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Abstract

NFS has traditionally used TCP or UDP as the under-
lying transport. However, the overhead of these stacks has
limited both the performance and scalability of NFS. Re-
cently, high-performance network such as InfiniBand have
been deployed. These networks provide low latency of a few
microseconds and high bandwidth for large messages up to
20 Gbps. Because of the unique characteristics of NFS pro-
tocols, previous designs of NFS with RDMA were unable
to exploit the improved bandwidth of networks such as In-
finiBand. Also, they leave the server open to attacks from
malicious clients. In this paper, we discuss the design prin-
ciples for implementing NFS/RDMA protocols. We propose,
implement and evaluate an alternate design for NFS/RDMA
on InfiniBand, which can significantly improve the security
of the server, compared to the previous design. In addition,
we evaluate the performance bottlenecks of using RDMA
operations in NFS protocols and propose strategies and de-
signs that tackle these overheads. With the best of these
strategies and designs, we demonstrate throughput of 700
MB/s on the OpenSolaris NFS/RDMA design and 900 MB/s
on the Linux design and an application level improvement
in performance of up to 50%. We also evaluate the scala-
bility of the RDMA transport in a multi-client setting, with
a RAID array of disks. Our design has been integrated into
the OpenSolaris kernel.

1. Introduction
The Network File System (NFS) protocol has become

the de facto standard for sharing files among users in a
distributed environment. Many sites currently have ter-
abytes of storage data on their I/O servers. I/O servers with
petabytes of data have also debuted. Fast and scalable ac-
cess to this data is critical. The ability of clients to cache
this data for fast and efficient access is limited, partly be-
cause of the demands on main memory on the client, which
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is usually allocated by memory hungry application such as
in-memory database servers. Also, for medium and large
scale clusters and environments, the overhead of keeping
client caches coherent quickly becomes prohibitively ex-
pensive. Under these conditions, it becomes important to
provide efficient low-overhead access to data from the NFS
servers.

Modern high-performance networks such as InfiniBand
provide low-latency and high-bandwidth communication.
For example, the current generation Single Data Rate (SDR)
NIC from Mellanox has a 4 byte message latency of less
than 3µs and a bi-directional bandwidth of up to 2 GB/s
for large messages. Applications can also deploy mech-
anisms like Remote Direct Memory Access (RDMA) for
low-overhead communication. RDMA operations allow
two appropriately authorized peers to read and write data
directly from each others address space. RDMA requires
minimal CPU involvement on the local end, and no CPU
involvement on the remote end. Designing the stack with
RDMA may eliminate the copy overhead inherent in the
TCP and UDP stacks and reduce CPU utilization.

An initial implementation of NFS/RDMA [1] for the
OpenSolaris operating system was designed by Callaghan,
et.al.. This design allowed the client to read data from the
server through RDMA Read. An important design consid-
eration for any new transport is that it should be as secure
as a transport based on TCP or UDP. Since RDMA requires
buffers to be exposed, it is critical that only trusted entities
be allowed to access these buffers. In most NFS deploy-
ments, the server may be considered trustworthy; the clients
cannot be trusted. So, exposing server buffers makes the
server vulnerable to snooping and malicious activity by the
client. Callaghan’s design exposed server buffers and there-
fore suffered from a security vulnerability. Also, inherent
limitations in the design of RDMA Read reduce the number
of RDMA Read operations that may be issued by a local
peer to a remote peer. This throttles the number of NFS op-
erations that may be serviced concurrently, limiting perfor-
mance. Finally, Callaghan’s design did not address the issue
of multiple buffer copies. Our experiments with the origi-
nal design of NFS/RDMA reveal that on two Opteron 2.2
GHz systems with x8 PCI-Express Single Data Rate (SDR)
InfiniBand adapters capable of a unidirectional bandwidth
of 900 MegaBytes/s (MB/s), the IOzone [8] multi-threaded
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Read bandwidth saturates at just under 375 MB/s.
In this paper, we take on the challenge of designing a

high performance NFS over RDMA for OpenSolaris. We
discuss the principles for designing NFS protocols with
RDMA. To this end we take an in-depth look at the se-
curity and buffer management vulnerabilities in the origi-
nal design of NFS over RDMA on OpenSolaris. We also
demonstrate the performance limitations of this RDMA
Read based design. We propose and evaluate an alternate
design based on RDMA Read and RDMA Write. This de-
sign eliminates the security risk to the server. We also look
at the impact of the new design on buffer management.

We try to evaluate the bottlenecks that arise while us-
ing RDMA as the underlying transport. While RDMA op-
erations may offer many benefits, they also have several
constraints such as memory registration, that may essen-
tially limit their performance, given the short bursty na-
ture of NFS protocols. With these designs and perfor-
mance optimizations in place, our experiments show that
with appropriate registration strategies, an RDMA Write
based design can achieve a peak IOzone Read throughput
of over 700 MB/s on OpenSolaris and a peak Read band-
width of close to 900 MB/s for Linux. Evaluation with
an Online Transaction Processing (OLTP) workload show
that the higher throughput of our proposed design can im-
prove performance up to 50%. We also evaluate the scala-
bility of the RDMA transport in a multi-client setting, with
a RAID array of disks. This evaluation shows that the Linux
NFS/RDMA design can provide an aggregate throughput of
900 MB/s to 7 clients, while NFS on a TCP transport satu-
rates at 360 MB/s.

In this paper we make the following contributions:
• A comprehensive discussion of the design considera-

tions for implementing NFS/RDMA protocols.
• A high performance implementation of NFS/RDMA

for OpenSolaris, and a discussion of its relationship to
a similar implementation for Linux.

• An in-depth performance evaluation of both designs.
• Design considerations for the relative limitations and

potential solutions to the problem of registration over-
head.

• Application evaluation of the NFS/RDMA protocols,
and the impact of registration schemes such as Fast
Memory Registration and All Physical Registration,
and a buffer registration cache design on performance.

• Impact of RDMA on the scalability of NFS proto-
cols with multiple clients and real disks supporting the
back-end file system.

The rest of the paper is presented as follows. Section 2
provides an overview of the InfiniBand Communication
model. Section 3 explores the existing NFS over RDMA
architecture on OpenSolaris and the Linux. In Section 4,
we propose our alternate design based on RDMA Read and
RDMA Write and compare it to the original design based
on RDMA Read only. Section 5 presents the performance
evaluation of the design. We discuss related work in sec-
tion 6. Finally, section 7 concludes the paper and looks at
future work.

2 Overview of the InfiniBand Communica-
tion Model

InfiniBand primarily uses the Reliable Connection
(RC) model. In this model, each initiating node needs to
be connected to every other node it wants to communicate
with through a peer-to-peer connection called a queue-pair
(send and receive work queues). InfiniBand supports two-
sided communication operations called Channel Primitives,
that require active involvement from both the sender and
receiver. One of the peers (receiver), posts a RDMA Re-
ceive (RV), that is matched to the corresponding RDMA
Send (RS) from the sending peer. One-sided communica-
tion primitives, called Memory Primitives, do not require
involvement by the receiver. Memory primitives RDMA
Write (RW) allow one of the peers to directly write into the
memory of the other peer, while RDMA Read (RR) allows
it to directly read remote memory locations. The InfiniBand
communication model is discussed further in [3].

A comparison of the different communication primitives
in terms of Security (Receive Buffer Exposed), Involvement
of the receiver (Receive Buffer Pre-Posted), Buffer protec-
tion (Steering Tag) and finally, Peer Message Exchanges for
Receive Buffer Address and Steering Tag (Rendezvous) is
shown in Table 1.

Table 1. Communication Primitive Properties
Channel Primitives Memory Primitives

Receive Buffer X

Exposed
Receive Buffer X

Pre-Posted
Steering Tag X

Rendezvous X

3. Overview of NFS/RDMA Architecture
NFS is based on the single server, multiple client model.

Communication between the NFS client and the server is
via the Open Network Computing (ONC) remote procedure
call (RPC). Callaghan et.al. designed an initial implemen-
tation of RPC over RDMA [1] for NFS, as shown in Fig-
ure 1. The RPC Call is prepended with the header shown
in Figure 2 and generally being small will go as an inline
request using RDMA Sends. Inline requests are discussed
further in [8]. In the rest of the paper, we use the terms
RPC/RDMA and NFS/RDMA interchangeably.

3.1. RDMA Protocol for bulk data transfer

NFS procedures such as READ, WRITE, READLINK
and READDIR can transfer data whose length is larger than
the inline data threshold. Also, the RPC call itself can be
larger than the inline data threshold. The bulk data can be
transferred in multiple ways. The existing approach is to
use RDMA Read only and is referred to as the Read-Read
design. Our approach is to use a combination of RDMA
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Figure 1. Architecture of the NFS/RDMA stack
in OpenSolaris

Read and RDMA Write operations and is called the Read-
Write design. We describe both these approaches in detail.
Before we do that, we define some essential terminologies.

Read Write or Reply
XID Version  Credits

Message 
Type

Transaction ID

Flow Control Field

0: An RPC call or Reply (RDMA_MSG)
1: An RPC call or Reply with no body (RDMA_NOMSG)
2: An RPC call or Reply with padding (RDMA_MSGP)
3: Client signals reply completion (RDMA_DONE)

Chunk List
RPC Call or
Reply Msg

RPC/RDMA Version   

Figure 2. RPC/RDMA header
Chunk Lists: These lists provide encoding for bulk data

whose length is larger than the inline data threshold or in-
line threshold and should be moved via RDMA. A chunk
list consists of a single counted array of segments of one
or more lists. Each of these lists is in turn a counted array
of zero or more segments. Each segment encodes a steer-
ing tag for a registered buffer, its length and its offset in
the main buffer. Chunks can be of different types; Read
chunks, Write chunks and Reply chunks. Read chunks used
in the Read-Read and Read-Write design encode data that
may be RDMA Read from the remote peer. Write chunks
used in the Read-Write design are used to RDMA Write
data to the remote peer. Reply chunks used in the Read-
Write design are used for procedures such as READDIR
and READLINK, and are used to RDMA Write the entire
NFS response.

The RPC Long Call is typically used when the RPC re-
quest itself is larger than the inline threshold. The RPC
Long Reply is used in situations where the RPC Reply is
larger than the inline size. Other bulk data transfer opera-
tions include READ and WRITE. All these procedures are
discussed in the next section.
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RPC Call (RS)

Long Call (RR)

Write (RR)

RPC Reply (RS)

Read (RR)

Long Reply (RR)

RDMA Done (RS)

Client Server

(a) Read-Read
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RPC Call (RS)

Long Call (RR)

Write (RR)

Client Server

RPC Reply (RS)

Long Reply (RW)

Read (RW)

(b) Read-Write

Figure 3. RPC/RDMA Designs
4. Proposed Read-Write Design and Compari-

son to the Read-Read Design

In this section, we discuss our proposed Read-Write de-
sign, which is based on a combination of RDMA Read and
RDMA Write. We also compare it with the original Read-
Read based design, which is based on RDMA Read. We
discuss the limitations of the Read-Read based design. Fol-
lowing that, we also discuss the advantages of the Read-
Write design. We look at registration strategies and designs
in section 4.3. The Read-Read based design is show in Fig-
ure 3(a). The Read-Write design is shown in Figure 3(b).

RPC Long Call: The RPC Long Call is typically used
when the RPC request itself is larger than the inline thresh-
old. In this case, the client encodes a chunk list along
with a RDMA NOMSG flag in the header shown in Fig-
ure 2. It is always combined with other NFS operations.
The RPC Long Call is identical in both the Read-Read and
Read-Write based designs. If the RPC Call message is
larger than the inline size, the RPC Call from the client
includes a Read Chunk List. The message type in the
header in Figure 2 is set to RDMA NOMSG. When the
server sees an RDMA NOMSG message type, it decodes
the read chunks encoded in the RPC/RDMA header and is-
sues RDMA Reads to fetch these chunks from the client.
The data from these chunks constitutes the remainder of the
header (the fields Read, Write or Reply Chunk List onwards
in Figure 2, which are overwritten by the incoming data).
The remainder of the header usually constitutes other NFS
procedures and is then decoded.

NFS Procedure WRITE: The NFS Procedure WRITE
is similar in both the Read-Read and Read-Write based de-
signs. For an NFS procedure WRITE, the client encodes
a Read chunk list. On the server side, these read chunks
are decoded, the RDMA Reads corresponding to each seg-
ment are issued and the server thread blocks till the RDMA
Reads complete. The operation is then handled by the NFS
layer. Once the operation completes, control is returned to
the RPC layer, that sends an RPC Reply via the inline proto-
col. In the simplest case, an NFS Procedure WRITE would
generate an RPC Call (RS) from the client to the server, fol-
lowed by the WRITE (RR) issued by the server to fetch the
data from the client, and finally, the RPC Reply (RS) from
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the server to the client.
NFS Procedure READ: In the Read-Read design the

NFS server needs to encode a Read chunk list in the RPC
Reply for an NFS READ Procedure. The RPC Reply is
then returned to the client via the inline protocol described
earlier. The client decodes the Read chunk lists and issues
the RDMA Reads. Once the RDMA Reads complete, the
client issues an RDMA DONE to the server, that allows it to
free its pre-registered buffers. So, the simplest possible se-
quence of operations for an NFS Procedure READ is; RPC
Call (RS) from the client to the server, followed by an RPC
Reply (RS) from the server to the client, then a READ (RR)
issued by the client to fetch the data from the server, and
finally, an RDMA DONE (RS) from the client to the server.

In the Read-Write design, for a NFS READ procedure,
the client needs to encode a Write chunk list in the RPC
Call. The server decodes and stores the Write chunk list.
When the NFS procedure READ returns, the data is RDMA
written back to the client. The server then sends the RPC
Reply back to the client with an encoded Write Chunk List.
The client uses this Write chunk list to determine how much
data was returned in the READ call. So, the simplest possi-
ble protocol operations would be; RPC Call from the client
to the server, then a Read (RW) from the server to the client,
and finally, an RPC Reply (RS) from the server to the client.

NFS Procedure READDIR and READLINK (RPC
Long Reply): The RPC Long Reply is typically used when
the RPC Reply is larger than the inline threshold. The RPC
Long Reply is used in both the Read-Read and Read-Write
designs but the mechanisms are different. It may either
be used independently, or combined with other NFS opera-
tions.

The design of the NFS procedure READ-
DIR/READLINK in the Read-Read design is similar
to the NFS Procedure READ in the Read-Read design. The
server encodes a Read chunk list in the RPC Reply, that
the client decodes. The client then issues RDMA Read
to fetch the data from the server. Once the RDMA Reads
complete, the client issues an RDMA DONE to the server
which allows the server to free its pre-registered buffers.

NFS Procedure READDIR and READLINK in the
Read-Write design follows the design of the NFS READ
procedure in the Read-Write design. The client needs to en-
code a Long Reply chunk list in the RPC Call. The server
decodes and stores the Long Reply chunk list. When the
NFS procedure returns, the server uses the long reply chunk
to RDMA Write the data back to the client. The server then
sends the RPC Reply back to the client with an encoded
Long Reply Chunk List. The client uses this chunk list
to determine how much data was returned in the READ-
DIR/READLINK call. In the simplest case, an RPC Long
Reply would entail the following sequence; RPC Call from
the client to the server, then a Long Reply (RW) from the
server to the client, and finally, an RPC Reply (RS) from the
server to the client.

Zero Copy Path for Direct I/O for the NFS READ
procedure: In addition to the basic design, we also intro-

duce a zero copy mechanism for user space addresses on
the NFS READ procedure path. This eliminates copies on
the client side and translates into reduced CPU utilization
on the client.

4.1. Limitations in the Read-Read Design

The Read-Read design has a number of limitations in
terms of Security and Performance, and we discuss these
issues in detail.

Security:
Server buffers exposed: An important design consider-

ation for an RDMA enabled RPC transport is that it must
not be less secure than other transports such as TCP. In
the Read-Read design, the server side buffers are exposed
for RDMA operations from the client. Since the steering
tags are 32-bits in length, a misbehaving or malicious client
might attempt to guess them and thereby possibly read a
buffer for which it did not have access to.

Malicious or Malfunctioning clients: The client needs to
send an RDMA DONE message to the server to indicate that
the buffers used for a Read or Reply chunk may be freed
up. A malicious of malfunctioning client may never send
the RDMA Done message, essentially tying up the server
resources.

Performance:
Synchronous RDMA Read Limitations: The RDMA

Read issued from the NFS/RDMA server are synchronous
operation. Once posted, the server typically has to wait for
the RDMA Read operation to complete. This is because
the InfiniBand specification does not guarantee ordering be-
tween a RDMA Read and a RDMA Send on the same con-
nection. This may add considerable latency to the server
thread.

Outstanding RDMA Reads: The number of RDMA Read
that can be typically serviced on a connection is governed
by two parameters, the Inbound RDMA Read Queue Depth
(IRD) and the Outbound RDMA Read Queue Depth (ORD).
The IRD governs the number of RDMA Read that can be
active at the remote peer; the ORD governs the number
of RDMA Read that might be actively issued concurrently
from the local peer. In the current Mellanox implementa-
tion of InfiniBand, the maximum allowed value for IRD and
ORD is typically 8. So, parallelism is reduced at the server,
especially for multi-threaded workloads.

4.2. Potential Advantages of the Read-
Write Design

The key design difference between the Read-Read (Fig-
ure 3(a)) and Read-Write (Figure 3(b)) protocol is that RPC
long replies and NFS READ data may be directly issued
from the server. To enable these, the client needs to en-
code either a Write chunk list or a long reply chunk list
(Section 3.1). Moving from a Read-Read based design to a
Read-Write based design has several advantages. The Mel-
lanox InfiniBand HCA has the ability to issue many RDMA
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Write operations in parallel. This reduces the bottleneck for
multi-threaded workloads. Also, since completion ordering
between RDMA Write and RDMA Sends is guaranteed in
InfiniBand, the server does not have to wait for the RDMA
Writes from the long reply or the NFS READ operation to
complete. The completion generated by the RDMA Send
for the RPC Reply will guarantee that the earlier RDMA
Writes have completed. This optimization also helps re-
duce the number of interrupts generated on the server. The
RDMA DONE message and its resulting interrupt is also
eliminated. The generation of the send completion interrupt
on the server is sufficient to guarantee that the RDMA op-
erations from the buffers have completed and they may be
deregistered. A similar guarantee also exists at the client,
when an RPC Call message is received. The elimination of
an additional message helps improve performance. Since
the server buffers are no longer exposed and the client can-
not initiate any RDMA operations to the server, the secu-
rity of the server is now enhanced. One potential disadvan-
tage of the Read-Write design is that the client buffers are
now exposed and may be corrupted by the server. Since
the server is usually a trusted entity in an NFS deployment,
this issue is less of a concern. The final advantage of the
Read-Write design is that the server no longer has to depend
on the RDMA DONE message from the client to deregister
and release it buffers.

4.3. Proposed Registration Strategies For
the Read-Write Protocol

InfiniBand requires memory areas to be registered for
communication operations. Registration is a multi-stage op-
eration. Registration involves assigning physical pages to
the virtual area. Once physical pages have been assigned
to the virtual area, the virtual to physical address transla-
tion needs to be determined. In addition, the physical pages
need to be prepared for DMA operations initiated by the
HCA. This involves making the pages unswappable by the
operating system, by pinning them. The virtual memory
system may perform both these operations. In addition, the
HCA needs to be made aware of the translation of the vir-
tual to physical addresses. The HCA also needs to assign
a steering tag that may be sent to remote peers for access-
ing the memory region in RDMA operations. The virtual to
physical translation and the steering tag are stored in the
HCA’s Translation Protection Table (TPT). This involves
one transaction across the I/O bus. However, the response
time of the HCA may be quite high, depending on the load
on the HCA, the organization of the TPT, allocation strate-
gies, overhead in the TPT, and so on. Because of the com-
bination of these factors, registration is an expensive opera-
tion and may constitute a considerable overhead, especially
when it is in the critical path. Deregistering a buffer requires
the actions from registration to be done in reverse. The
virtual and physical translations and steering tags need to
be flushed from the TPT (this involves a transaction across
the I/O bus). Once the TPT entries are invalidated, each of
them is released. The pages may then be unpinned. If the

physical pages were assigned to the virtual memory region
at the time of registration, this mapping is torn down and
the physical pages are released back into the memory pool.
Registration cost is evaluated quantitatively in [8].

The registration/deregistration points in the Read-Write
design are shown in Figure 4. For example, an NFS
procedure READ requires a buffer registration at points
2 and 5, and a deregistration at points 8 and 10.
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Figure 4. Registra-
tion points (Read-
Write)

From Figure 4, we can
see that the registration
overhead comes about
mainly because the trans-
port has to register the
buffer and deregister the
buffer on every opera-
tion at the client and
server. The registration
occurs once at the client,
and then at the server in
the RPC call path. Fol-
lowing that, deregistra-
tion happens once at the
server, and then once at
the client. To reduce the
cost of memory registra-
tion, different optimiza-

tions and registration modes have been introduced. These
include Fast Memory Registration and Physical Registra-
tion. In addition, we propose a buffer registration cache.
We discuss these next.

Fast Memory Registration (FMR): Fast Memory Reg-
istration allows for the allocation of the TPT entries and
steering tags at initialization, instead of at registration time.
The other operations of memory pinning, virtual to phys-
ical memory address translations and updating the HCA’s
TPT entries remain the same. The allocated entries in the
TPT cache are then mapped to a virtual memory area. This
technique is therefore not dependent on the response time
of the HCA to allocate and update the TPT entries and con-
sequently, may be considerably faster than a regular regis-
tration call. The limitations of FMR include the fact that it
is restricted to privileged consumers (kernel), and the fact
that the maximum registration area is fixed at initialization.

The Mellanox implementation of FMR introduces addi-
tional optimizations to the InfiniBand specification, which
are discussed in the technical report [8]. We have incorpo-
rated FMR calls (Mellanox FMR) in the regular registration
path in RPC/RDMA. To allow FMR to work transparently,
we use a fall-back path to regular registration calls in case
the memory region to be registered is too large.

Design of the Buffer Registration Cache: An alter-
nate registration strategy is to create a buffer registration
cache. A registration cache [10] has been shown to consid-
erably improve communication performance. Most regis-
tration caches have been implemented at the user level and
cache virtual addresses. Caching virtual addresses has been
shown to cause incorrect behavior in some cases [7]. Also,
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unless static limits are placed on the number of entries in the
registration cache, the cache tends to expand endlessly, par-
ticularly in the face of applications with poor buffer reuse
patterns. Finally, static limits may perform poorly depend-
ing on the dynamics of the application.

To alleviate some of these deficiencies, we have designed
an alternate buffer registration cache on the server. As
shown in Figure 1, the NFS server state machine is split
into two parts. The first part is on the RPC Call receive path
where the NFS call is received and is issued to the file sys-
tem. The second component is on return of control from the
file system. Buffer allocation is done when the request is re-
ceived on the server side and registration is executed when
control returns from the file system. To model this behavior,
we override the buffer allocation and registration calls and
feed them to the registration cache module. This module
allocates buffers of the appropriate size from a slab cache,
for the request and then registers them when the registration
request is made. If the buffer from the cache is already reg-
istered, no registration cost is encountered. The advantages
of this setup are that the cache is no longer based on vir-
tual address, and it is also linked to the systems slab cache,
that may reclaim memory as needed. Since the server never
sends a virtual address or steering tag to the client for any
buffers in the registration cache, this is as secure as regular
registration. The server registration cache scheme described
above can also be applied to the client side, as discussed in
the technical report [8].

All Physical Memory Registration: In addition to vir-
tual addresses, communication in InfiniBand may also take
place through physical addresses using the Global Steer-
ing Tag optimization. The Global Steering Tag available
to privileged consumers (such as kernel processes) allows
communication operations to use a special remote steering
tag. The communication operation must use physical ad-
dresses. The consumer must pin the memory before com-
munication starts and obtain a virtual to physical mapping,
but does not need to register the mapping with the HCA.
All Physical Registration should be used in environments
where there is confidence in the integrity of the server. This
is discussed further in the technical report [8].

5. Experimental Evaluation

In this section, we evaluate our proposed RDMA de-
sign with NFSv3. We first compare the Read-Write design
with the existing Read-Read design on OpenSolaris in Sec-
tion 5.1 (Linux did not have a Read-Read design). Follow-
ing that, Section 5.2 discusses the impact of different regis-
tration strategies on NFS/RDMA performance, both at the
microbenchmark and at the application-level. Finally, in
Section 5.3 we discuss how RDMA affects the scalability
of NFS protocols in an environment where the server stores
the data on a back-end RAID array and services multiple
clients.

5.1. Comparison of the Read-Read and
Read-Write Design

Figures 5 and 6 show the IOzone [8] Read and Write
bandwidth respectively with direct I/O on OpenSolaris. Per-
formance of the Read-Read design are shown as RR. Per-
formance of Read-Write design are shown as RW. The re-
sults were taken on dual Opteron x2100’s with 2GB mem-
ory and Single Data Rate (SDR) x8 PCI-Express Infini-
Band Adapters. These systems were running OpenSolaris
build version 33. The back-end file system used was tmpfs
which is a memory based file system. The IOzone file
size used was 128 MegaBytes to accommodate reasonable
multi-threaded workloads (IOzone creates a separate file
for each thread). The IOzone record size was varied from
128KB to 1MB.
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The Read-Write design performs better than the Read-
Read design for all record sizes, for the READ procedure.
The improvement in performance is approximately 47%
with one thread at a record size of 128 KB, but decreases
to about 5% at 8 threads. This improvement is primarily
due to the elimination of the RDMA DONE message as
well as the improved parallelism of issued RDMA Writes
from the server. The READ bandwidth for the Read-Read
design saturates at 375 MB/s; the Read-Write design sat-
urates at 400 MB/s. The client CPU utilization (we show
only a single line for both record sizes) for the Read-Write
design (NFS READ procedure) remains flat starting at only
2% at 1 thread increasing to about 5% at 8 threads. On
the other hand, the CPU utilization for the Read-Read de-
sign increases from about 4% at 1 thread to about 24% at
8 threads. This is primarily because of elimination of data
copies on the client direct I/O path in the Read-Write de-
sign. These results are discussed in detail in [8].
5.2. Impact of Registration Strategies

From section 4.3, we see that registration can constitute
a substantial overhead in the RPC/RDMA transport. We
evaluate the impact of Fast Memory Registration (FMR)
and buffer registration cache at the micro-benchmark and
application-level. We also look at the performance benefits
from the All Physical Registration mode in Linux.

Fast Memory Registration (FMR): We now look at the
impact of FMR discussed in section 4.3 on RPC/RDMA
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performance. The maximum size of the registered area was
set to be 1MB. In addition, the FMR pool size was set to
512, which is sufficient for up to 512 parallel requests of
1MB. We evaluate the IOzone read and write bandwidth.
Since the bandwidth from the different record sizes are sim-
ilar, we present results with only a 128KB record size and
a 128 MB file size. The results are shown in Figure 7(a)
and Figure 7(b). FMR can help improve Read bandwidth
from about 350 MB/s to approximately 400 MB/s, though
this comes at the cost of increased client CPU utilization.
Improvement in write bandwidth is modest, mainly because
the time saving from the reduction in registration cost is
dwarfed by the serialization of RDMA Reads (section 4.1).
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Figure 7. IOzone Bandwidth with different
registration strategies on OpenSolaris

Buffer Registration Cache: The performance impact of
the server registration cache on the IOzone Read and Write
bandwidth is shown in Figure 7(a) and Figure 7(b) respec-
tively. The registration cache dramatically improves perfor-
mance for both the Read and Write bandwidth which goes
up to 730 MB/s and 515 MB/s, respectively. The client CPU
utilization is also increased, though this is to be expected
with an increasing operation rate from the client. Again,
the limited number of outstanding RDMA Reads bounds
the improvement in Write throughput.
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Figure 8. FileBench OLTP Performance
Impact of registration schemes on application per-

formance: To evaluate the impact of memory registration
schemes on application performance, we have conducted
experiments using the online transaction processing (oltp)
workload from FileBench [8]. We tune the workload to use
the mean I/O size equal to 128KB. The results are shown
in Figure 8. The bars represent the throughput (opera-

tions/sec) and the lines represent the client CPU utilization
(cpu/operation). From Figure 8 we can see that the reg-
istration cache scheme improves throughput by up to 50%
compared with the dynamic registration scheme. This in-
dicates that the improvement in raw read/write bandwidth
has been translated into application performance. The CPU
utilization is slightly higher as expected. The FMR scheme
performs comparably with the dynamic registration scheme
in this benchmark.

All Physical Memory Registration: From Figure 9(a)
we can see that the all physical memory registration mode
yields the best Read throughput on Linux. It degrades the
Write performance compared with the FMR mode as shown
in Figure 9(b) because in all-physical mode the client cannot
do local scatter/gather and so has to build more read chunks,
therefore, each write request issues multiple RDMA Reads
from the server that hits the limit of incoming/outgoing
RDMA Reads in InfiniBand.
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5.3. Multiple Clients and Real Disks

In this section, we discuss the impact of RDMA on
an NFS setup with multiple clients. We use the Linux
NFS/RDMA design with the All Physical Memory Registra-
tion mode described in Section 4.3 for multiple client exper-
iments. The server and clients are dual Intel 3.6 Xeon boxes
with an InfiniBand DDR HCA. The clients have 4GB of
memory. The server was configured with 4GB and 8GB of
memory for each of the experiments below. The server has
eight HighPoint SCSI disks with RAID-0 stripping, format-
ted with the XFS file system,with each disk capable of 30
MB/s. Further details are available in [8]. A 1GB file size
per process with a 1MB record size is used for all the exper-
iments. We compare the aggregate Read bandwidth of the
Linux NFS/RDMA (RDMA) implementation with the reg-
ular NFS implementation over TCP on InfiniBand (IPoIB)
and Gigabit Ethernet (GigE). Figure 10(a) shows the IO-
zone read bandwidth with multiple clients and a server with
4GB main memory. RDMA and IPoIB reach a peak ag-
gregate bandwidth at three processes. RDMA peaks at 883
MB/s, while IPoIB reaches 326 MB/s. In comparison, GigE
saturates at 107 MB/s with a single process and then the ag-
gregate bandwidth goes down as the number of processes
increases. The limited bandwidth of Gigabit Ethernet (peak
theoretical bandwidth of 125 MB/s) may become a bottle-
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neck with future high performance disks and server with
large amount of memory. Figure 10(b) shows the IOzone
read bandwidth with 8GB on the server. RDMA is able to
maintain a peak bandwidth of above 900 MB/s up to seven
threads, while IPoIB saturates at about 360 MB/s. From
Figures 10(a) and 10(b), we can conclude that NFS/RDMA
is limited by the ability of the back-end server to service
data requests. NFS/TCP is a bottleneck on current genera-
tion systems.
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6. Related Work
The emergence of high speed networks with direct ac-

cess protocols such as RDMA lead to both the design of new
network file system and the revision of traditional network
file systems to enable file accesses over RDMA-capable net-
works such as iSER, an extension for Internet Small Com-
puter Systems Interface (iSCSI) protocol [4] and DAFS [5],
a user space file system library. Memory registration opti-
mizations, such as pre-registered buffers, are used in DAFS.
Goglin et. al. [2] replaced the RPC protocol of NFS with
Myrinet GM protocol to achieve Optimized Remote File
System Accesses (ORFA). Callaghan et. al. [1] provided an
initial implementation NFS over RDMA on Solaris. This
work has identified the security and performance shortcom-
ings in the work done by Callaghan et. al. [1] and proposed
alternate designs.

7 Conclusions and Future Work
In this paper, we have designed and evaluated an

NFS/RDMA protocol for high performance RDMA net-
works such as InfiniBand. This design is based on a combi-
nation of RDMA Read and RDMA Write. The design prin-
ciples considered include NFS server security, performance
and scalability. To improve performance of the protocol, we
have incorporated several different registration mechanisms
into our design. Our evaluations show that, the NFS/RDMA
design can achieve throughput, close to that of the under-
lying network and improve throughput of an OLTP work-
load by 50%. Finally, we also studied the scalability of
NFS/RDMA with multiple clients. This evaluation shows
that the Linux NFS/RDMA design can provide an aggre-
gate throughput of 900 MB/s to 7 clients, while NFS on a
TCP transport saturates at 360 MB/s. We observe that a

TCP transport is itself a bottleneck when servicing multiple
clients. By comparison, NFS/RDMA is able to maintain
throughput even with multiple clients; provided the back-
end file system is able to sustain it. As part of future work,
we would like to study buffer management and credit flow
control schemes to further enhance the multi-client scala-
bility of our NFS/RDMA design.

Software Distribution: The proposed NFS/RDMA de-
sign has been incorporated into the OpenSolaris kernel, and
may be downloaded from [6, 9].
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