters. Thus this approach is significantly different from our approach wherein

gateway nodes lying on separate clusters communicate with each other using a

traditional WAN protocol like TCP/IP. Moreover, the ICGM implementation does not

require programmers to rewrite their code using a VMI middleware.

6.2 The PacketWay Specification

In 1997, there were attempts to develop an inter-networking protocol specifically for

System Area Networks (SANs) and high-performance LANs. The PacketWay

protocol [14], [15] is an open family of specifications intended to inter-network high-

performance computing clusters. The inter-cluster communication model presented is

very similar to the one we have implemented i.e. a dedicated node on each SAN is

responsible for the communication (called a “router” in PacketWay) and the routers

can be interconnected using a non-SAN technology. PacketWay is much more

general than ICGM in the sense that the communication endpoints can be physical

entities (a processor, a smart memory board etc.) or logical entities (e.g. a group of

cooperating processes). Apart from the traditional IP-like forwarding [24],

PacketWay allows for source routing affording high-speed communications. The

Secure PacketWay specification also provides for secure communications over

untrusted networks. Though the Packetway specification seems to be well thought-

out and promises significant benefits to distributed computing, to the best of our

 52

knowledge, there are no actual implementations available for current generation

networks and user-level protocols.

6.3 MPICH/Madeleine

A slightly different approach to supporting heterogeneous communications has been

adopted at ENS Lyon, France [16]. Instead of attacking the problem at the protocol

level, this project aims at handling heterogeneity at the higher layer of MPICH.

MPICH is a very popular implementation of MPI and in this project, MPICH was

modified to support multi-protocol features. This implementation of MPICH is based

on the Madeleine [17] communication library. A new device has been added to

MPICH that can handle various underlying protocols – currently supported ones are

TCP, SISCI and BIP. However, one limitation with the current implementation is the

inability to forward packets across heterogeneous networks, i.e., all the

communicating nodes have to be connected pair-wise which implies that each host

needs to have appropriate hardware (an Ethernet card for instance) and an IP address.

This is a significant difference as compared to our work wherein we try to use WAN

interconnects to provide transparent inter-cluster access and avoid the expense of

requiring a WAN connection on every node.

6.4 MPI/Pro

MPI Software Technology (MSTI) has developed a scalable, robust MPI 1.2

implementation called MPI/Pro [18] which is capable of handling multiple devices

simultaneously. The MPI/Pro library allows parallel applications to run jobs across

multiple clusters. Nodes within a cluster communicate using high-performance user-

level protocols and inter-cluster communication is supported by using TCP/IP. This

 53

approach is similar to the MPICH/Madeleine implementation described earlier.

Again, each node needs to have an IP address and a network interface that supports

IP. Thus, unlike ICGM, MPI/Pro cannot support private IP spaces for security or

administrative convenience.

 54

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary

In this thesis, we have discussed the motivation for the development of wide-area

capable versions of user-level network protocols. We discussed the various design

issues involved in the development of such protocols. In particular, we described our

experiences with the development of ICGM – a version of Myricom’s GM messaging

system with inter-cluster communication capabilities.

In earlier chapters, we discussed the implementation details of ICGM. We have also

performed comparative evaluations of ICGM against Sockets-based implementations.

We could demonstrate experimentally that at the expense of slight overhead for intra-

cluster communications, ICGM is able to outperform Sockets in latency as well as

bandwidth. For message sizes of 1024 bytes and less, ICGM saves about 45 us using

either Fast Ethernet or Gigabit Ethernet links between the clusters. In the bandwidth

tests, both ICGM and Sockets deliver near-peak bandwidths of 11 Mbytes/sec on Fast

Ethernet and on Gigabit Ethernet, ICGM delivers around 3 Mbytes/sec more than the

equivalent Sockets implementation. Our experiments with MPICH show marked

 55

improvements using ICGM. MPICH/ICGM offers latency benefits of about 120 us

and exceeds MPICH/Sockets by around 11 Mbytes/sec in bandwidth. Experiments

with the NAS parallel benchmarks indicate that applications like CG, IS, SP and BT

that show better performance with GM can take advantage of lower execution times

with ICGM as well. Performance benefits with ICGM range from 2%-50% depending

on the application and the number of processing nodes.

7.2 Future Work

One of the areas in the current implementation of ICGM that can be improved is

routing. Currently, the gateway node ids have been hardcoded and thus the gateway

nodes are fixed at compile-time. However, this approach is not very flexible and the

MCP should be changed to extract the information from a configuration file instead.

The performance evaluation described in earlier chapters compared the performance

of ICGM to that of TCP. This is not very realistic given that application programmers

are more likely to use higher-level APIs rather than coding in GM or Sockets. An

actual inter-cluster scenario currently would have the application program sitting atop

a layer of MPICH which in turn runs over a middleware that dynamically uses either

the Myrinet device or the sockets device. Thus, a more accurate evaluation would be

to compare the performance of ICGM with a software suite such as MPI/Pro. This

would also give an insight into overheads associated with middleware layers.

In Section 2.1, we indicated that users should be able to configure ICGM with either

the piecewise acknowledgement scheme or the chained acknowledgement scheme.

The current implementation of ICGM uses only piecewise acks and it might be

worthwhile to provide this option.

 56

BIBLIOGRAPHY

[1] R. Scheifert. Gigabit Ethernet. Addison-Wesley, 1998.

[2] N.J. Boden, D. Cohen et al. Myrinet: A Gigabit-per-Second Local Area Network
IEEE Micro, Feb 1995.

[3] A. Barak, I. Gilderman and I. Metrik. Performance of the communication layers
of TCP/IP with the Myrinet gigabit LAN. Computer Communications, Vol. 22,
1999.

[4] Scott Pakin, Vijay Karamcheti, and Andrew A. Chien. Fast Messages: Efficient,
portable communication for workstation clusters and MPPs. IEEE Concurrency,
April-June 1997.

[5] Generic Messages Documentation. http://www.myri.com/GM/doc/gm_toc.html

[6] Virtual Interface Architecture Specification. http://www.viarch.org

[7] The Legion Project. http://legion.virginia.edu

[8] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-
WAY: Wide area visual supercomputing. International Journal of
Supercomputer Applications, 1996.

[9] The Globus Project. http://www-fp.globus.org

[10] W. Gropp, E. Lusk,and A. Skjellum. Using MPI: Portable Parallel
Programming with the Message Passing Interface. MIT press, 1995

[11] TreadMarks Overview. http://www.cs.rice.edu/~willy/TreadMarks/
overview.html

[12] Sudha Krishnamurthy. Design of a Gateway Protocol using VMI for Inter-
Cluster Communication http://www.ncsa.uiuc.edu//General/CC/ntcluster/
VMI/gateway.pdf

[13] Avneesh Pant, Sudha Krishnamurthy, Rob Pennington, Mike Showerman and
Qian Liu. VMI: An Efficient Messaging Library for Heterogeneous Cluster
Communication. http://www.ncsa.uiuc.edu//General/CC/ntcluster/VMI/hpdc.pdf

 57

[14] D. Cohen, C. Lund, T. Skjellum, T. McMahon, and R. George. Proposed
specification for the end-to-end packetway protocol. IETF draft, 1997

[15] PacketWay Documentation
http://www.erc.msstate.edu/research/labs/hpcl/packetway/index.html

[16] O. Aumage, G. Mercier and R. Namyst. MPICH/Madeleine: a True Multi-
Protocol MPI for High Performance Networks. http://www.ens-
lyon.fr/~mercierg/ressources/ipdps_2k1.ps.gz

[17] O. Aumage, L. Bouge and R. Namyst. A Portable and Adaptative Multi-Protocol
Communication Library for Multithreaded Runtime Systems. Parallel and
Distributed Processing. Proc. 4th Workshop on Runtime Systems for Parallel
Programming (RTSPP ’00)

[18] MPI/Pro for Linux. http://www.mpi-
softtech.com/product/mpi_pro_linux/default.asp

[19] Raoul A.F. Bhoedjang, Tim Ruhl and Henri E. Bal. User-Level Network
Interface Protocols. Computer, November 1998

[20] I. Foster, J. Geisler, C. Kesselman and S. Tuecke. Managing Multiple
Communication Methods in High-Performance Networked Computing Systems
Journal of Parallel and Distributed Computing, Vol. 40, Jan. 1997

[21] W.R. Stevens. TCP/IP Illustrated, The Protocols. Addison-Wesley, Reading,
MA, 1994

[22] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, 1998

[23] The NAS parallel benchmarks. http://www.nas.nasa.gov/Research/Reports/
Techreports/1994/HTML/npbspec.html

[24] Introduction to TCP/IP. http://www.microsoft.com/windows2000/
techinfo/reskit/samplechapters/cnbb/cnbb_tcp_zqku.asp

