
LiMIC: Support for High-Performance MPI Intra-Node
Communication on Linux Cluster ∗

Hyun-Wook Jin Sayantan Sur Lei Chai Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

{jinhy, surs, chail, panda}@cse.ohio-state.edu

Abstract
High performance intra-node communication support

for MPI applications is critical for achieving best perfor-
mance from clusters of SMP workstations. Present day MPI
stacks cannot make use of operating system kernel support
for intra-node communication. This is primarily due to the
lack of an efficient, portable, stable and MPI friendly inter-
face to access the kernel functions. In this paper we attempt
to address design challenges for implementing such a high
performance and portable kernel module interface. We im-
plement a kernel module interface called LiMIC and inte-
grate it with MVAPICH, an open source MPI over Infini-
Band. Our performance evaluation reveals that the point-
to-point latency can be reduced by 71% and the band-
width improved by 405% for 64KB message size. In addi-
tion, LiMIC can improve HPCC Effective Bandwidth and
NAS IS class B benchmarks by 12% and 8%, respectively,
on an 8-node dual SMP InfiniBand cluster.

1. Introduction
Cluster based computing systems are becoming popular

for a wide range of scientific applications owing to their
cost-effectiveness. These systems are typically built from
Symmetric Multi-Processor (SMP) nodes connected with
high speed Local Area Networks (LANs) or System Area
Networks (SANs) [6]. A majority of these scientific ap-
plications are written on top of Message Passing Interface
(MPI) [2]. Even though high performance networks have
evolved and have very low latency, intra-node communica-
tion still remains order of magnitudes faster than network.
In order to fully exploit this, MPI applications usually run a
set of processes on the same physical node.

To provide high performance to MPI applications, an ef-
ficient implementation of intra-node message passing be-
comes critical. Although several MPI implementations [3,
12] provide intra-node communication support, the perfor-

∗ This research is supported in part by Department of Energy’s
grant #DE-FC02-01ER25506, National Science Foundation’s grants
#CCR-0204429 and #CCR-0311542 and a grant from Mellanox, Inc.

mance offered is not optimal. This is mainly due to several
message copies involved in the intra-node message passing.
Every process has its own virtual address space and can-
not directly access another process’s message buffer. One
approach to avoid extra message copies is to use operat-
ing system kernel to provide a direct copy from one process
to another. While some researchers have suggested this ap-
proach [7, 15, 12], their efforts fall short because of several
design limitations and the lack of portability.

In this paper, we propose, design and implement a
portable approach to intra-node message passing at the ker-
nel level. To achieve this goal, we design and implement
a Linux kernel module that provides an MPI friendly in-
terface. This module is independent of any communication
library or interconnection network. It also offers porta-
bility across the Linux kernels. We call this kernel mod-
ule as LiMIC (Linux kernel module for MPI Intra-node
Communication).

InfiniBand [1] is a high-performance interconnect based
on open standards. MVAPICH [3] is a high-performance
implementation of MPI over InfiniBand. MVAPICH is
based on the Abstract Device Layer of MPICH [8]. To eval-
uate the impact of LiMIC, we have integrated it into MVA-
PICH. Our performance evaluation reveals that we can
achieve a 405% benefit in bandwidth and 71% improve-
ment in latency for 64KB message size. In addition, we
achieve an overall improvement of 12% with HPCC Effec-
tive Bandwidth on an 8-node InfiniBand cluster. Further,
our application level evaluation with the NAS bench-
marks, Integer Sort, reveals a performance benefit of
10%, 8%, and 5% executing classes A, B, and C, respec-
tively, on an 8-node cluster.

The rest of this paper is organized as follows: Section 2
describes existing mechanisms for intra-node communica-
tion. In Section 3, we discuss limitations of previous kernel-
based approaches and suggest our solution, LiMIC. Then
we discuss the design challenges and implementation issues
of LiMIC in Section 4. We present performance evaluation
results in Section 5. Finally, this paper concludes in Sec-
tion 6.

2. Existing Intra-Node Communication
Mechanisms

2.1. NIC-Level Loopback

An intelligent NIC can provide a NIC-level loopback.
When a message transfer is initiated, the NIC can detect
whether the destination is on the same physical node or not.
By initiating a local DMA from the NIC memory back to
the host memory as shown in Figure 1(a), we can elimi-
nate overheads on the network link because the message is
not injected into the network. However, there still exist two
DMA operations. Although I/O buses are getting faster, the
DMA overhead is still high. Further, the DMA operations
cannot utilize the cache effect.

InfiniHost [11] is a Mellanox’s second generation In-
finiBand Host Channel Adapter (HCA). It provides inter-
nal loopback for packets transmitted between two Queue
Pairs (connections) that are assigned to the same HCA port.

2.2. User-Space Shared Memory

This design alternative involves each MPI process on a
local node, attaching itself to a shared memory region. This
shared memory region can then be used amongst the lo-
cal processes to exchange messages. The sending process
copies the message to the shared memory area. The re-
ceiving process can then copy over the message to its own
buffer. This approach involves minimal setup overhead for
every message exchange.

Figure 1(b) shows the various memory transac-
tions which happen during the message transfer. In the
first memory transaction labeled as 1; the MPI pro-
cess needs to bring the send buffer to the cache. The second
operation is a write into the shared memory buffer, la-
beled as 3. If the block of shared memory is not in
cache, another memory transaction, labeled as 2 will oc-
cur to bring the block in cache. After this, the shared
memory block will be accessed by the receiving MPI pro-
cess. The memory transactions will depend on the policy of
the cache coherency implementation and can result in ei-
ther operation 4a or 4b-1 followed by 4b-2. Then the
receiving process needs to write into the receive buffer, op-
eration labeled as 6. If the receive buffer is not in cache,
then it will result in operation labeled as 5. Finally, depend-
ing on the cache block replacement scheme, step 7 might
occur. It is to be noted that there are at least two copies in-
volved in the message exchange. This approach might
tie down the CPU with memory copy time. In addi-
tion, as the size of the message grows, the performance
deteriorates because vigorous copy-in and copy-out also de-
stroys the cache contents.

This shared memory based design has been used in
MPICH-GM [12] and other MPI implementations such as
MVAPICH [3]. In addition, Lumetta et al. [10] have dealt

with efficient design of shared memory message passing
protocol and multiprotocol implementation.

3. Kernel-Based Solution, Its Limitations, and
Our Approach

3.1. Kernel-Based Memory Mapping

Kernel-based memory mapping approach takes help
from the operating system kernel to copy messages di-
rectly from one user process to another without any addi-
tional copy operation. The sender or the receiver process
posts the message request descriptor in a message queue in-
dicating its virtual address, tag, etc. This memory is
mapped into the kernel address space when the other pro-
cess arrives at the message exchange point. Then the kernel
performs a direct copy from the sender buffer to the re-
ceiver application buffer. Thus this approach involves only
one copy.

Figure 1(c) demonstrates the memory transactions
needed for copying from the sender buffer directly to the
receiver buffer. In step 1, the receiving process needs to
bring the sending process’ buffer into cache. Then in step 3,
the receiving process can write this buffer into its own re-
ceive buffer. This may generate step 2 based on whether
the buffer was in cache already or not. Then, depend-
ing on the cache replacement policy, step 4 might be gener-
ated implicitly.

It is to be noted that the number of possible memory
transactions for the Kernel-based memory mapping is al-
ways less than the number in User-space shared memory
approach. We also note that due to the reduced number of
copies to and from various buffers, we can maximize the
cache utilization. However, there are other overheads. The
overheads include time to trap into the kernel, memory map-
ping overhead, and TLB flush time. In addition, still the
CPU resource is required to perform a copy operation.

There are several previous works that adopt this ap-
proach, which include [7, 15]. However, their designs lack
portability across different networks and deny flexibility to
the MPI library developer. To the best of our knowledge, no
other current generation MPI implementations provide such
a kernel support.

3.2. Our Approach: LiMIC

It is to be noted that the kernel-based approach has the
potential to provide efficient MPI intra-node communica-
tion. In this paper we are taking this approach, providing
unique features such as portability across various intercon-
nects and different communication libraries. This section
sharply distinguishes our approach and design philosophy
from earlier research in this direction. Our design princi-
ples and details of this approach are described in Section 4.

Traditionally, researchers have explored kernel based ap-
proaches as an extension to the features available in user-

�������� ��������

send buf recv buf

1 3
I/

O
 B

us

NIC

Memory

2

(a) NIC-Level Loopback

����
����
����
����

����
����
����
����

2

3

4a

6

CPU

Memory
Shared

CPU

Cache

Cache

Memory

send buf

recv buf

4b−1

4b−2
5

7

1

(b) User-Space Shared Memory

����
����
����
����

����
����
����
����

send buf

CPU

CPU

System

Memory

4

Cache

Cache

3

1

2

Bus

recv buf

(c) Kernel-Based Memory Mapping

Figure 1. Memory Transactions for Different Intra-Node Communication Schemes

level protocols. A high level description of these earlier
methodologies is shown in Figure 2(a). As a result, most of
these methodologies have been non-portable to other user-
level protocols or other MPI implementations. In addition,
these earlier designs do not take into account MPI mes-
sage matching semantics and message queues. Further, the
MPI library blindly calls routines provided by the user-level
communication library. Since some of the communication
libraries are proprietary, this mechanism denies any sort of
optimization-space for the MPI library developer.

Specific
Network

User−Level

MPI Library

Support
Kernel

Specific
Network

Any
Network

MPI Library

Protocol
Level LiMIC

Protocol

User

(a) Earlier Design
Approach

(b) LiMIC Design
Approach

Figure 2. Kernel Support Design Approaches

In order to avoid the limitations of the past ap-
proaches we look towards generalizing the kernel-access
interface and making it MPI friendly. Our implementa-
tion of this interface is called LiMIC (Linux kernel module
for MPI Intra-node Communication). Its high level di-
agram is shown in Figure 2(b). We note that such a
design is readily portable across different interconnects be-
cause its interface and data structures are not required to
be dependent on a specific user-level protocol or inter-
connect. Also, this design gives the flexibility to the MPI
library developer to optimize various schemes to make ap-
propriate use of the one copy kernel mechanism. For
instance, LiMIC provides flexibility to the MPI library de-
veloper to easily choose thresholds for the hybrid approach
with other intra-node communication mechanisms and tune
the library for specific applications. Such flexibility is dis-
cussed in [5]. As a result, LiMIC can provide portability

on different interconnects and flexibility for MPI perfor-
mance optimization.

4. Design and Implementation Issues

4.1. Portable and MPI Friendly Interface

In order to achieve portability across various Linux sys-
tems, we design LiMIC to be a runtime loadable module.
This means that no modifications to the kernel code is nec-
essary. Kernel modules are usually portable across major
versions of mainstream Linux. The LiMIC kernel module
can be either an independent module with device driver of
interconnection network or a part of the device driver. In ad-
dition, the interface is designed to avoid using communica-
tion library specific or MPI implementation specific infor-
mation.

In order to utilize the interface functions, very little mod-
ification to the MPI layer are needed. These are required
just to place the hooks of the send, receive and completion
of messages. The LiMIC interface traps into the kernel in-
ternally by using the ioctl() system call. We briefly de-
scribe the major interface functions provided by LiMIC.

- LiMIC Isend(int dest, int tag, int
context id, void* buf, int len,
MPI Request* req): This call issues a non
blocking send to a specified destination with appropri-
ate message tags.

- LiMIC Irecv(int src, int tag, int
context id, void* buf, int len,
MPI Request* req): This call issues a non-
blocking receive. It is to be noted that blocking
send and receive can be easily implemented over
non-blocking and wait primitives.

- LiMIC Wait(int src/dest, MPI Request*
req): This call just polls the LiMIC comple-
tion queue once for incoming sends/receives.

As described in Section 3.2, we can observe that the in-
terface provided by LiMIC does not include any specific in-
formation on a user-level protocol or interconnect. The in-
terface only defines the MPI related information and has an
MPI standard similar format.

4.2. Memory Mapping Mechanism

To achieve one-copy intra-node message passing, a pro-
cess should be able to access the other processes’ vir-
tual address space so that the process can copy the mes-
sage to/from the other’s address space directly. This can be
achieved by memory mapping mechanism that maps a part
of the other processes’ address space into its own address
space. After the memory mapping the process can access
mapped area as its own.

For memory mapping, we use kiobuf provided by the
Linux kernel. The kiobuf structure supports the abstrac-
tion that hides the complexity of the virtual memory system
from device drivers. The kiobuf structure consists of sev-
eral fields that store user buffer information such as page
descriptors corresponding to the user buffer, offset to valid
data inside the first page, and total length of the buffer. The
Linux kernel exposes functions to allocate kiobuf struc-
tures and make a mapping between kiobuf and page de-
scriptors of user buffer. In addition, since kiobuf inter-
nally takes care of pinning down the memory area, we can
easily guarantee that the user buffer is present in the physi-
cal memory when another process tries to access it. There-
fore, we can take advantage of kiobuf as a simple and safe
way of memory mapping and page locking.

Although the kiobuf provides many features, there are
several issues we must address in our implementation. The
kiobuf functions provide a way to map between kiobuf
and page descriptors of target user buffer only. Therefore,
we still need to map the physical memory into the address
space of the process, which wants to access the target buffer.
To do so, we use the kmap() kernel function. Another is-
sue is a large allocation overhead of kiobuf structures. We
performed tests on kiobuf allocation time on our cluster
(Cluster A in Section 5) and found that it takes around 60µs
to allocate one kiobuf. To remove this overhead from
the critical path, LiMIC kernel module preallocates some
amount of kiobuf structures during the module loading
phase and manages this kiobuf pool.

User BufferUser Buffer

...

kiobuf Kernel Memory

User

1. Request (ioctl) 4. Request (ioctl)

2. Map to kiobuf
(map_user_kiobuf)

6. Map to Kernel Memory (kmap)

7. Copy
(copy_from_user or
copy_to_user)

Kernel

3. Post Request

5. Search

Linked List of Posted Requests

Process A Process B

Figure 3. Memory Mapping Mechanism

Figure 3 shows the internal memory mapping operation
performed by LiMIC. When either of the message exchang-
ing processes arrives, it issues a request through ioctl()
(Step 1). If there is no posted request that can be matched
with the issued request, the kernel module simply saves in-
formation of page descriptors for the user buffer and pins
down it by calling map user kiobuf() (Step 2). Then,
the kernel module puts this request into the request queue
(Step 3). After that when the other message partner issues
a request (Step 4), the kernel module finds the posted re-
quest (Step 5) and maps the user buffer to the kernel mem-
ory by calling kmap() (Step 6). Finally, if the process is
the receiver, the kernel module copies the data from ker-
nel memory to user buffer using copy to user(), oth-
erwise the data is copied from user buffer to kernel mem-
ory by copy from user() (Step 7). The data structures
in the kernel module are shared between different instances
of the kernel executing on the sending and receiving pro-
cesses. To guarantee consistency, LiMIC takes care of lock-
ing the shared data structures.

4.3. Copy Mechanism
Since the copy needs CPU resources and needs to ac-

cess pinned memory, we have to carefully decide the tim-
ing of the message copy. The message copy could be done
in either of the three ways: copy on function calls of re-
ceiver, copy on wait function call, and copy on send and re-
ceive calls.

In this paper we suggest the design where the copy op-
eration is performed by send and receive functions (i.e.,
LiMIC Isend and LiMIC Irecv) so that we can pro-
vide better progress and less resource usage. In addition,
this approach is not prone to skew between processes. The
actual copy operation is performed by the process which ar-
rives later at the communication call. So, regardless of the
sender or receiver, the operation can be completed as soon
as both the processes have arrived. In addition, only the first
process is required to pin down the user buffer.

4.4. MPI Message Matching
There are separate message queues for messages sent or

received through the kernel module. This is done to allow
portability to various other MPI like message queues. So,
in general the LiMIC does not assume any specific mes-
sage queue structure. MPI messages are matched based on
Source, Tag and Context ID. Message matching can also
be done by using wild cards like MPI ANY SOURCE or
MPI ANY TAG. LiMIC implements MPI message match-
ing in the following manner:
• Source in the same node: In this case, the receive re-

quest is directly posted into the queue maintained by
LiMIC. On the arrival of the message, the kernel in-
stance at the receiver side matches the message based
on the source, tag and context id information and then
it passes the buffer into user space.

• Source in a different node: In this case, LiMIC is no
longer responsible for matching the message. The in-
terface hooks provided in the MPI should take care of
not posting the receive request into the kernel message
queue.

• Source in the same node and MPI ANY TAG: As
in the first case, the receive request is not posted in
the generic MPI message queue, but directly into the
LiMIC message queue. Now, the matching is done
only by the source and context id.

• MPI ANY SOURCE and MPI ANY TAG: In this case,
the source of the message might be on the same phys-
ical node but also it can be some other node which
is communicating via the network. So the receive re-
quest is posted in the MPI queue. Then the MPI inter-
nal function that senses an arrival of message checks
the send queue in the kernel module as well by using a
LiMIC interface,LiMIC Iprobe, and performs mes-
sage matching with requests in the MPI queue. If the
function finds a message which matches the request,
the function performs the receive operation by calling
the LiMIC receive interface.

Some specialized MPI implementations offload several
MPI functions into the NIC. For example, Quadrics per-
forms MPI message matching at the NIC-level [13]. The
LiMIC might need an extended interface for such MPI im-
plementations while most of MPI implementations can eas-
ily employ LiMIC.

5. Performance Evaluation

In this section we evaluate various performance charac-
teristics of LiMIC. As described in section 2, there are var-
ious design alternatives to implement efficient intra-node
message passing. MVAPICH [3] version 0.9.4 implements
a hybrid mechanism of User-space shared memory and
NIC-level loopback. The message size threshold used by
MVAPICH-0.9.4 to switch from User-space shared mem-
ory to NIC-level loopback is 256KB. In this section, we
use a hybrid approach for LiMIC, in which User-space
shared memory is used for short messages (up to 4KB)
and then Kernel-based memory mapping is used to per-
form an one copy transfer for larger messages. The choice
of this threshold is explained below in section 5.1. How-
ever, it is to be noted that each application can set a differ-
ent threshold as discussed in Section 3.2. Here on, all ref-
erences to MVAPICH-0.9.4 and LiMIC refer to the hybrid
designs mentioned above. In addition, we also provide per-
formance results for each of the individual design alterna-
tives, namely, User-space shared memory, NIC loopback,
and Kernel module.

We conducted experiments on two 8-node clusters with
the following configurations:

• Cluster A: SuperMicro SUPER X5DL8-GG nodes
with dual Intel Xeon 3.0 GHz processors, 512 KB L2
cache, PCI-X 64-bit 133 MHz bus

• Cluster B: SuperMicro SUPER P4DL6 nodes with
dual Intel Xeon 2.4 GHz processors, 512 KB L2 cache,
PCI-X 64-bit 133 MHz bus

The Linux kernel version used was 2.4.22smp from ker-
nel.org. All the nodes are equipped with Mellanox Infini-
Host MT23108 HCAs. The nodes are connected using Mel-
lanox MTS 2400 24-port switch. Test configurations are
named (2x1), (2x2), etc. to denote two processes on one
node, four processes on two nodes, and so on.

First, we evaluate our designs at microbenchmarks level.
Second, we present experimental results on message trans-
fer and descriptor post breakdown. Then we evaluate the
scalability of performance offered by LiMIC for larger clus-
ters. Finally, we evaluate the impact of LiMIC on NAS In-
teger Sort application kernel.

5.1. Microbenchmarks
In this section, we describe our tests for microbench-

marks such as point-to-point latency and bandwidth. The
tests were conducted on Cluster A.

The latency test is carried out in a standard ping-pong
fashion. The latency microbenchmark is available from [3].
The results for one-way latency is shown in Figures 4(a)
and 4(b). We observe an improvement of 71% for latency as
compared to MVAPICH-0.9.4 for 64KB message size. The
results clearly show that on this experimental platform, it is
most expensive to use NIC-level loopback for large mes-
sages. The User-space shared memory implementation is
good for small messages. This avoids extra overheads of
polling the network or trapping into the kernel. However,
as the message size increases, the application buffers and
the intermediate shared memory buffer no longer fit into the
cache and the copy overhead increases. The Kernel mod-
ule on the other hand can reduce one copy, hence maximiz-
ing the cache effect. As can be noted from the latency fig-
ure, after the message size of 4KB, it becomes more benefi-
cial to use the Kernel module than User-space shared mem-
ory. Therefore, LiMIC hybrid uses User-space shared mem-
ory for messages smaller than 4KB and the Kernel module
for larger messages.

For measuring the point-to-point bandwidth, a sim-
ple window based communication approach was used.
The bandwidth microbenchmark is available from [3]. The
bandwidth graphs are shown in Figures 4(c) and 4(d). We
observe an improvement of 405% for bandwidth for 64KB
message size as compared to MVAPICH-0.9.4. We also ob-
serve that the bandwidth offered by LiMIC drops at 256KB
message size. This is due to the fact that the cache size
on the nodes in Cluster A is 512KB. Both sender and re-
ceiver buffers and some additional data cannot fit into the
cache beyond this message size. However, the bandwidth
offered by LiMIC is still greater than MVAPICH-0.9.4.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32 64 128 256 5121k 2k 4k 8k16k32k64k

La
te

nc
y

(u
s)

Message Size (Bytes)

User Space Shared Memory
NIC Loopback
Kernel Module

MVAPICH-0.9.4
LiMIC

(a) Small Message Latency

0

2000

4000

6000

8000

10000

12000

64k 128k 256k 512k 1M 2M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

User Space Shared Memory
NIC Loopback
Kernel Module

MVAPICH-0.9.4
LiMIC

(b) Large Message Latency

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 4 8 16 32 64 128 256 5121k 2k 4k 8k16k32k64k

B
an

dw
id

th
 (

M
ill

io
nB

yt
es

/s
ec

)

Message Size (Bytes)

User Space Shared Memory
NIC Loopback
Kernel Module

MVAPICH-0.9.4
LiMIC

(c) Small Message Bandwidth

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

64k 128k 256k 512k 1M 2M 4M

B
an

dw
id

th
 (

M
ill

io
nB

yt
es

/s
ec

)

Message Size (Bytes)

User Space Shared Memory
NIC Loopback
Kernel Module

MVAPICH-0.9.4
LiMIC

(d) Large Message Bandwidth

Figure 4. MPI Level Latency and Bandwidth

0%

20%

40%

60%

80%

100%

4k 32k 1M

Message Size (Bytes)

Pe
rce

nta
ge

 of
 Ov

era
ll O

ve
rhe

ad

copy kmap trap rest

(a) Message Transfer Breakdown

0%

20%

40%

60%

80%

100%

4k 32k 1M

Message Size (Bytes)

Pe
rce

nta
ge

 of
 Ov

era
ll O

ve
rhe

ad

kiobuf map trap rest

(b) Descriptor Post Breakdown

Figure 5. LiMIC Cost Breakdown (Percentage of Overall Overhead)

5.2. LiMIC Cost Breakdown

In order to evaluate the cost of various operations which
LiMIC has to perform for message transfer, we profiled the
time spent by LiMIC during a ping-pong latency test. In
this section, we present results on the various relative cost
breakdowns on Cluster A.

The overhead breakdown for message transfer in per-
centages is shown in Figure 5(a). We observe that the mes-
sage copy time dominates the overall send/receive opera-
tion as the message size increases. For shorter messages,
we see that a considerable amount of time is spent in the
kernel trap (around 3µs) and around 0.5µs in queueing and
locking overheads (indicated as “rest”), which are shown
as 55% and 12% of the overall message transfer overhead
for 4KB message in Figure 5(a). We also observe that the
time to map the user buffer to the kernel address space (us-
ing kmap()) increases as the number of pages in the user
buffer increases.

The overhead breakdown for descriptor posting in per-
centages is shown in Figure 5(b). We observe that the time
to map the kiobuf with the page descriptors of the user
buffer forms a large portion of the time to post a descrip-
tor. It is because the kiobuf mapping overhead increases
in proportional to the number of pages. This step also in-
volves the pinning of the user buffer into physical memory.
The column labeled “rest” indicates again the queuing and
locking overheads.

5.3. HPCC Effective Bandwidth

To evaluate the impact of the improvement of intra-node
bandwidth on a larger cluster of dual SMP systems, we con-
ducted effective bandwidth test on Clusters A and B. For
measuring the effective bandwidth of the clusters, we used
b eff [14] benchmark. This benchmark measures the accu-
mulated bandwidth of the communication network of par-
allel and distributed computing systems. This benchmark
is featured in the High Performance Computing Challenge
benchmark suite (HPCC) [9].

Table 1 shows the performance results of LiMIC com-
pared with MVAPICH-0.9.4. It is observed that when both
processes are on the same physical node (2x1), LiMIC im-
proves effective bandwidth by 61% on Cluster A. It is also
observed that even for a 16 process experiment (2x8) the
cluster can achieve 12% improved bandwidth.

The table also shows the performance results on Clus-
ter B. The results follow the same trend as that of Cluster
A. It is to be noted that the messages latency on User-space
shared memory and Kernel module depends on the speed
of CPU while the NIC-level loopback message latency de-
pends on the speed of I/O bus. Since the I/O bus speed re-
mains the same between Clusters A and B, and only the
CPU speed reduces, the improvement offered by LiMIC re-
duces in Cluster B.

In our next experiment, we increased the number of pro-
cesses as to include nodes in both Clusters A and B. The
motivation was to see the scaling of the improvement in ef-
fective bandwidth as the number of processes is increased.
It is to be noted that the improvement percentage remains
constant (5%) as the number of processes is increased.

Table 1. b eff Results Comparisons (MB/s)
Cluster Config. MVAPICH LiMIC Improv.

A 2x1 152 244 61%
2x2 317 378 19%
2x4 619 694 12%
2x8 1222 1373 12%

B 2x1 139 183 31%
2x2 282 308 9%
2x4 545 572 5%
2x8 1052 1108 5%

A & B 2x16 2114 2223 5%

5.4. NAS Integer Sort

We conducted performance evaluation of LiMIC on IS
in NAS Parallel Benchmark suite [4] on Cluster A. IS is an
integer sort benchmark kernel that stresses the communica-
tion aspect of the network. We conducted experiments with
classes A, B and C on configurations (2x1), (2x2), (2x4),
and (2x8). The results are shown in Figure 6. Since the
class C is a large problem size, we could run it on the sys-
tem sizes larger than (2x2). We can observe that LiMIC can
achieve 10%, 8%, and 5% improvement of execution time
running classes A, B, and C respectively, on (2x8) configu-
ration. The improvements are shown in Figure 7.

To understand the insights behind the performance im-
provement, we profiled the number of intra-node messages
larger than 1KB and their sizes being used by IS within
a node. The results with class A are shown in Table 2.
We can see that as the system size increases, the size of
the messages reduces. The trend is the same on classes B
and C while the message size becomes larger than class A.
Since LiMIC performs better for medium and larger mes-
sage sizes, we see overall less impact of LiMIC on IS per-
formance as the system size increases. Also, it is to be noted
that since the message size reduces as the system size in-
creases, the message size eventually fits in the cache size
on (2x8) configuration. This results in maximizing the ben-
efit of LiMIC and raising the improvement at the (2x8) sys-
tem size as shown in Figure 7.

6. Conclusions and Future Work

In this paper we have designed and implemented a high
performance Linux kernel module (called LiMIC) for MPI
intra-node message passing. LiMIC is able to provide MPI
friendly interface and independence from proprietary com-
munication libraries and interconnects.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x1 2x2 2x4 2x8

Number of Processes

Ti
m

e
(s

ec
on

ds
)

MVAPICH-0.9.4

LiMIC

0

1

2

3

4

5

6

7

2x1 2x2 2x4 2x8
Number of Processes

Ti
m

e (
se

co
nd

s)

MVAPICH-0.9.4
LiMIC

0

2

4

6

8

10

12

14

16

2x2 2x4 2x8
Number of Processes

Ti
m

e (
se

co
nd

s)

MVAPICH-0.9.4
LiMIC

Figure 6. IS Total Execution Time Comparisons: (a) Class A, (b) Class B, and (c) Class C

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���

0%

2%

4%

6%

8%

10%

12%

14%

16%

2x1 2x2 2x4 2x8
Number of Processes

Im
pr

ov
em

en
t

CLASS A

CLASS B
���
��� CLASS C

Figure 7. IS Performance Improvement

Table 2. Intra-Node Message Size Distribution
for IS Class A

Message Size (Bytes) 2x1 2x2 2x4 2x8
1K-8K 44 44 44 44

32K-256K 0 0 0 22
256K-1M 0 0 22 0
1M-4M 0 22 0 0

4M-16M 22 0 0 0

To measure the performance of LiMIC, we have inte-
grated it with MVAPICH. Through the benchmark results,
we could observe that LiMIC improved the point-to-point
latency and bandwidth up to 71% and 405%, respectively.
In addition, we observed that employing LiMIC in an 8-
node InfiniBand cluster, increased the effective bandwidth
by 12%. Also, our experiments on a larger 16-node clus-
ter revealed that the improvement in effective bandwidth re-
mains constant as the number of processes increased. Fur-
ther, LiMIC improved the NAS IS benchmark execution
time by 10%, 8%, and 5% for classes A, B, and C respec-
tively, on an 8-node cluster.

As future work, we plan to enhance LiMIC to achieve
zero-copy intra-node communication by using the copy-on-
write and memory mapping mechanisms.

References

[1] InfiniBand Trade Association. http://www.infinibandta.com.

[2] MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org/docs/mpi-11-html/mpi-
report.html.

[3] MPI over InfiniBand Project. http://nowlab.cis.ohio-
state.edu/projects/mpi-iba/.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrish-
nan, and S. K. Weeratunga. The NAS Parallel Benchmarks.
The International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[5] L. Chai, S. Sur, H.-W. Jin, and D. K. Panda. Analysis of De-
sign Considerations for Optimizing Multi-Channel MPI over
InfiniBand. In CAC 2005, 2005.

[6] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Net-
works: An Engineering Approach. The IEEE Computer So-
ciety Press, 1997.

[7] P. Geoffray, C. Pham, and B. Tourancheau. A Software
Suite for High-Performance Communications on Clusters of
SMPs. Cluster Computing, 5(4):353–363, October 2002.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-
performance, portable implementation of the MPI Message
Passing Interface Standard. Parallel Computing, 22(6):789–
828, 1996.

[9] Innovative Computing Laboratory (ICL). HPC Challenge
Benchmark. http://icl.cs.utk.edu/hpcc/.

[10] S. S. Lumetta, A. M. Mainwaring, and D. E. Culler. Multi-
Protocol Active Messages on a Cluster of SMP’s. In SC ’97,
1997.

[11] Mellanox Technologies. Mellanox InfiniBand InfiniHost
MT23108 Adapters. http://www.mellanox.com, July 2002.

[12] Myricom Inc. Portable MPI Model Implementation over
GM, 2004.

[13] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg.
The Quadrics Network: High Performance Clustering Tech-
nology. IEEE Micro, 22(1):46–57, January-February 2002.

[14] R. Rabenseifner and A. E. Koniges. The parallel commu-
nication and I/O bandwidth benchmarks: beff and beffio.
http://www.hlrs.de/organization/par/services/models/mpi/b eff/.

[15] T. Takahashi, S. Sumimoto, A. Hori, H. Harada, and
Y. Ishikawa. PM2: High Performance Communication Mid-
dleware for Heterogeneous Network Environments. In SC
2000, 2000.

