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ABSTRACT 
 
 
 
 

User-level network interface protocols such as GM, FM, VIA have become 

increasingly popular to achieve low latency in cluster computing. However, 

communication with most of these protocols is restricted to a System Area Network 

(SAN) and the wide area interconnectivity of clusters remains under-explored. In 

spite of demonstrably superior performance due to features like zero-copy and OS 

bypassing, these protocols haven’t been deployed in a wide-area context. Distributed 

programming models such as CORBA, Legion, I-WAY, Legion etc. still rely on 

traditional WAN protocols like TCP despite its inherent overheads. In this thesis, we 

explore the design space for inter-cluster communication models based on existing 

SAN protocols and identify several design issues that need to addressed such as end-

to-end reliability, message fragmentation, protocol conversion, routing policy, 

addressing issues and support for multi-point connections. 

We design, develop and implement Inter-Cluster GM (ICGM) - an experimental 

deployment of the GM messaging system in an inter-cluster environment. In 

particular, we describe how nodes lying in separate clusters could exchange messages 

using gateway nodes. Such an environment promises potential for applications 

written on top of GM to be directly ported to geographically distributed clusters 
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without any additional middleware layer. This will allow applications to take 

advantage of high performance intra-cluster communication as well as harnessing the 

computing power from distributed clusters.  

Extensive performance evalution of ICGM vis-à-vis the corresponding sockets 

implementation has been performed. The ICGM implementation has been shown to 

deliver latency benefits of around 45 us for message sizes upto 1K using Fast/Gigabit 

Ethernet in the wide-area. Over Gigabit Ethernet, ICGM delivers a peak bandwidth of 

23 Mbytes/s – a 15% improvement over TCP. Our experiments with MPICH and 

Gigabit Ethernet have demonstrated latency and bandwidth benefits of 120 us and 11 

Mbytes/s respectively. 

 



 iv

DEDICATION 

Dedicated to my family 



 v

ACKNOWLEDGMENTS 

 

 

I wish to thank my adviser, Dr. Dhabaleswar Panda, for his support and guidance 

during the course of my research. I am also grateful to Dr. P. Sadayappan and Dr. 

Pete Wycoff of the OSC for helping me in ironing out a lot of technical difficulties. 

I also wish to thank Darius Buntinas, Abhishek Gulati, Jiuxing Liu and Igor Grobman 

from the NOWLab for their help on issues concerning GM and TCP. 

I am indebted to my friends Ajay Joshi, Mandar Joshi, Prashant Nikam, Sidharth 

Kapileshwar, Ramesh Jagannathan, Praveen Holenarsipur, Nagasuresh Reddy, 

Prakash Krishnamurthy and Nikhil Chandhok for their support during the course of 

my studies at OSU. 



 vi

VITA 

 
August 31, 1973 .…………………… Born – Kotipalli, INDIA 

 

1994 ………………………………… B.Tech, Electronics & Communication Engg.,  

             I.I.T, Madras, INDIA 

 

1995 – 1997.………………………… P.G.D.M, I.I.M, Lucknow, INDIA 

 

 

 

FIELDS OF STUDY 

 

Major Field:  Computer and Information Science 

 



 vii

 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................. i 

DEDICATION............................................................................................................ iv 

ACKNOWLEDGMENTS ..........................................................................................v 

VITA............................................................................................................................vi 

LIST OF FIGURES ................................................................................................... ix 

1 INTRODUCTION....................................................................................................1 

1.1 Goal ...............................................................................................................1 
1.2 Motivation .....................................................................................................1 
1.3 Outline of Thesis ...........................................................................................4 

2 ISSUES IN INTER-CLUSTER COMMUNICATIONS.......................................5 

2.1 End-to-end Reliability ...................................................................................7 
2.2 Message Fragmentation and Reassembly ...................................................10 
2.3 Protocol Conversion....................................................................................11 
2.4 Routing Policy.............................................................................................11 
2.5 Addressing...................................................................................................12 
2.6 Multi-point Connections .............................................................................12 
2.7 Conclusion...................................................................................................13 

3 OVERVIEW OF GM.............................................................................................14 

3.1 Message-passing in GM ..............................................................................14 
3.2 Sending messages........................................................................................16 
3.3 Receiving messages.....................................................................................17 

4 IMPLEMENTATION OF ICGM.........................................................................20 

4.1 Basic Concept..............................................................................................20 
4.2 A Detailed Example of ICGM usage ..........................................................21 
4.3 ICGM Design Choices ................................................................................23 
4.4 Data Structure Changes ...............................................................................24 
4.5 MCP Software Changes ..............................................................................27 
4.6 Gateway software outline............................................................................28 

5 PERFORMANCE EVALUATION ......................................................................31 

5.1 Experimental Testbed and Setup.................................................................32 
5.2 Latency Results ...........................................................................................34 

5.2.1 Latency Results over Fast Ethernet .....................................................35 



 viii

5.2.2 Latency Results over Gigabit Ethernet................................................36 
5.2.3 MPICH latency over Gigabit Ethernet ................................................37 

5.3 Bandwidth Results.......................................................................................38 
5.3.1 Bandwidth Results over Fast Ethernet ................................................38 
5.3.2 Bandwidth Results over Gigabit Ethernet ...........................................39 
5.3.3 MPICH bandwidth over Gigabit Ethernet...........................................40 

5.4 ICGM overhead...........................................................................................41 
5.4.1 Latency for intra-cluster messages ......................................................42 
5.4.2 Bandwidth for intra-cluster messages .................................................43 
5.4.3 MPICH-GM vs MPICH-ICGM ..........................................................44 

5.5 NAS Parallel Benchmarks...........................................................................45 
5.6 Conclusions .................................................................................................48 

6 RELATED WORK ................................................................................................50 

6.1 Virtual Machine Interface ...........................................................................50 
6.2 The PacketWay Specification .....................................................................51 
6.3 MPICH/Madeleine ......................................................................................52 
6.4 MPI/Pro .......................................................................................................52 

7 CONCLUSIONS AND FUTURE WORK ...........................................................54 

7.1 Summary .....................................................................................................54 
7.2 Future Work ................................................................................................55 

BIBLIOGRAPHY .....................................................................................................56 

 



 ix

 

LIST OF FIGURES 

 

Figure 1.1 An example of inter-cluster communication using SAN protocols .....3 

Figure 2.1. Clusters communicating using gateways : P1 and P3 represent 

protocols used within the clusters. P2 denotes a protocol used over  

the wide area. The gray circles represent gateway nodes....................6 

Figure 2.2 : Piece-wise acks: The numbers indicate the sequence of operations. 

Data exchanges are shown by solid lines and dotted lines represent 

acks. .....................................................................................................8 

Figure 2.3 : Chained acks ......................................................................................9 

Figure 3.1 : End-to-end communications in GM. Ports represent the end-points 

and the dotted lines represent logical connections ............................15 

Figure 3.2 : Steps involved in sending messages with GM.................................17 

Figure 3.3 : Steps involved in receiving messages in GM ..................................18 

Figure 4.1 : Inter-cluster and Intra-cluster communication with ICGM .............21 

Figure 4.2: ICGM Packet Header format ............................................................25 

Figure 4.3 : Changes to the GM send token structure are shown in bold ...........27 

Figure 4.4 : Pseudocode of software running on the gateway nodes ..................29 

Figure 5.1 : Experimental setup for comparative performance evaluation .........34 

Figure 5.2 : Comparison of latency over Fast Ethernet.......................................35 

Figure 5.3 : Comparison of latency on Gigabit Ethernet ....................................36 



 x

Figure 5.4 : Comparison of MPICH latency .......................................................37 

Figure 5.5 : Comparison of bandwidth on Fast Ethernet ....................................39 

Figure 5.6 : Comparison of bandwidth on Gigabit Ethernet ...............................40 

Figure 5.7 : Comparison of MPICH bandwidth ..................................................41 

Figure 5.8 : Latency overhead.............................................................................42 

Figure 5.9 : ICGM bandwidth overhead .............................................................43 

Figure 5.10 : MPICH latency overhead...............................................................44 

Figure 5.11 : MPICH bandwidth overhead .........................................................45 

Figure 5.12 : Performance of NPB applications across the cluster using ICGM 

and Sockets implementations. ...........................................................46 

Figure 5.13 : Performance of NPB applications within a single cluster using GM 

and TCP.............................................................................................48 



 1

CHAPTER 1   

 

 

INTRODUCTION 

 

1.1 Goal 

In this work we propose an inter-cluster communication scheme based on existing 

System Area Network (SAN) protocols. The objective is to provide low-latency and 

high-bandwidth communication across clusters using wide-area interconnects thus 

allowing truly distributed computing over the wide-area. We modify a user-level 

protocol to provide inter-cluster communication facilities in a transparent manner  in 

order to avoid recoding of existing applications that wish to exploit this feature.  

1.2 Motivation 

Developments in high-speed network technologies and low-overhead communication 

protocols have led to increasing acceptance of networks of workstations (or simply 

clusters) in many high-performance distributed computing environments. Cluster 

computing is increasingly becoming a viable alternative to massively parallel 

processor architectures (MPPs) with the availability of gigabit-per-second networking 

technologies such as Gigabit Ethernet [1] and Myrinet [2]. The inherent overheads of 
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general-purpose wide-area protocols such as TCP/IP [3] have encouraged research in 

development of user-level networking protocols such as FM [4], GM [5] and VIA [6].  

However, distributed computing over the wide-area has not received an equal amount 

of attention. Most of the work on cluster computing has been limited to 

communication within a single cluster of workstations. Thus, application 

programmers have not been able to harness the computing power of geographically 

distributed clusters. Notable efforts in truly distributed computing include distributed 

programming models such as CORBA, Legion [7] and other general remote method 

invocation systems. Other wide-area computing scenarios have been tried out using 

the I-WAY [8] software environment and the Globus meta-computing toolkit [9]. 

Our work tries to explore issues involved in adding wide-area capabilities to existing 

user-level network protocols. In general, applications that require frequent but not 

intense communication would benefit from our work. Secondly, distributed 

computing on clusters is not limited to geographically separated clusters. A single 

organization may have multiple clusters sharing a physical facility for administrative 

reasons. They may have to be separated due to heterogeneous hardware or the 

administration might want to separate them on the basis of cost centers. Physical 

space constraints may force the use of multiple rooms too distant to use short-haul 

network cables. In this scenario, using TCP-based multi-protocol communication 

systems such as PBS or Condor would involve additional overhead financially – 

providing wide-area connections at all the computing nodes – and administratively – 

assigning an IP address to each computing node. Moreover, an organization cannot 
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use private IP spaces for security or convenience. This is another area where we 

believe the work described in this thesis could have a significant impact.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 An example of inter-cluster communication using SAN protocols 

 

 

 

As shown in Figure 1.1, we accomplish communication across clusters through the 

use of dedicated “gateway” nodes – with hardware for connecting to the cluster as 

well as the wide-area. In the above figure, P1 and P3 are SAN protocols that have 

wide-area features e.g. modified versions of GM, VIA etc. P2 is a traditional WAN 

protocol such as TCP and is used by the gateways for forwarding inter-cluster traffic.  

SAN 1 SAN 2 

Gateways 

P2 

Receiver 

P1 P3 
Sender 

P1 P3 

P1,P3 – GM,VIA, FM etc.   P2 – TCP, UDP, ATM etc. 
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1.3 Outline of Thesis 

The rest of this thesis is organized as follows: Chapter 2 discusses the design issues 

involved in developing inter-cluster communication protocols. Chapter 3 provides 

some background information on the GM message passing system. The specifics of 

the ICGM implementation are discussed at length in Chapter 4. In an effort to 

quantify the contribution made by ICGM, several performance evaluations have been 

conducted and the results of these experiments are presented in Chapter 5. We discuss 

related work on inter-cluster communications in Chapter 6 and highlight how our 

work differs from these efforts. Chapter 7 summarizes our experiences with this 

project and identifies areas for future work related to ICGM. 
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CHAPTER 2   

 

 

ISSUES IN INTER-CLUSTER COMMUNICATIONS 

 

Several design issues need to be addressed when extending communications to 

include nodes outside the cluster. This can be attributed to the fact that different 

protocols are used within a cluster and over the WAN. The following discussion of 

design issues will assume the inter-cluster communication scheme shown in Figure 

2.1. The figure shows two System Area Networks (SANs) which are connected by a 

non-SAN technology. Designated nodes, henceforth referred to as “gateway” nodes 

form the end-points of this inter-cluster connection. For convenience, we shall use 

some protocol aliases for the rest of this chapter. P1 refers to the user-level protocol 

that is used for communication within the sender’s cluster. P2 refers to the protocol 

used over the WAN connection. P3 (which could be same as P1) refers to the SAN 

protocol used within the receiver’s cluster. P1 and P3 are low-latency, high-

bandwidth user-level protocols like GM, VIA etc. on top of high-performance inter-

connects like Myrinet. P2 is a traditional WAN protocol like TCP/IP or UDP/IP 

which can be used over a variety of networking technologies like Fast Ethernet, 

ATM, Gigabit Ethernet etc. The gateway software needs to be carefully designed 



 6

after taking into consideration the various issues that might arise due to such 

differences in protocols. Another factor that complicates the gateway software design 

is the various link speeds within and between clusters. A detailed discussion of these 

design issues follows in the sections below. We also propose design alternatives for 

prospective implementers.  

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Figure 2.1. Clusters communicating using gateways : P1 and P3 represent protocols 

used within the clusters. P2 denotes a protocol used over  the wide area. The gray 

circles represent gateway nodes. 
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2.1 End-to-end Reliability 

Most user-level network interface protocols provide the user application with reliable, 

ordered delivery of messages using acknowledgements (ACKs and NACKs) and 

timeout mechanisms. Protocols like VIA leave this as an option for the user to 

exercise. Any inter-cluster communication scheme should preserve the original 

semantics of the user level protocol. Otherwise, the application would have to 

distinguish between traffic within the cluster and outside the cluster. This would 

mean loss of transparency to the user application. There are two alternatives for 

implementing the acknowledgement scheme: 

Piece-wise acknowledgments : In this scheme, no changes are made to the current 

acknowledgment mechanisms used by P1 and P3 for intra-cluster communications. 

This implies that as soon as the sender’s gateway receives a message from the sender, 

the sender is acknowledged. Thus the sender assumes that the packet has reached the 

final destination. As long as P2 provides reliable, ordered delivery between the 

gateways, this poses no problem in terms of retransmission of packets or in-order 

delivery. Again, reliable and ordered delivery over the final hop between the 

receiver’s gateway and the receiver is ensured by P3. This process is 

diagrammatically shown in Figure 2.2. The sequence numbers indicate the temporal 

ordering of the messages and acknowledgments. 
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              1        3        5 
 
 
                    2        4        6 

 

 

Figure 2.2 : Piece-wise acks: The numbers indicate the sequence of operations. Data 

exchanges are shown by solid lines and dotted lines represent acks. 

 

 

 

Chained acknowledgements : Per this scheme, the acknowledgement mechanism of 

P1 is modified such that the sender’s gateway does not immediately acknowledge a 

message received from the sender. Instead, it awaits a special message from the 

receiver’s gateway stating that the receiver has actually received the message. When 

this message is received by forwarder process at the gateway, it is passed down to the 

protocol layer of P1 which then sends out an acknowledgement to the sender. Figure 

2.3 depicts this and the solid lines, dashed lines and sequence numbers have the same 

meaning as before. 

Sender Gateway Gateway Receiver 
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Figure 2.3 : Chained acks 

 

 

 

Ideally, the latter scheme of chained acknowledgements seems a more appropriate 

design choice because it preserves the semantics of reliable transmission. A sender is 

acknowledged only after the message has reached the final destination. However, 

there is a price attached to this scheme. Many user-level protocols use “registered” 

memory for send and receive operations to ensure DMA transfers from the user space 

to NIC memory without kernel intervention and swap outs. Since there is a limit on 

the amount of memory that can be registered, these buffers can be reused only after 

acknowledgements are received. Thus, using chained acknowledgements delays 

buffer reuse and might cause blocking in the send/receive processes due to lack of 

available registered buffers. The chained acknowledgement scheme also requires 

significant changes to the protocol software. 

While the piece-wise acknowledgement scheme does not have the above drawbacks, 

it does suffer from the disadvantage of not being able to notify a sender about failures 

on subsequent hops. In practice, however, most distributed programs (including 

Sender Receiver Gateway Gateway 
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MPICH/GM) do not check for NACKs. A NACK causes an abort of the entire 

parallel process and is considered sufficiently rare and fatal. So, this semantic change 

would affect only those few programs that do handle node or link failures gracefully. 

A compromise between the two schemes would be to make software changes to 

support either scheme and subsequently allow the user to choose the appropriate 

scheme while configuring the protocol software. 

2.2 Message Fragmentation and Reassembly 

Packet-based protocols typically split up large messages into more manageable 

chunks using the Message Transfer Unit (MTU). Large messages are fragmented at 

the sender side while recording the appropriate information in the packet header. The 

protocol stack at the receiver is responsible for reassembling these fragments before 

passing it on to the application process. Unless proper care is exercised while 

designing the gateway software, mixing various protocols could cause loss of 

important header information. One option is to retain the fragmentation and 

reassembly scheme used by P1 which means that the fragments are reassembled at the 

sender gateway before they are forwarded by the gateway process. But this would be 

wasteful since the gateway has to wait for all the fragments that belong to a large 

message before it can be forwarded. This approach is sub-optimal given that each 

fragment has sufficient information to initiate the forwarding process. A better 

alternative is to pipeline the computation and the communication. The protocol 

software at the gateway could be modified not to reassemble the fragments, but 

instead pass them on the gateway software at the upper layer. The reassembly of the 

fragments is thus postponed till all of them are received at the final destination. 
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2.3 Protocol Conversion 

Using several protocols on various hops can complicate matters if some of these are 

packet-based and the others are stream-based. Consider a scenario where P1 and P3 

are packet-based and P2 is a stream-based protocol like TCP. P1 would encode all the 

source-destination information in the packet header but P2 does not respect packet 

boundaries. Thus, P2 might send only a portion of a large packet if its send buffers 

cannot accommodate the entire packet. Alternatively, it could try optimizing 

bandwidth by transmitting several small packets in a single data stream – potentially 

mixing up disparate data flows. In this case, the gateway at the receiving end needs to 

have some means of distinguishing between the various packets. Even if all the 

protocols use packets, the implementor still needs to take care of the differences 

between the packet formats of each protocol. 

2.4 Routing Policy 

To support inter-cluster communication, the routing policy used by P1 needs to be 

modified. Many SAN protocols store point-to-point routes and rely on the NIC to 

make routing decisions. One alternative for routing in such a scenario would be to 

store the routes for all possible source-destination pairs and leave the routing modules 

of the protocol intact. However, this is very expensive because the routing tables are 

usually maintained in expensive SRAM on the NIC and maintaining point-to-point 

routing information for even a few medium-sized clusters would easily exhaust this 

memory. Moreover, this is not a scalable design choice. With increasing number of 

nodes and/or clusters, the routing tables would soon become unwieldy. The increased 

size would also have an adverse effect on the memory requirements and latency. An 
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alternative is to modify the routing module of the protocol software to make 

forwarding decisions depending on the target node. Thus, P1 would need 

modifications to distinguish between local and remote nodes and identify the gateway 

required for the communication. The challenge is to design a routing policy that is 

scalable without having an adverse effect on the performance of intra-cluster 

communications.  

2.5 Addressing 

Since the routing policy depends on the manner in which addresses are assigned to 

the hosts, the addressing scheme has to be chosen carefully to avoid conflicts. This 

may not be very easy – especially if the clusters involved in the communication are 

under different administrative domains. One alternative is to use a global address 

space under the control of a single authority and requiring each participating cluster 

to register with this entity to get a range of unique node ids. Another option is to let 

each cluster have its own addressing scheme and add a proxy mechanism to the 

gateway software. Virtual addresses could be used for nodes outside the cluster and 

the gateways would take care of translating these to the actual addresses used on the 

remote cluster. This also needs development of a protocol between the gateways to 

agree on the virtual addresses to be used.  

2.6 Multi-point Connections 

Some user-level protocols assume point-to-point connections between 

communicating nodes. Depending on how the protocol software sets up the data 

structures, a connection might be identified by the physical end-points instead of the 

source-destination pair. In such cases, introducing the gateway in the communications 
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path would complicate issues. For instance, a node that needs to communicate to 

more than one remote node might need to use the same gateway for all the data flows. 

As a result, the implementer has to introduce some mechanism for the gateway to be 

able to distinguish between the multiple data flows across the same connection. This 

would necessitate changes to the data structures – for instance, to maintain state 

information per logical connection (identified by sender-receiver) rather than a 

physical connection. 

2.7 Conclusion 

As discussed in the preceding subsections, the usage of heterogeneous protocols in a 

wide-area context presents several challenges for the implementor. In Chapter 4, we 

revisit these issues and provide a detailed description of the design choices made in 

our implementation. Where applicable, we also discuss the motivation to choose one 

design alternative over another. 
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CHAPTER 3   

 

 

OVERVIEW OF GM 

 

GM is a message-based communication system over Myrinet which is a gigabit-per-

second interconnect technology increasingly deployed in many clusters [5]. Like 

many user-level network protocols, GM’s design objectives include low CPU 

overhead, portability, low latency and high bandwidth. In achieving these objectives, 

GM takes advantage of the Myrinet Network Interface Card (NIC). The Myrinet NIC 

is “intelligent” in the sense that it has on-board SRAM and a processor (called 

LANai) which executes a monitor program called the Myrinet Control Program 

(MCP). The MCP is loaded into the NIC memory by the driver (bundled with GM) 

and the MCP then handles all communications over the Myrinet interface thus 

bypassing the operating system and the host CPU.  

3.1 Message-passing in GM 

GM provides reliable, ordered delivery between communication endpoints with two 

levels of priority. The communication endpoint is called a port and is associated with 

a host node. All communications are “connectionless” and the sender builds a 

message alongwith the receiver’s node id and port number. GM maintains reliable 
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connections between each pair of hosts in the network and multiplexes the traffic 

between ports over these connections.  Figure 3.1 shows the resulting reliable logical 

connections – the dotted lines – between peer processes as well as processes 

belonging to different hosts. Sends and receives in GM are regulated by implicit 

tokens which represent space allocated to the client in various internal GM queues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 : End-to-end communications in GM. Ports represent the end-points and 

the dotted lines represent logical connections 
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3.2 Sending messages 

A user process that wishes to send a message needs to issue a gm_send() primitive. 

This results in a send descriptor being written to a send queue maintained in LANai 

memory. Figure 3.2 illustrates this process. Among other fields, the send descriptor 

contains the destination node, destination port and a pointer to the message buffer. 

The send state machine in the MCP polls the send queue for outgoing messages. On 

finding a pending send descriptor, the MCP constructs a GM “packet” and initiates a 

DMA to transfer the data to be sent. The sender process needs to ensure that the pages 

containing the data are not swapped out in the midst of a DMA by “pinning” the 

memory via a gm_register_memory() primitive. The sender is also responsible for not 

reusing the data buffer before the send is complete. The sender can optionally specify 

a completion handler for each send. Since all sends are regulated by tokens, it is the 

responsibility of the sender process to ensure the availability of a token before 

attempting a send. The send completion handler helps the sender in keeping track of 

the send tokens and recycling registered buffers. 
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gm_send_with_callback(…,ptr,size,…); 

 

 

Figure 3.2 : Steps involved in sending messages with GM 
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represents a buffer in user space where the MCP can DMA a message received from 

the network. The list of receive tokens is maintained in LANai memory and stores the 

size and priority of expected messages. It should be noted that a priori information 

about all possible combinations of size and priorities is assumed. As in the case of 

sending, the receive buffers should be registered as well to allow uninterrupted DMA 
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of message data from LANai buffers to user memory. Figure 3.3 shows the sequence 

of events during message receipt.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
gm_provide_receive_buffer(…,ptr,…) 
……… 
gm_receive(…) 

 

 

Figure 3.3 : Steps involved in receiving messages in GM 
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descriptor – essentially a data structure with sender information and pointers to 

message data – which is also DMAed to a receive queue in user space. Finally, the 

MCP queues an acknowledgment to be sent to the sender. If a matching receive token 

was not found, the MCP discards the message and queues a negative 

acknowledgment to the sender to indicate failure of receipt. The receiver process 

polls for events in its receive queue to check for availability of data. 
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CHAPTER 4   

 

 

IMPLEMENTATION OF ICGM 

 

While GM satisfies the original design objectives of low-latency and high-bandwidth 

over Myrinet, it also requires each host to be physically connected to every other host 

it wants to communicate with. As a result, developers interested in truly distributed 

computing are forced to either recode the applications written in GM to use 

traditional WAN protocols or use additional layers of software to dynamically choose 

from a variety of available protocols. Our work on ICGM attempts to address this 

issue by extending the scope of the GM communication model to allow nodes 

residing in different clusters to communicate. 

4.1 Basic Concept 

In our implementation, we modify the MCP to make forwarding decisions based on 

the target node. Each cluster has dedicated nodes called “gateway” nodes which are 

connected to gateways of other clusters using standard WAN interconnects like ATM, 

Fast Ethernet etc. All inter-cluster traffic is routed through these gateways which have 

daemon processes running on them to take care of forwarding. The gateway software 
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at the application level closely interacts with changes at the MCP level to achieve 

forwarding over the wide area. 

4.2 A Detailed Example of ICGM usage 

The following example illustrates the role played by ICGM in the critical path of 

communication. Figure 4.1 depicts a typical inter-cluster communication scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 : Inter-cluster and Intra-cluster communication with ICGM 
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In the above figure, sender N1 attempts to send messages to receiver N2 that lies in a 

different cluster and receiver N3 which lies in the same cluster. Clusters 1 and 2 use 

ICGM over Myrinet internally and are interconnected by a Fast Ethernet link. The 

gateway nodes for each cluster are represented by G1 and G2, respectively. In the 

case of intra-cluster communication between N1 and N3 – shown in the figure by a 

gray arrow - ICGM decides that the destination lies in the same cluster. It then 

constructs a GM packet and prepends a source route to it before sending it out on the 

Myrinet link. The case of inter-cluster communication between N1 and N2 – 

represented by black arrows - is more interesting. A message sent from N1 to N2 

undergoes the following additional processing: 

• The MCP on N1 decides that N2 lies on a different cluster and hence needs 

forwarding. It constructs an ICGM packet – which uses a new packet type for 

demultiplexing and contains additional header fields used in subsequent hops. It 

then source routes it to the gateway required to reach N2 (G1 in this case). 

• The MCP on G1 receives the ICGM packet and DMAs the data to the buffer 

allocated by the forwarder process on G1. 

• The forwarder process on G1 polls for incoming packets using the gm_receive() 

primitive. When it finds a packet that has been received, it forwards it across the 

non-Myrinet link to the gateway responsible for the receiver’s cluster. Our current 

implementation establishes a TCP connection between the two gateways and uses 

socket calls to read/write data. 
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• The forwarder process on G2 polls for incoming data over the non-Myrinet link. 

Upon receiving some data, it issues a gm_send() primitive to deliver the message 

to the actual destination. 

• The MCP on G2 constructs an ICGM packet and source routes it to N2. 

• The MCP on N2 receives the packet. It uses the fields in the ICGM packet header 

to identify the original sender and constructs an appropriate receive descriptor 

before the message data and the receive descriptor are DMAd to the receiving 

process’ memory. 

4.3 ICGM Design Choices 

The most important consideration while designing ICGM was an appropriate protocol 

over the wide-area. Since GM provides reliable ordered delivery, we felt that the 

changes to ICGM could be simplified by using a reliable protocol like TCP between 

the gateways. Our implementation takes advantage of the reliable transport layer of 

TCP and enforces end-to-end reliability through the piece-wise acknowledgement 

scheme thus optimizing the reuse of registered buffers. Message fragmentation in 

ICGM is handled using delayed reassembly of fragments as described earlier. Fields 

were added to the ICGM packet header to identify fragments and the MCP was 

modified to reassemble these fragments only at the final destination. The entire 

process is transparent to the user processes while allowing pipelining. For routing, we 

made minor changes to the routing module to implement forwarding. Every GM 

cluster has a “mapper” node that dynamically keeps track of the routes within the 

cluster and shares this information with the other nodes in the cluster. Thus ICGM did 

not require any extra code to make the nodes aware of the cluster topology. Assuming 
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a simple addressing scheme like contiguous address spaces (eg: Nodes 1 thru 64 in 

cluster 1; nodes 65 thru 100 in cluster 2 etc.) , the forwarding logic can be coded with 

a few instructions without significantly increasing the latency on the critical path. The 

current version of ICGM uses hardcoded gateway ids and future versions should 

allow more flexible routing. 

The ICGM implementation involved modifications to GM at the MCP level as well as 

development of gateway software which runs on the gateway nodes. While the MCP 

is executed by the LANai processor, the gateway software runs like any other 

application program making use of the send and receive primitives provided by the 

GM API and the sockets library. 

4.4 Data Structure Changes 

Among the most important changes to the GM data structures is the modification of  

the GM packet header format. ICGM relies on a new type of GM packet – henceforth 

referred to as the ICGM packet. This is very similar to the original GM packet except 

that we use a new value for the packet type field in the header to distinguish it from 

the GM packets carrying intra-cluster data. The ICGM packet header also contains 

additional fields to aid in demultiplexing. Figure 4.2 shows the structure of the ICGM 

packet header. The fields in gray represent the fields that are not present in GM 

packets. These fields are available to the gateway software to make routing decisions. 
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Figure 4.2: ICGM Packet Header format 

 

 

 

The packet type is used by GM to identify valid GM packets. The packet subtype is 

used to distinguish between various packets such as data packets, ACKs, NACKs, etc. 

In the case of data packets, this field also stores the fragmentation information when a 

large message is split up into smaller packets. The node id fields are used to uniquely 

identify the hosts while the subport field is used to differentiate between disparate 

simultaneous connections on a single host. The sequence number is used in 

implementing GM’s “go back N” protocol for reliable transmission. The length and 

checksum fields are self-explanatory. 

Packet type Packet subtype 
Target Node Id Sender Node Id 

Sequence Number 

Length 
Target 
subport 

Id 

Sender 
subport 

Id 
Header checksum (optional) 

IP checksum 
(optional) 

Reserved 
(optional) 

Source Node Id Destination Node 
Id 

Source 
subport 

Id 

Destination 
subport Id Length 

Packet subtype Unused 
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The sender and target fields correspond to the physically-connected end-points in the 

current hop of the communication whereas the source and destination fields 

correspond to the original sender of the information and the final destination of the 

message. For instance, in Figure 4.1, the first hop from N1 to G1 would have sender 

and source values set to N1; target value set to G1 and destination value set to N2. 

Similarly, when the ICGM packet is on its final hop from G2 to N2, the sender value 

is set to G2; the target and destination values are set to N2 and the source value stays 

at N1. The length field is repeated so that the receiver gateway can reconstruct a GM 

packet from an incoming TCP byte stream. It should be noted that the fields that are a 

part of the original GM packet header format are stripped off before delivery to the 

application layer. An alternative to making fairly complex changes to the MCP to 

modify this behaviour, is to include the relevant information alongwith the packet 

data. The packet subtype field is required since fragments are not reassembled at the 

gateway but are instead forwarded to the destination which then uses this field to 

reassemble the message. 

Another data structure that was changed for ICGM was the send token. The send 

token is used to store all the information passed by the user by invoking a gm_send() 

primitive and this information is used for retransmissions if any. We added the 

destination information to the send token as shown in Figure 4.3. The bold fields in 

the figure represent our additions to the original structure. 
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typedef union gm_send_token { 

. 

. 

struct gm_st_reliable { 

gm_send_token_lp_t  next; 

GM_SEND_TOKEN_TYPE_8 (type); 

gm_s8_t  size; 

gm_u16_t  target_subport_id; 

gm_u32_t  send_len; 

gm_subport_lp_t  subport; 

gm_up_t  orig_ptr; 

gm_up_t  send_ptr; 

gm_u16_t  dest_node_id; 

gm_u16_t  dest_subport_id; 

} reliable; 

. 

. 

} 

gm_send_token_t; 

 

 

Figure 4.3 : Changes to the GM send token structure are shown in bold 

 

 

 

All the changes described in this subsection were made in the file include/gm_types.h 

of the GM software distribution. 

4.5 MCP Software Changes 

All send and receive logic in the GM MCP is governed by four state machines – 

SEND, SDMA, RECV and RDMA. The respective source files are mcp/gm_send.h, 
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mcp/gm_sdma.h, mcp/gm_recv.h and mcp/gm_rdma.h. The ICGM implementation 

required changes to the following modules: 

gm_sdma.h 

• Modify the handler that polls for sends. Upon finding a send event, the handler 

checks if forwarding is needed and if so, populates the destination fields in the 

send event structure 

• Change the SHORTCUT macro as well as send and resend logic in the SDMA 

handler to construct ICGM packets when inter-cluster communication is needed 

gm_rdma.h 

• Manipulate packet subtype at gateways to bypass reassembly of fragments 

• Modify the RDMA handler to offset the DMAs by the overhead introduced by the 

ICGM packet type 

• Use the extra ICGM fields at the final destination to populate the receive event 

structure (used by the application program) to reflect the identity of the original 

sender and not the receiver’s gateway 

gm_recv.h 

• Add ICGM packet type to the list of valid packet types expected by the MCP 

4.6 Gateway software outline 

The gateway process runs in user virtual memory and is not very different from a 

typical GM client application. The only difference is that it also uses the Sockets API 

to handle communication over the non-Myrinet link. Figure 4.4 lists the pseudocode 

for the gateway software. 
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while ( true )  // Run forever 

e = gm_receive() // Poll for packets on Myrinet 

if (e->type = GM_RECV_EVENT) // Got an ICGM packet 

Read destination information from first few bytes 

Choose appropriate gateway 

write(e->buffer, e->len) on corresponding socket 

gm_provide_receive_buffer (e->buffer) // Allow buffer reuse 

endif  

 

/* # of TCP connections = # of non-Myrinet links */ 

 

for each TCP connection 

tcplen = read(tcpbuffer) // Non-blocking read 

if(tcplen > 0) // some data has been received 

   entire_buffer_processed = false 

while (entire_buffer_processed = false) 

  Read length from header fields 

 if(length <= remaining portion of tcpbuffer) 

/* Header fields have destination information */ 

gm_send(dest_id,dest_port,length)  

   else // wait for the entire packet 

     save the partial GM packet 

     entire_buffer_processed = true 

endif 

Advance pointer in tcpbuffer // Chk for other ICGM packets 

Set entire_buffer_processed if done 

endwhile 

endif 

endfor 

endwhile 

 

 

Figure 4.4 : Pseudocode of software running on the gateway nodes 
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It should be noted that the GM receive() calls and the Socket read() calls are non-

blocking to allow the gateway to process data from other interfaces. From the 

structure of the gateway code, one can observe that all operations are serialized. 

Ideally, the gateway should be running as multiple threads with one thread per 

interface over which data is expected. In this case, we could have used blocking 

receive primitives. However, current versions of GM do not allow a thread-safe 

programming model and hence the gateway process runs in a monolithic fashion. 

Despite this, we are able to obtain reasonable performance as can be gathered from 

the experimental results shown in the next chapter. 
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CHAPTER 5   

 

 

PERFORMANCE EVALUATION 

 

During the ICGM implementation, numerous tests were run to check for protocol 

correctness and to ensure that there is no deviation from the semantics of the original 

GM protocol. However, correctness is not sufficient to allow researchers to exploit 

the wide-area computing capabilities of ICGM. It is desirable that ICGM offers better 

performance in comparison to the existing wide-area models of inter-cluster 

communication. To this end, several experiments were conducted to quantify how 

ICGM fares relative to the current practices in distributed computing. Currently, 

applications that perform distributed computing over the wide-area communicate use 

sockets over TCP at the transport layer and thus it was a natural choice for a reference 

benchmark. In the rest of this chapter, we describe the results of our experiments and 

try to weigh the pros and cons of ICGM. In particular, we ran test GM applications to 

measure the round-trip latency and the bandwidth offered by ICGM and compared 

these with the corresponding figures for test applications written using sockets. 

Moreover, we also had test applications written using MPICH [10]. MPICH is 
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quickly becoming the de-facto platform for development of high-performance 

distributed applications. This means that an application developer is more likely to 

use the MPICH API in the development process than coding with the low-level GM 

or sockets primitives. Hence, it is our opinion that it would be worthwhile to measure 

exactly how much of the benefits – if any – at the ICGM layer are passed on to the 

higher layers of MPICH and applications written using MPICH. For this purpose, we 

used test applications written using MPICH-GM as well as MPICH on sockets and 

compared the performance. We also ran the NAS parallel benchmarks [23] on the two 

versions of MPICH for comparative evaluation. Finally, we checked if the ICGM 

logic added too much overhead for the case of intra-cluster communication or not. 

5.1 Experimental Testbed and Setup 

The results presented here were obtained using a cluster of PCs. All the PCs are 300 

MHz Pentium II processor nodes and have 100 MHz system bus. Each node has 128 

MB of SDRAM, 16 KB of L1 data cache, 16 KB of L2 instruction cache and 512 KB 

of L2 data cache. Each node has a 33 MHz/32-bit PCI bus and runs the Linux 2.2.5-

15 operating system. All the nodes had Myrinet NICs running LANai version 7. 

Every node has a Fast Ethernet card and a Gigabit Ethernet card. On the software 

front, we used GM 1.1.3, MPICH-GM 1.2..3 and NPB 2.3 [23] for our testing 

purposes. MPICH-GM 1.2..3 ships with a default switch-point – the message size at 

which it crosses over from an “eager” protocol to “rendezvous” protocol – of 16K. 

Our initial tests with GM and ICGM showed a drop in MPICH bandwidth at 16K due 

to this switch. This was affecting our analysis of effects – if any - of ICGM and/or 

gateway software overheads for message sizes greater than 16K. Hence, we modified 
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the above cutoff to 32K. For the “p4” device used in sockets communications, we 

also increased the TCP send and receiver socket buffer sizes to 4 GB to make optimal 

use of the higher bandwidths provided by Gigabit Ethernet. 

The above cluster was used to simulate two clusters by logically grouping the PCs 

into different clusters by assigning a unique block of node ids to each “cluster”. One 

PC from each cluster was then used as a gateway node and the gateway software was 

installed on these. The sender and receiver nodes communicate with their respective 

gateways using ICGM over Myrinet while the gateways communicate with each other 

using socket calls over the Ethernet interfaces. Thus, each data path consists of 3 hops 

– the first and the last over Myrinet and the middle one over non-Myrinet. For a fair 

comparison, all IP traffic from the sender node to receiver node was also forced 

through three hops so that TCP applications on either the sender or receiver node also 

go through two hops of Myrinet and one hop of non-Myrinet in between. To achieve 

this, IP forwarding was turned on at the gateway nodes and the routing tables at the 

sender and receiver were updated with static routes passing through the gateway.  

Figure 5.1 shows the set up for the experiments. It is our belief that this represents a 

fairly common inter-cluster configuration - namely two Myrinet clusters connected by 

Fast Ethernet/ Gigabit Ethernet links.  
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ICGM Experimental Setup 

 

 

 

 

 

Sockets Experimental Setup 

 

 

 

 

 

 

Figure 5.1 : Experimental setup for comparative performance evaluation 

 

 

 

5.2 Latency Results 

In the latency experiments, we determine message latency to be one half of the 

measured round-trip time taken by a packet from the sender to the receiver. The test 

application on the sender node starts a timer; sends a message to a receiver 

application running on the receiver and awaits a reply. Upon receipt of this message, 
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the receiver replies using the same message. When this reply reaches the sender, it 

stops the timer and repeats this process a number of times and finally averages the 

time taken over the number of runs. The latency is then determined to be one-half of 

this average. This “pingpong” test is then repeated for varying message sizes (from 64 

bytes to 1K in increments of 64 bytes). The pingpong tests for latency were run using 

both 100 Mbps Fast Ethernet and 1 Gbps Gigabit Ethernet on the second hop. 

5.2.1 Latency Results over Fast Ethernet 

In Figure 5.2, we compare the latency results for the ICGM pingpong application and 

the TCP pingpong application. From the figure, it can be seen that ICGM has lower  
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Figure 5.2 : Comparison of latency over Fast Ethernet 
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latency than TCP for message sizes upto 1K. ICGM latency is about 45 microseconds 

lower than the TCP latency for the same message size. 

5.2.2 Latency Results over Gigabit Ethernet 

Performance of the pingpong applications using Gigabit Ethernet as the cluster 

interconnect are shown in Figure 5.3. ICGM again performs better than TCP though 

the latency difference is slightly lower (40 microseconds on the average) as compared 

to the Fast Ethernet case. 
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Figure 5.3 : Comparison of latency on Gigabit Ethernet 
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5.2.3 MPICH latency over Gigabit Ethernet 

The performance of MPICH over ICGM relative to MPICH over sockets was 

compared using Gigabit Ethernet on the middle hop. Figure 5.4 demonstrates that 

MPICH over ICGM shows significant improvement in latency over the sockets 

implementation of MPICH. MPICH-ICGM reduces latency by about 120 

microseconds. 
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Figure 5.4 : Comparison of MPICH latency 
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5.3 Bandwidth Results 

The bandwidth applications measure the portion of raw bandwidth that is available at 

the application level. In our test application for bandwidth, the sender starts a timer 

and pumps several messages for a given message size and waits for an 

acknowledgment from the receiver. When the receiver’s acknowledgment is received 

by the sender, the timer is stopped. The bandwidth is then measured using the 

message size and the duration between the start of data transmission and receipt of 

acknowledgment after adjusting for the time taken to send the acknowledgment itself 

- using the values obtained from the latency experiments. This test is conducted for 

messages ranging in size from 200 to 20000 bytes. The results of the bandwidth tests 

are presented below. 

5.3.1 Bandwidth Results over Fast Ethernet 

In Figure 5.5, we compare the performance of the ICGM bandwidth application 

against the TCP application using a Fast Ethernet interconnect. It can be observed that 

ICGM slightly outperforms TCP for most of the message sizes. Both ICGM and TCP  

peak at around 11 Mbytes/sec which is reasonable given the fact the raw bandwidth 

on  Fast Ethernet is only 100 Mbps. 
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Figure 5.5 : Comparison of bandwidth on Fast Ethernet 

 

 

 

5.3.2 Bandwidth Results over Gigabit Ethernet 

The bandwidth measurements were also taken using Gigabit Ethernet at the datalink 

layer. Our belief was that this would help us identify the bottlenecks – if any – in the 

gateway software, other than those due to the inherent limitations of TCP. From 

Figure 5.6, we find that ICGM performs much better than TCP especially at large 

message sizes. ICGM delivers a peak bandwidth of  around 23 Mbytes/sec while TCP 

peaks at slightly higher than 20 Mbytes/sec.  
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Bandwidth on Gigabit Ethernet 
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Figure 5.6 : Comparison of bandwidth on Gigabit Ethernet 

 

 

 

 

5.3.3 MPICH bandwidth over Gigabit Ethernet 

As in the latency experiments, we try to ensure that the benefits at the ICGM layer are 

reflected at the higher layers. Test bandwidth applications were written for MPICH 

over ICGM as well as the sockets implementation of MPICH. As shown in Figure 

5.7, the MPICH implementation on ICGM again outperforms its counterpart over 

sockets. MPICH-ICGM delivers a peak bandwidth of about 23 Mbytes/sec against a 

peak bandwidth of 12 Mbytes/sec using the sockets implementation of MPICH. 
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Figure 5.7 : Comparison of MPICH bandwidth 

 

 

 

 

5.4 ICGM overhead 

In the ICGM implementation we also need to ensure that the common case of intra-

cluster communication does not suffer due to the changes at the MCP level. It is vital 

that ICGM does not add too much overhead to the critical path of message 

transmission when the message does not require any forwarding. To observe the 

effects of the MCP changes on intra-cluster communications, we compared the 

performance of test applications with the original GM layer and that obtained using 

the ICGM layer. 
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5.4.1 Latency for intra-cluster messages 

Figure 5.8 shows the effect of ICGM on the latency for intra-cluster messages. As 

expected, there is a slight overhead associated with ICGM due to the additional 

checks. However, this difference is not very significant and is limited to 1-3 

microseconds. 
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Figure 5.8 : Latency overhead 
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5.4.2 Bandwidth for intra-cluster messages 

The bandwidth for messages within a cluster is measured for ICGM and GM. The 

results are shown in Figure 5.9. ICGM bandwidth shows more variability than GM 

for lower message sizes but delivers higher bandwidth as the message size increases. 

The reason for the variability can be attributed to changes in the GM fragmentation 

scheme. GM tries to split a large message into roughly equal chunks that would fit 

within the MTU of 4K. This explains the saw-toothed shape of the plots at roughly 

4K intervals. At these points, additional overhead is incurred for the extra DMA for a 

new packet. In the ICGM implementation however, we modified the default 

fragmentation scheme by just splitting a message into chunks of 4K. The reason was  
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Figure 5.9 : ICGM bandwidth overhead 
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that our preliminary tests for the inter-cluster case showed better bandwidth with this 

scheme. Probably, a hybrid scheme would deliver smoother bandwidth for intra-

cluster messages. 

5.4.3 MPICH-GM vs MPICH-ICGM 

MPICH performance is not adversely affected for intra-cluster traffic as can be seen 

from the Figure 5.10 and Figure 5.11. The latency is slightly higher in the ICGM case 

around 2 microseconds) while the bandwidth is almost the same for GM and ICGM. 
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Figure 5.10 : MPICH latency overhead 
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Figure 5.11 : MPICH bandwidth overhead 

 

 

 

5.5 NAS Parallel Benchmarks 

Applications from the NAS parallel benchmark (NPB) were used to test the 

performance of ICGM. The purpose of using the NPB suite was two-fold. Firstly, we 

wanted to test whether the benefits at the MPICH layer are passed on to the upper 

layers. Secondly, we wanted to test how the gateway software responds to multiple 

data flows. We ran the NPB suite using a 4-node configuration as well as an 8-node 

configuration. It should be noted that the 8-node figures for SP and BT are not 

available since these applications require the number of nodes to be a perfect square. 
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The experimental setups are the same as those for the MPICH tests – two Myrinet 

clusters interconnected by Gigabit Ethernet.  

For the inter-cluster test case, we chose half the nodes from one cluster and the other 

half from the other cluster. The results of running the NPB applications are shown in 

Figure 5.12. The suffix indicates the number of nodes used for the run.  
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Figure 5.12 : Performance of NPB applications across the cluster using ICGM and 

Sockets implementations. 
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The results indicate that ICGM performs as well or better than the Sockets 

implementation for CG, IS, SP and BT. The percentage reduction in execution time 

with ICGM for the 4-node case is 8%, 28%, 6% and 2% for CG, IS, SP and BT 

respectively. In case of EP, there is a slight increase ( < 1%) in execution time using 

ICGM. When MG is run with a 4-node configuration, ICGM takes almost 85% longer 

than Sockets. However, when 8 nodes are used, ICGM reduces the execution time by 

6%. For the LU application, Sockets performs consistently better than ICGM which 

takes almost twice as long to execute. 

To analyse the reason for ICGM’s poor performance in the case of MG and LU, we 

ran “intra-cluster” tests to study the behaviour of the NPB applications over 

unmodified GM. Thus, the intra-cluster results – shown in Figure 5.13 – compare the 

performance of GM vis-à-vis TCP. It should be noted that all traffic is inside the 

cluster and the source and destination are separated by a single Myrinet hop. GM 

performs better than TCP for CG, IS, SP and BT with percentage benefits of 14%, 

43%, 7% and 2% with 4-nodes. The 8-node execution times for CG and IS are 

respectively 15% and 50% lower for GM. In the case of EP, there is a very slight 

difference ( < 1%) between the times obtained with the two implementations. MG 

over 4-nodes takes one-and-a-half times as long as TCP. However, MG over GM 

performs better with 8-nodes reducing the execution time by 12%. TCP significantly 

reduces the execution time for LU (by nearly 50%) for the 4-node as well as 8-node 

configurations. 
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Figure 5.13 : Performance of NPB applications within a single cluster using GM and 

TCP 

 

 

 

From the above results, we can conclude that for applications that do benefit from 

GM - CG, IS, EP, SP and BT- the ICGM implementation delivers equal or better 

performance than the equivalent Sockets implementation. We have also established 

that the poor performance with MG and LU is not related to the ICGM 

implementation. 

5.6 Conclusions 

The experimental results discussed above indicate that ICGM delivers better 

performance than TCP in general in latency as well as bandwidth. For raw 
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applications written over ICGM or Sockets, ICGM reduces the latency by around 45 

us on Fast and Gigabit Ethernet. The delivered bandwidth is also higher with ICGM 

especially over Gigabit Ethernet where we realize a benefit of about 3 Mbytes/s. Test 

applications written over MPICH and using Gigabit Ethernet in the wide-area also 

benefit in terms of latency – around 120 us lower with ICGM – and bandwidth – a 

gain of almost 11 Mbytes/s. We also demonstrate that the common case of intra-

cluster communication does not incur a performance penalty due to the forwarding 

logic incorporated in ICGM. Comparative tests with the NPB suite also show that 

ICGM is able to pass on the performance gains from using GM to the application 

layer. Depending on the application and number of computing nodes, ICGM delivers 

2%-50% reduction in execution time. 
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CHAPTER 6   

 

 

RELATED WORK 

 

In this chapter, we discuss related efforts in the domain of inter-cluster 

communication models that rely on existing user-level protocols. For each approach, 

we highlight the conceptual differences relative to our approach. We also indicate , 

where applicable, similarities in the approaches. A description of the various 

approaches is presented below.  

6.1 Virtual Machine Interface 

Virtual Machine Interface (VMI) is a high level messaging library developed by 

members of NCSA’s cluster computing group. A recent effort at NCSA [12] attempts 

to address the issue of inter-cluster communication through the design of a gateway 

protocol called the Exterior Gateway Protocol. A project was undertaken to augment 

the VMI [13] library to support communications across clusters. VMI is intended to 

support multiple underlying communication protocols (shared memory, Sockets etc.) 

while providing a uniform API to application programmers. The VIA-based Exterior 

Gateway Protocol allows nodes belonging to different clusters to communicate by 
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interfacing with a gateway interconnecting the two clusters. The project also involves 

development of a load balancing strategy when multiple gateways can service a 

particular connection. The gateway in this case is a multi-homed host lying on both 

the clusters. Thus this approach is significantly different from our approach wherein 

gateway nodes lying on separate clusters communicate with each other using a 

traditional WAN protocol like TCP/IP. Moreover, the ICGM implementation does not  

require programmers to rewrite their code using a VMI middleware. 

6.2 The PacketWay Specification 

In 1997, there were attempts to develop an inter-networking protocol specifically for 

System Area Networks (SANs) and high-performance LANs. The PacketWay 

protocol [14], [15] is an open family of specifications intended to inter-network high-

performance computing clusters. The inter-cluster communication model presented is 

very similar to the one we have implemented i.e. a dedicated node on each SAN is 

responsible for the communication (called a “router” in PacketWay) and the routers 

can be interconnected using a non-SAN technology. PacketWay is much more 

general than ICGM in the sense that the communication endpoints can be physical 

entities (a processor, a smart memory board etc.) or logical entities (e.g. a group of 

cooperating processes). Apart from the traditional IP-like forwarding [24], 

PacketWay allows for source  routing affording high-speed communications. The 

Secure PacketWay specification also provides for secure communications over 

untrusted networks. Though the  Packetway specification seems to be well thought-

out and promises significant benefits to distributed computing, to the best of our 
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knowledge, there are no actual implementations available for current generation 

networks and user-level protocols.  

6.3 MPICH/Madeleine 

A slightly different approach to supporting heterogeneous communications has been 

adopted at ENS Lyon, France [16]. Instead of attacking the problem at the protocol 

level, this project aims at  handling heterogeneity at the higher layer of MPICH. 

MPICH is a very popular implementation of MPI and in this project, MPICH was 

modified to support multi-protocol features. This implementation of MPICH is based 

on the Madeleine [17] communication library. A new device has been added to 

MPICH that can handle various underlying protocols – currently supported ones are 

TCP, SISCI and BIP. However, one limitation with the current implementation is the 

inability to forward packets across heterogeneous networks, i.e., all the 

communicating nodes have to be connected pair-wise which implies that each host 

needs to have appropriate hardware (an Ethernet card for instance) and an IP address. 

This is a significant difference as compared to our work wherein we try to use WAN 

interconnects to provide transparent inter-cluster access and avoid the expense of 

requiring a WAN connection on every node. 

6.4 MPI/Pro 

MPI Software Technology (MSTI) has developed a scalable, robust MPI 1.2 

implementation called MPI/Pro [18] which is capable of handling multiple devices 

simultaneously. The MPI/Pro library allows parallel applications to run jobs across 

multiple clusters. Nodes within a cluster communicate using high-performance user-

level protocols and inter-cluster communication is supported by using TCP/IP. This 
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approach is similar to the MPICH/Madeleine implementation described earlier. 

Again, each node needs to have an IP address and a network interface that supports 

IP. Thus, unlike ICGM, MPI/Pro cannot support private IP spaces for security or 

administrative convenience. 
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CHAPTER 7   

 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Summary 

In this thesis, we have discussed the motivation for the development of wide-area 

capable versions of user-level network protocols. We discussed the various design 

issues involved in the development of such protocols. In particular, we described our 

experiences with the development of ICGM – a version of Myricom’s GM messaging 

system with inter-cluster communication capabilities. 

In earlier chapters, we discussed the implementation details of ICGM. We have also 

performed comparative evaluations of ICGM against Sockets-based implementations. 

We could demonstrate experimentally that at the expense of slight overhead for intra-

cluster communications, ICGM is able to outperform Sockets in latency as well as 

bandwidth. For message sizes of 1024 bytes and less, ICGM saves about 45 us using 

either Fast Ethernet or Gigabit Ethernet links between the clusters. In the bandwidth 

tests, both ICGM and Sockets deliver near-peak bandwidths of 11 Mbytes/sec on Fast 

Ethernet and on Gigabit Ethernet, ICGM delivers around 3 Mbytes/sec more than the 

equivalent Sockets implementation. Our experiments with MPICH show marked 
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improvements using ICGM. MPICH/ICGM offers latency benefits of about 120 us 

and exceeds MPICH/Sockets by around 11 Mbytes/sec in bandwidth. Experiments 

with the NAS parallel benchmarks indicate that applications like CG, IS, SP and BT 

that show better performance with GM can take advantage of lower execution times 

with ICGM as well. Performance benefits with ICGM range from 2%-50% depending 

on the application and the number of processing nodes. 

7.2 Future Work 

One of the areas in the current implementation of ICGM that can be improved is 

routing. Currently, the gateway node ids have been hardcoded and thus the gateway 

nodes are fixed at compile-time. However, this approach is not very flexible and the 

MCP should be changed to extract the information from a configuration file instead.  

The performance evaluation described in earlier chapters compared the performance 

of ICGM to that of TCP. This is not very realistic given that application programmers 

are more likely to use higher-level APIs rather than coding in GM or Sockets. An 

actual inter-cluster scenario currently would have the application program sitting atop 

a layer of MPICH which in turn runs over a middleware that dynamically uses either 

the Myrinet device or the sockets device. Thus, a more accurate evaluation would be 

to compare the performance of ICGM with a software suite such as MPI/Pro. This 

would also give an insight into overheads associated with middleware layers. 

In Section 2.1, we indicated that users should be able to configure ICGM with either 

the piecewise acknowledgement scheme or the chained acknowledgement scheme. 

The current implementation of ICGM uses only piecewise acks and it might be 

worthwhile to provide this option. 
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