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Abstract—A significant component of a high-performance
cluster is the compute node interconnect. InfiniBand, is an inter-
connect of such systems that is enjoying wide success due to low
latency (1.0-3.0usec) and high bandwidth and other features. The
Message Passing Interface (MPI) is the dominant programming
model for parallel scientific applications. As a result, the MPI
library and interconnect play a significant role in the scalability.
These clusters continue to scale to ever-increasing levels making
the role very important. As an example, the “Ranger” system
at the Texas Advanced Computing Center (TACC) includes over
60,000 cores with nearly 4000 InfiniBand ports. Previous work
has shown that memory usage simply for connections when using
the Reliable Connection (RC) transport of InfiniBand can reach
hundreds of megabytes of memory per process at that level. To
address these scalability problems a new InfiniBand transport,
eXtended Reliable Connection, has been introduced.

In this paper we describe XRC and design MPI over this new
transport. We describe the variety of design choices that must
be made as well as the various optimizations that XRC allows.
We implement our designs and evaluate it on an InfiniBand
cluster against RC-based designs. The memory scalability in
terms of both connection memory and memory efficiency for
communication buffers is evaluated for all of the configurations.
Connection memory scalability evaluation shows a potential 100
times improvement over a similarly configured RC-based design.
Evaluation using NAMD shows a 10% performance improvement
for our XRC-based prototype for the jac2000 benchmark.

Index Terms—ignore

I. INTRODUCTION

Large-scale deployments of clusters designed from largely
commodity-based components continue to be a major compo-
nent of high-performance computing environments. A signifi-
cant component of a high-performance cluster is the compute
node interconnect. InfiniBand [1], is an interconnect of such
systems that is enjoying wide success due to low latency (1.0-
3.0usec), high bandwidth and other features.

The Message Passing Interface (MPI) [2] is the dominant
programming model for parallel scientific applications. As
such, the MPI library design is crucial in supporting high-
performance and scalable communication for applications on
these large-scale clusters.

Clusters featuring the InfiniBand interconnect are continu-
ing to scale. As an example, the “Ranger” system at the Texas
Advanced Computing Center (TACC) includes over 60,000
cores with nearly 4000 InfiniBand ports [3]. By comparison,
the first year an InfiniBand system appeared in the Top500 list
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of fastest supercomputers was in 2003 with a 128 node system
at NCSA [4]. The latest list shows over 25% of systems are
now using InfiniBand as the compute node interconnect.

Current implementations of MPI over InfiniBand, such as
MVAPICH, Open MPI, HP MPI, and others, use the Reli-
able Connection (RC) transport of InfiniBand as the primary
transport. Earlier work has shown, however, that the RC
transport requires several KB of memory per connected peer,
leading to significant memory usage at large-scale. MVAPICH
now supports using the Unreliable Datagram (UD) transport
for communication [5], however, implementing MPI over
UD requires software-based segmentation, ordering and re-
transmission within the MPI library. Neither of these transports
are ideal for MPI on large-scale InfiniBand clusters.

The latest InfiniBand cards from Mellanox include support
for a new InfiniBand transport — eXtended Reliable Connection
(XRC). The XRC transport attempts to give the same feature
set of RC while providing additional scalability for multi-core
clusters. Instead of requiring each process to have a connection
to each other process in the cluster for full connectivity, XRC
allows a single process to require only one connection per
destination node. Given this capability, the connection memory
required can potentially reduce by a factor equal to the number
of cores per node, a potentially large degree as core counts
continue to increase.

In this paper we design MPI over the XRC transport
of InfiniBand and discuss the connection requirements and
opportunities it offers. An implementation of our design is
evaluated using standard MPI benchmarks and memory usage
is also measured. Application benchmark evaluation shows
a 10% speedup for the jac2000 NAMD dataset over an
RC-based implementation. Other benchmarks show increased
memory scalability but near-equal performance using the XRC
transport. For a 16 core per node cluster, XRC shows a nearly
100 times improvement in connection memory scalability over
a similar RC-based implementation.

The remaining parts of the paper are organized as follows: In
Section II we provide an overview of InfiniBand. In Section III
we discuss previous and related work. The new XRC transport
of InfiniBand is described in Section IV. We present our XRC
designs in Section V. Evaluation and analysis of an imple-
mentation of our designs is covered in Section VI. Finally,
conclusions and future work are presented in Section VII.
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II. INFINIBAND

InfiniBand is a processor and I/O interconnect based on
open standards [1]. It was conceived as a high-speed, general-
purpose I/O interconnect, and in recent years it has become
a popular interconnect for high-performance computing to
connect commodity machines in large clusters.

A. Communication Model

Communication in InfiniBand is accomplished using a
Queue based model. Sending and receiving end-points have
to establish a Queue Pair (QP) which consists of Send Queue
(SQ) and Receive Queue (RQ). Send and receive work requests
(WR) are then placed onto these queues for processing by
InfiniBand network stack. Completion of these operations is
indicated by InfiniBand lower layers by placing completed
requests in the Completion Queue (CQ). To receive a message
on a QP, a receive buffer must be posted to that QP. Buffers
are consumed in a FIFO ordering.

There are two types of communication semantics in Infini-
Band: channel and memory semantics. Channel semantics are
send and receive operations that are common in traditional
interfaces, such as sockets, where both sides must be aware of
communication. Memory semantics are one-sided operations
where one host can access memory from a remote node
without a posted receive; such operations are referred to as
Remote Direct Memory Access (RDMA). Remote write and
read are both supported in InfiniBand. In addition, remote
atomic operations are also supported. Both communication
semantics require communication memory to be registered
with InfiniBand hardware and pinned in memory. The registra-
tion operation involves informing the network-interface of the
virtual to physical address translation of the communication
memory. The pinning operation requires the operating system
to mark the pages corresponding to the communication mem-
ory as non-swappable. Thus, communication memory stays
locked in physical memory, and the network-interface can
access it as desired.

B. Existing Transport Services

There are four transport modes defined by the InfiniBand
specification: Reliable Connection (RC), Reliable Datagram
(RD), Unreliable Connection (UC) and Unreliable Datagram
(UD). Of these, RC, UC, and UD are required to be supported
by Host Channel Adapters (HCAs) in the InfiniBand specifi-
cation. RD is not required and is not available with current
hardware. All transports provide a checksum verification.

Reliable Connection (RC) is the most popular transport ser-
vice for implementing MPI over InfiniBand. As a connection-
oriented service, a QP with RC transport must be dedicated
to communicating with only one other QP. A process that
communicates with N other peers must have at least N QPs
created. The RC transport provides almost all the features
available in InfiniBand, most notably reliable send/receive,
RDMA and Atomic operations.

Unreliable Connection (UC) provides connection-oriented
service with no guarantees of ordering or reliability. It does

support RDMA write capabilities and sending messages larger
than the MTU size. Being connection-oriented in nature, every
communicating peer requires a separate QP. In regard to
resources required, it is identical to RC, while not providing
reliable service. Thus, it appears unattractive for implementing
MPI over this transport.

C. Shared Receive Queues

Introduced in the InfiniBand 1.2 specification, Shared Re-
ceive Queues (SRQs) were added to help address scalability
issues with InfiniBand memory usage. As noted earlier, in
order to receive a message on a QP, a receive buffer must
be posted in the Receive Queue (RQ) of that QP. To achieve
high-performance, MPI implementations pre-post buffers to
the RQ to accommodate unexpected messages.

When using the RC transport of InfiniBand, one QP is
required per communicating peer. To prepost receives on each
QP, however, can have very high memory requirements for
communication buffers. To give an example, consider a fully-
connected MPI job of 1K processes. Each process in the
job will require 1K - 1 QPs, each with n buffers of size
s posted to it. Given a conservative setting of n = 5 and
s = 8KB, over 40MB of memory per process would be
required simply for communication buffers that may not be
used. Given that current InfiniBand clusters now reach 60K
processes, maximum memory usage would potentially be over
2GB per process in that configuration.

Recognizing that such buffers could be pooled, SRQ support
was added so instead of connecting a QP to a dedicated RQ,
buffers could be shared across QPs. In this method, a smaller
pool can be allocated and then refilled as needed instead of
pre-posting on each connection.

Note that a QP can only be associated with one SRQ for
RC and UD. So any channel traffic on a QP will consume
a receive buffer from the attached SRQ. If another SRQ is
desired instead, a second QP must be created.

III. RELATED WORK

Much recent research has focused on the scalability of MPI
libraries over InfiniBand. Many of these research works focus
on reducing communication buffer requirements by utilizing
SRQ [6], [7]. In addition, the Reliable Connection memory
utilization has also been studied previously [8]. Yu, et al. pro-
posed a connection setup method where UD was used for the
first sixteen messages before an RC connection was setup [9];
in this case RC was the primary transport and no tradeoffs
were evaluated. Further, connection-less UD MPI designs
have been proposed in [5]. The zero-copy protocol over UD
was introduced in [10]. A hybrid approach that dynamically
utilizes both the RC and the UD channels based on application
communication pattern has also been designed [11].

Sur, et. al. previously evaluated ConnectX, which is the first
HCA to support XRC [12], [13]. Other groups have expressed
interest in providing XRC support in MPI, such as HP MPI
and Open MPI [14]. However, there is no detailed study on
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how this XRC implementation works, the associated design
challenges and interactions with applications.

Recently Shipman, et al. in [15] presented a mechanism for
efficient utilization of communication buffers using multiple
SRQs for different data sizes. For example, a 500 byte message
should only consume 512 bytes and a 1.5KB message should
only consume 2KB. Current designs have used a single SRQ,
where any message will consume a fixed size such as 8KB.
This evaluation and design, however, was with the Reliable
Connection (RC) transport of InfiniBand, not the XRC trans-
port.

IV. EXTENDED RELIABLE CONNECTION

In this section we describe the new eXtended Reliable
Connection (XRC) transport for InfiniBand. We first start with
the motivation for this new transport followed by the XRC
connection model and addressing.

A. Motivation

The motivation for creating the XRC transport comes from
the explosive growth in multi-core clusters. While node counts
continue to increase, core counts are increasing at an even
more rapid rate. The Sandia Thunderbird and TACC Ranger
show this trend:

The Sandia Thunderbird [16] was introduced in 2006 with
4K compute nodes each with dual CPUs for a total of 8K pro-
cessing cores. The TACC Ranger [3] was put into production
in 2008 with nearly 4K compute nodes. Each compute node
has four quad-core CPUs, for a total cluster size of nearly 64K
processing cores. Each at the time of introduction were in the
upper echelon of the fastest machines in the world.

Existing InfiniBand transports made no distinction between
connecting a process (generally one per core for MPI) and
connecting a node. Thus, the associated resource consumption
increased directly in relation to the number of cores in the
system. Earlier work [11] has shown that memory usage for the
RC transport can reach hundreds of MB of memory/process
at 16K processes.

To address this problem XRC was introduced. Instead of
having a per-process cost, XRC was designed to allow a single
connection from one process to an entire node. In doing so,
the maximum number of connections (QPs) per process can
grow with the number of nodes instead of the number of cores
in the system.

B. Connection Model

XRC provides the services of the RC transport, but defines
a very different connection model and method for determining
data placement on the receiver in channel semantics.

When using the RC transport of InfiniBand, the connection
model is purely based on processes. For one process to
communicate with another over InfiniBand, each side must
have a dedicated QP for the other. There is no distinction as
to the node in terms of allowing communication.

Figure 1(a) shows a fully-connected job, with each node
having two processes, each fully connected to the other

processes on other nodes. To maintain full connectivity in a
cluster with N nodes and C' cores per node, each process must
have (N —1) x C QPs created. In this figure and equation we
do not account for intra-node IB connections since the focus
of this paper is on MPI and libraries generally use a shared-
memory channel for communication within a node instead of
network loopback.

By contrast, XRC allows connection optimization based on
the location of a process. Instead of being purely process-
based, the node of the peer to connect to is now taken into
account. Consider a situation where a process A on hostl
wants to communicate with both process B and process C' on
host2. After A creates a QP with B, A is also now connected
to process C'. The addressing required is discussed in the next
section. The additional complication here is that although A
can now send to C, it is not reciprocal since C' cannot send
to A. To send a message, a process must have one XRC QP
to the node of the destination process and in our example B
has the QP to A (and can send to A). Thus, if C' wants to
send to A it would need to create a QP to A. Note, if C' had
a QP to a process D on the same node as A it would be able
to communicate with A.

Figure 1(b) shows a fully-connected XRC job. Instead of
requiring a new QP for each process, now each process needs
to only have one QP per node to be fully connected. In the
best case the number of QPs required for a fully-connected
job in a cluster with NV nodes and C' cores per node, is only
N QPs. This reduces the number of QPs required by a factor
of C, which is significant as the number of cores per node
continue to increase.

C. Addressing Method

In the past, when using RC each process would communi-
cate with a peer using a dedicated QP. Recall from Section II,
there are two forms of communication semantics: channel
and memory. In channel semantics the sender posts a send
descriptor to the QP and the receive descriptor is consumed on
the receive queue (RQ) connected to the QP. The sender does
not know if the receiver is using an SRQ or a dedicated RQ.
Thus, traditionally when using channel semantics the sender
has no knowledge or control over the receive buffer.

XRC allows a more flexible form of placement on the
receiver. When posting a send descriptor to an XRC QP, the
destination SRQ number is specified. This allows a sender
to specify a different “bucket” for different message sizes as
suggested by Shipman, et. al., but without a separate QP.

This same addressing scheme is also what allows a process
to communicate with other processes on the same node as
one that it has a QP connection with. Only the SRQ number
is needed for addressing, so as long as the SRQ number of the
destination is known and at least one XRC QP is connected
to a process on the node of the destination, a separate QP is
not required.

V. DESIGN

In this section we describe our MPI design using the new
XRC transport. We first begin with an overview of the goals
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in the design, and discuss issues related to the Shared Receive
Queues (SRQs) possible connection setup methods.

The main goals of the design are two-fold: First, the design
should reduce the memory consumption required for QPs and
communication contexts. Second, the design should provide
better communication buffer utilization. For example, this
means that messages of 900 bytes should only consume a
1KB buffer instead of an 8KB buffer. This means we wish to
reduce memory in two ways — both the connection memory
as well as the communication buffer memory.

A. Shared Receive Queues

As noted earlier, previous work [15] has shown that com-
munication buffers are not used efficiently when a single pool
of receive buffers is used. Instead of using a single pool of
buffers, multiple pools (SRQs) can be allocated. In this section
we describe the possible configurations available by using the
RC and XRC transports and multiple SRQs.

When using the RC transport this requires a QP for each
SRQ available. Figure 2(a) shows the connection between two
nodes, each with two processes. Despite increasing communi-
cation buffer efficiency, this requires a significant amount of
connection context memory.

Using the XRC transport and the SRQ addressing scheme,
a different QP is no longer required to have this same
functionality of selecting a receive buffer pool based on the
data size. This allows two different connection models:

o Exclusive XRC (EXRC): In this model each process still
creates a connection (QP) to every other process in the job
if needed. There is no use of the XRC ability to connect to
processes on the same node with an existing connection.
The destination SRQ ability is used to eliminate the
additional QPs required in the RC case. This model is
shown in Figure 2(b).

o Shared XRC (SXRC): Using this model both the addi-
tional QPs for multiple SRQs and for processes on the
same node are eliminated. This is the method that makes
the most of the XRC capabilities. Figure 2(c) shows this
configuration.

Node 3
P4
P5

(b) XRC Connection Model

InfiniBand Reliable Connection Models

Table I shows the number of QPs required using these
difference schemes. Additional information on best-case and
worst-case connection patterns is discussed below.

B. Connection Setup

As mentioned in Section IV, XRC allows one connection
per node in the optimal case.

To achieve an optimal fully-connected connection pattern
each process must have only a single connection to another
node. In this paper, fully-connected means that all processes
can send and receive from all other processes in the job.

Depending on the connection setup method an ideal setup or
worst-case fully-connected pattern may emerge, as shown in
Figure 3. We isolate two main issues that need to be addressed
in a connection setup model:

e Equal Layout: Each node must have the same number
of processes running on them. In other cases, such as 2
processes on node A and 4 on another node B, each of
the two processes on node A will require 2 QPs in the
best case since each process on B will require one QP to
host A in order to send to that host. Clearly, there will be
cases where a single connection will then not be possible.

e Balanced Mapping: Each process must connect with a
peer that has not already created a connection with
another process on its same node, otherwise the peer will
create two connections to a single node.

We propose three different connection models that are
possible for an XRC-based MPI implementation and discuss
their advantages and disadvantages:

Preconnect Method: If the job will require communication
between all peers, connections can be setup at the beginning
of the job. This is a static pre-connect method. In this case
the optimal connection setup can be made assuming each node
has the same number of processes. Even if there are non-equal
numbers of nodes, the minimal number of connections can be
created. This design has the problem that in many applications
many processes do not directly communicate with every other
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process in the job. Preconnecting the connections can waste a
significant amount of memory for a large job.

Predefined Method: In this alternative, the connections map
is predefined (as in the preconnect method), so the minimal
number of connections will be created for each process. The
difference between the predefined and preconnect alternatives
is that predefined is setup only as needed. The problem with
such a design is that it will in many cases require a QP to be
setup to a process that it doesn’t need to communicate with.
This process may also not be expecting any communication
either and may be in a computation loop. Unless the con-
nection setup can be done asynchronously, a deadlock could
potentially occur.

On-Demand Method: In the on-demand method, the minimal
connection map is not computed at all. Instead, whenever a
process needs to send a message to a process on a node it
doesn’t have a connection to already, it sends a connect request
to the process it needs to communicate with. In this way a
non-minimal connection pattern may emerge. The pattern is
dependent on the application.

Node 1 Node 2
PO ¢ I ] P4
P1 & NP5
P2 N  P6
P3 P7

(b) Worst-Case Connection Setup

Depending on communication characteristics, connections may be created differently

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the designs we described in
the previous section. We first start with a description of the
experimental platform and methodology. Then we evaluate
the memory usage and performance on microbenchmarks and
application benchmarks.

A. Experimental Platform

Our experimental test bed is a 64-core ConnectX InfiniBand
Linux cluster. Each of the 8 compute nodes has dual 2.33
GHz Intel Xeon “Clovertown” quad-core processors for a total
of 8 cores per node. Each node has a Mellanox ConnectX
DDR HCA. InfiniBand software support is provided through
the OpenFabrics/Gen2 stack [17], OFED 1.3 release. The
proposed designs are integrated into the MVAPICH-Aptus
communication device of MVAPICH [18] previously designed
in [11]. We extend the device to allow multiple RC QPs per
peer and multiple SRQs. We also extend it to support the
XRC transport in both the ESXRC and SXRC modes with
any number of SRQs. MVAPICH is a popular open-source
MPI implementation over InfiniBand and iWARP. It is based
on MPICH [19] and MVICH [20].

All of the designs are implemented into the same code base
and the same code flows. As a result, performance differences
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can be attributed to the transport instead of software differ-
ences.

B. Methodology
We evaluate six different combinations:

e Reliable Connection: Using the RC transport with a single
SRQ (RC-SRQ) as well as multiple SRQs (RC-MSRQ).

o Exclusive eXtended Reliable Connection: No sharing con-
nections, but using XRC. Both single SRQ (EXRC-SRQ)
and multiple SRQs (EXRC-MSRQ).

o Shared eXtended Reliable Connection: Share connections
across nodes. This is using the on-demand connection
setup from Section V. Both single (SXRC-SRQ) and
multiple (SXRC-MSRQ) SRQ configurations

Table I shows a summary of the characteristics of each of
these combinations where 7 is the number of nodes in the job
and c is the number of cores per node. We assume for this table
that processes are equally distributed. Note that RC-SRQ and
EXRC-SRQ are equivalent in the amount of resources required
as well as memory efficiency for communication buffers. The
EXRC-SRQ case is a control to evaluate whether there are
inherent performance differences between the XRC and RC
hardware implementations and if the addressing method of
XRC adds overhead.

In all of our evaluations we use the “on-demand” connection
setup method for XRC. The other connection setup methods
will have standard patterns. This method will provide the most
insights.

For the multiple SRQ modes, we use 6 SRQs. We use the
following sizes: 256 bytes, 512 bytes, 1KB, 2KB, 4KB, and
8KB. Messages above 8KB follow a zero-copy rendezvous
protocol.

C. Memory Usage

3000 ‘ : ‘ ‘
RC-SRQ/EXRC —+—
— RC-MSRQ -~
@ 2500 | SXRC (8-core) -~
§ SXRC (16-core) &
& 2000 f
om
© 1500 |
© X
8
> 1000 | )
o
E X
g 500 f
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128 256 512 1K 2K 4K 8K 16K 32

Number of Processes

Fig. 4. Fully-Connected MPI Memory Usage

We first assess the scalability of each of the configuration.
Figure 4 shows the memory usage when fully-connected.
RC-SRQ is the default configuration for most MPIs, one
connection per peer process. RC-MSRQ shows the memory

usage when 6 SRQs are created per process and therefore
the memory usage is six times higher than that of RC-SRQ.
The last two lines are the memory usage for the Shared XRC
implementations in the best case when in 8-core/node and
16-core/node configurations. EXRC has the same memory
footprint as RC-SRQ since a single QP is required still to
each process in the job.

From the figure we can observe that a fully-connected job
at 32K processes will consume 2.6GB of memory with the
RC-MSRQ configuration and 400 MB/process for the RC-
SRQ and EXRC-{M}SRQ configurations. The SXRC designs
reduce the memory usage in the best case to 54MB/process
and 26MB/process for the 8-core and 16-core configurations,
respectively. In the worst case the SXRC design will consume
as much as the “RC-Single” model.

D. MPI Microbenchmarks

To assess if there are basic performance differences be-
tween the different combinations we ran various standard mi-
crobenchmarks. The basic latency, bandwidth, and bi-direction
bandwidth results remained very similar across all combina-
tions and are not presented here.

To further assess performance when many peers are being
communicated with simultaneously we design a new mi-
crobenchmark. In this benchmark each process communicates
with a variable number of random peers in the job during
each iteration. In this throughput test each process sends and
receives a message from 32 randomly selected peers 8 times.
We ran this benchmark with 64 processes and report the results
in Figure 5. From the figure we can see the SXRC mode is
able to achieve higher throughput than the EXRC and RC
configurations. In top-end bandwidth the XRC modes are able
to outperform the RC mode.

E. Application Benchmarks

In this section we evaluate the configurations against two
application-based benchmarks. These are more likely to model
real-world use than microbenchmarks. We evaluate using the
molecular dynamics application NAMD and the NAS Parallel
Benchmarks (NPB). We evaluate all application benchmarks
using 64 processes.

NAMD:

NAMD is a fully-featured, production molecular dynamics
program for high performance simulation of large bimolecular
systems [21]. NAMD is based on Charm++ parallel objects,
which is a machine independent parallel programming system.
Of the standard data sets available for use with NAMD, we use
the apoal, flatpase, er—gre, and jac2000 datasets.

Figure 6(a) shows the overall performance results of the
different combinations on the various datasets. From the figure
we observe that for both apoal and flatpase performance
is very similar across all modes. For jac we see that the
RC-MSRQ performs 11% worse than the standard RC-SRQ
implementation. We believe this is due to HCA cache effects
when large numbers of QPs are being used at the same
time [11]. By contrast, we see that the SXRC modes provide
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TABLE I
COMPARISON OF NUMBER OF QUEUE PAIRS FOR VARIOUS CHANNELS

Attributes QPs per Process QPs per Node
SRQs [ Transport | Shared | Best Case [ Worst Case | Best Case | Worst Case
RC-SRQ 1 RC N nxc nxc n x c2 n x c2
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EXRC-SRQ 1 2 2
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Fig. 6.

over 10% improvement. For the same reason as RC-MSRQ
performs poorly, the SXRC modes perform well. Since a fewer
number of QPs are used they are more likely to stay in the
HCA cache. This mirrors what we observed in the many-to-
many benchmark in Figure 5. We can see in Figure 6(b) that
communication buffer usage is much improved when using
multiple SRQs. This figure shows the ratio of the total amount
of received messages to the total amount of memory in the
communication buffers used to service those messages.

Table II shows the connection characteristics of each of the

1 4 16 64 256 1K 4K 16K 64K
Message Size (bytes)

(b) Bandwidth

Many-to-Many Benchmark Evaluation

Single SRQ  m— Multiple SRQs  mmmmm

0.8 | 1

Memory Efficiency

apoat flatpase

Datasets

jac2000

er-gre

(b) Memory Efficiency

NAMD Evaluation

datasets. We can see that each of the datasets requires sig-
nificant communication, especially jac where every process
communicates with every other process. We observe for that
dataset on the sum of the connections for the processes on a
single node are only 82 as compared to 448 for RC-SRQ and
EXRC modes. The RC-MSRQ configurations requires even
more QPs, a total of 3136 QPs per node.

NAS Parallel Benchmarks:
The NAS Parallel Benchmarks [22] are a selection of ker-
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nels that are typical in various Computational Fluid Dynamics
(CFD) applications. As such, they are a good tool to evaluate
the performance of the MPI library and parallel machines. In
this evaluation the Class “C” benchmark size was used.

The performance results for each of the configurations are
shown in Figure 7(a). Very little performance variation was ob-
served in nearly all of the benchmarks. Only one benchmark,
IS, showed a consistent improvement with the SXRC transport.
The dominating factor in the IS benchmark performance is
the MPI_Alltoall collective for large message sizes. For
large message sizes the MPI_Alltoall collective sends
directly to each process in the job. In the SXRC configura-
tions, connections can be shared and can reduce connection
thrashing in the HCA cache. There seems to be little difference
between the SXRC-MSRQ and SXRC-SRQ modes in terms
of performance.

Figure 7(b) shows the memory efficiency obtained by using
multiple SRQs compared to a single SRQ. In all benchmarks
efficiency was greatly increased. In the case of SP, efficiency
rose from less than 6% to 75%. Using XRC we are able
to acheive this buffer efficeincy as well as a reduction in
connection memory.

The connection characteristics for the NAS benchmarks are
shown in Table III. The benchmarks have a variety of patterns.
IS, the benchmark where the SXRC modes outperformed, we
notice that all connections are required. Using SXRC each
process on average only needs to create 9.25 connections
as apposed to 56 connections for the ESRQ and RC-SRQ
modes (the shared memory channel is used for 7 others).
The on-demand connection setup method seems to work
well, although not always setting up the minimal number of
connections.

VII. CONCLUSION

Clusters are continuing to scale to ever-increasing core
counts. Node counts are increasing significantly, but much of
the growth in core counts is coming from multi-core clusters.
On large-scale clusters MPI is the primary programming
model.

As such a significant part of the cluster environment and the
high impact on application performance and scalability, the
MPI library has an important role. It also must maintain a low
resource footprint to allow applications to use as much node
memory as possible. The Reliable Connection (RC) transport
of InfiniBand has previously been show to scale poorly to very
large-scale process counts, restricting the ability of the MPI
library to remain scalable.

To address this scalability problem a new InfiniBand trans-
port, eXtended Reliable Connection (XRC) has been intro-
duced. Instead of requiring separate connections for each
process, it allows connections to be a perl-node basis. This
allows a reduction in memory usage by a factor of the number
of cores per node.

In this paper we have designed MPI for this new transport
and described the various opportunities it offers. We have
implemented our design and evaluated them against RC-based

implementations. Our study shows large gains in connec-
tion memory scalability. Also, using the SRQ addressing we
are able to show increased communication buffer efficiency
through multiple SRQs without sacrificing performance or
memory. We additionally show a 10% improvement in the
jac2000 dataset for NAMD using the XRC based design.

In the future we hope to evaluate our designs at a larger
scale. At a larger scale we would like to compare the XRC
based design with the hybrid RC-UD design proposed earlier.
We would also like to explore dynamic creation of SRQs to fit
the message sizes commonly used by the applications instead
of the static SRQ buffer pools used currently.
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TABLE 11
NAMD CHARACTERISTICS SUMMARY (PER PROCESS)

o\ [Z) . =]

z (2 = 2
g 1818 |8 g |8
E |g| & | &£ & £
g |2 | 2 |z
S |S| o o 5 o
) % oh % on o
o 3 o 3 o =
Benchmark Configuration < = < = < =
RC-MSRQ 38554 | 336 | 2284.50 | 2340
. RC-SRQ 4759 | 56 | 380.75 | 390
apoal | pxpe(MysrQ | M+ | 0 759 5T [ 38075 [ 390
XRC-{M}SRQ 909 | 33 | 7275 | 80
RC-MSRQ 33150 | 336 | 2652 | 2688
o RC-SRQ 5525 | 56 | 442 | 448
flapase | pype(mysrQ | 6219 | 63 5535 56 T 432 | 448
XRC-{M}SRQ 922 | 33 15 82
RC-MSRQ 336 | 336 | 2688 | 2688
y RC-SRQ 56 | 56 | 448 | 448
jac2000 | pypemisrQ | | 6 36 56 743 743
XRC-{M}SRQ 922 | 33 | B35 | 82
RC-MSRQ 12228 | 336 | 978 | 1188
RC-SRQ 1955 | 56 | 16025 | 193
ergre | ExRC-{M}SRQ | 238 | 03 3003 356 [ 16025 | 194
XRC-{M}SRQ 8§28 | 33 | 6625 | 1O

TABLE III
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