
A Case for High Performance Computing with Virtual
Machines

Wei Huang† Jiuxing Liu‡ Bulent Abali‡ Dhabaleswar K. Panda†

† Computer Science and Engineering
The Ohio State University

Columbus, OH 43210
{huanwei, panda}@cse.ohio-state.edu

‡ IBM T. J. Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532
{jl, abali}@us.ibm.com

ABSTRACT
Virtual machine (VM) technologies are experiencing a resur-
gence in both industry and research communities. VMs of-
fer many desirable features such as security, ease of man-
agement, OS customization, performance isolation, check-
pointing, and migration, which can be very beneficial to
the performance and the manageability of high performance
computing (HPC) applications. However, very few HPC ap-
plications are currently running in a virtualized environment
due to the performance overhead of virtualization. Further,
using VMs for HPC also introduces additional challenges
such as management and distribution of OS images.

In this paper we present a case for HPC with virtual ma-
chines by introducing a framework which addresses the per-
formance and management overhead associated with VM-
based computing. Two key ideas in our design are: Virtual
Machine Monitor (VMM) bypass I/O and scalable VM im-
age management. VMM-bypass I/O achieves high commu-
nication performance for VMs by exploiting the OS-bypass
feature of modern high speed interconnects such as Infini-
Band. Scalable VM image management significantly reduces
the overhead of distributing and managing VMs in large
scale clusters. Our current implementation is based on the
Xen VM environment and InfiniBand. However, many of
our ideas are readily applicable to other VM environments
and high speed interconnects.

We carry out detailed analysis on the performance and
management overhead of our VM-based HPC framework.
Our evaluation shows that HPC applications can achieve
almost the same performance as those running in a native,
non-virtualized environment. Therefore, our approach holds
promise to bring the benefits of VMs to HPC applications
with very little degradation in performance.

1. INTRODUCTION
Virtual machine (VM) technologies were first introduced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’06 June 28-30, Cairns, Queensland, Australia.
Copyright 2006 ACM 1-59593-282-8/06/0006 ...$5.00.

in the 1960s [9], but are experiencing a resurgence in both
industry and research communities. A VM environment pro-
vides virtualized hardware interfaces to VMs through a Vir-
tual Machine Monitor (VMM) (also called hypervisor). VM
technologies allow running different guest VMs in a phys-
ical box, with each guest VM possibly running a different
guest operating system. They can also provide secure and
portable environments to meet the demanding requirements
of computing resources in modern computing systems.

Recently, network interconnects such as InfiniBand [16],
Myrinet [24] and Quadrics [31] are emerging, which provide
very low latency (less than 5 µs) and very high bandwidth
(multiple Gbps). Due to those characteristics, they are be-
coming strong players in the field of high performance com-
puting (HPC). As evidenced by the Top 500 Supercomputer
list [35], clusters, which are typically built from commodity
PCs connected through high speed interconnects, have be-
come the predominant architecture for HPC since the past
decade.

Although originally more focused on resource sharing, cur-
rent virtual machine technologies provide a wide range of
benefits such as ease of management, system security, per-
formance isolation, checkpoint/restart and live migration.
Cluster-based HPC can take advantage of these desirable
features of virtual machines, which is especially important
when ultra-scale clusters are posing additional challenges on
performance, scalability, system management, and adminis-
tration of these systems [29, 17].

In spite of these advantages, VM technologies have not
yet been widely adopted in the HPC area. This is due to
the following challenges:

• Virtualization overhead: To ensure system integrity,
the virtual machine monitor (VMM) has to trap and
process privileged operations from the guest VMs. This
overhead is especially visible for I/O virtualization,
where the VMM or a privileged host OS has to in-
tervene every I/O operation. This added overhead is
not favored by HPC applications where communica-
tion performance may be critical. Moreover, memory
consumption for VM-based environment is also a con-
cern because a physical box is usually hosting several
guest virtual machines.

• Management Efficiency: Though it is possible to uti-
lize VMs as static computing environments and run ap-
plications in pre-configured systems, high performance
computing cannot fully benefit from VM technologies

unless there exists a management framework which
helps to map VMs to physical machines, dynamically
distribute VM OS images to physical machines, boot-
up and shutdown VMs with low overhead in cluster
environments.

In this paper, we take on these challenges and propose
a VM-based framework for HPC which addresses various
performance and management issues associated with virtu-
alization. In this framework, we reduce the overhead of net-
work I/O virtualization through VMM-bypass I/O [18]. The
concept of VMM-bypass extends the idea of OS-bypass [39,
38], which takes the shortest path for time critical oper-
ations through user-level communication. An example of
VMM-bypass I/O was presented in Xen-IB [18], a proto-
type we developed to virtualize InfiniBand under Xen [6].
Bypassing the VMM for time critical communication oper-
ations, Xen-IB provides virtualized InfiniBand devices for
Xen virtual machines with near-native performance. Our
framework also provides the flexibility of using customized
kernels/OSes for individual HPC applications. It also al-
lows building very small VM images which can be managed
very efficiently. With detailed performance evaluations, we
demonstrate that high performance computing jobs can run
as efficiently in our Xen-based cluster as in a native, non-
virtualized InfiniBand cluster. Although we focus on Infini-
Band and Xen, we believe that our framework can be read-
ily extended for other high-speed interconnects and other
VMMs. To the best of our knowledge, this is the first study
to adopt VM technologies for HPC in modern cluster envi-
ronments equipped with high speed interconnects.

In summary, the main contributions of our work are:

• We propose a framework which allows high perfor-
mance computing applications to benefit from the de-
sirable features of virtual machines. To demonstrate
the framework, we have developed a prototype system
using Xen virtual machines on an InfiniBand cluster.

• We describe how the disadvantages of virtual machines,
such as virtualization overhead, memory consumption,
management issues, etc., can be addressed using cur-
rent technologies with our framework.

• We carry out detailed performance evaluations on the
overhead of using virtual machines for high perfor-
mance computing (HPC). This evaluation shows that
our virtualized InfiniBand cluster is able to deliver al-
most the same performance for HPC applications as
those in a non-virtualized InfiniBand cluster.

The rest of the paper is organized as follows: To further
justify our motivation, we start with more discussion on the
benefits of VM for HPC in Section 2. In Section 3, we pro-
vide the background knowledge for this work. We identify
the key challenges for VM-based computing in Section 4.
Then, we present our framework for VM-based high perfor-
mance computing in Section 5 and carry out detailed perfor-
mance analysis in Section 6. In Section 7, we discuss several
issues in our current implementation and how they can be
addressed in future. Last, we discuss the related work in
Section 8 and conclude the paper in Section 9.

2. BENEFITS OF VIRTUAL MACHINES FOR
HPC APPLICATIONS

With the deployment of large scale clusters for HPC appli-
cations, management and scalability issues on these clusters
are becoming increasingly important. Virtual machines can
greatly benefit cluster computing in such systems, especially
from the following aspects:

• Ease of management: A system administrator can
view a virtual machine based cluster as consisting of a
set of virtual machine templates and a pool of physi-
cal resources [33]. To create the runtime environment
for certain applications, the administrator needs only
pick the correct template and instantiate the virtual
machines on physical nodes. VMs can be shutdown
and brought up much easier than real physical ma-
chines, which eases the task of system reconfiguration.
VMs also provide clean solutions for live migration
and checkpoint/restart, which are helpful to deal with
hardware problems like hardware upgrades and failure,
which happen frequently in large-scale systems.

• Customized OS: Currently most clusters are utiliz-
ing general purpose operating systems, such as Linux,
to meet a wide range of requirements from various user
applications. Although researchers have been suggest-
ing that light-weight OSes customized for each type
of application can potentially gain performance bene-
fits [10], this has not yet been widely adopted because
of management difficulties. However, with VMs, it is
possible to highly customize the OS and the run-time
environment for each application. For example, ker-
nel configuration, system software parameters, loaded
modules, as well as memory and disk space can be
changed conveniently.

• System Security: Some applications, such as system
level profiling [27], may require additional kernel ser-
vices to run. In a traditional HPC system, this requires
either the service to run for all applications, or users to
be trusted with privileges for loading additional kernel
modules, which may lead to compromised system in-
tegrity. With VM environments, it is possible to allow
normal users to execute such privileged operations on
VMs. Because the resource integrity for the physical
machine is controlled by the virtual machine monitor
instead of the guest operating system, faulty or mali-
cious code in guest OS may in the worst case crash a
virtual machine, which can be easily recovered.

3. BACKGROUND
In this section, we provide the background information

for our work. Our implementation of VM-based comput-
ing is based on the Xen VM environment and InfiniBand.
Therefore, we start with introducing Xen in Section 3.1 and
the InfiniBand in Section 3.2. In Section 3.3, we introduce
Xenoprof, a profiling toolkit for Xen we used in this paper.

3.1 Overview of the Xen Virtual Machine
Monitor

Xen is a popular high performance VMM originally devel-
oped at the University of Cambridge. It uses paravirtualiza-
tion [41], which requires that the host operating systems be
explicitly ported to the Xen architecture, but brings higher
performance. However, Xen does not require changes to the

application binary interface (ABI), so existing user applica-
tions can run without any modification.

Device Manager
and Control
Software

(Domain0)
VM0

Unmodified
User

Software

Unmodified
User

Software

VM1 VM2
(Guest Domain) (Guest Domain)

Safe HW IF Control IF Event Channel Virtual CPU Virtual MMU

Hardware (SMP, MMU, Physical Memory, Ehternet, SCSI/IDE)

Guest OS
(XenoLinux)

Guest OS
(XenoLinux)

Guest OS
(XenoLinux)

Back−end driver

native
Device
Driver

Xen Hypervisor

front−end driverfront−end driver

Figure 1: The structure of the Xen hypervisor, host-
ing three xenoLinux operating systems

Figure 1(courtesy [30]) illustrates the structure of a phys-
ical machine running Xen. The Xen hypervisor (the VMM)
is at the lowest level and has direct access to the hardware.
The hypervisor is running in the most privileged processor-
level. Above the hypervisor are the Xen domains (VMs).
Guest OSes running in guest domains are prevented from
directly executing privileged processor instructions. A spe-
cial domain called Domain0 (or Dom0), which is created
at boot time, is allowed to access the control interface pro-
vided by the hypervisor and performs the tasks to create,
terminate or migrate other guest domains (User Domain or
DomU) through the control interfaces.

In Xen, domains communicate with each other through
shared pages and event channels, which provide an asyn-
chronous notification mechanism between domains. A “send”
operation on one side of the event channel will cause an event
to be received by the destination domain, which may in turn
cause an interrupt. If a domain wants to send data to an-
other, the typical scheme is for a source domain to grant
access to local memory pages to the destination domain and
then send a notification event. Then, these shared pages are
used to transfer data.

Most existing device drivers assume they have complete
control of the device, so there cannot be multiple instantia-
tions of such drivers in different domains for a single device.
To ensure manageability and safe access, device virtualiza-
tion in Xen follows a split device driver model [12]. Each
device driver is expected to run in an Isolated Device Do-
main (or IDD, typically the same as Dom0), which also hosts
a backend driver, running as a daemon and serving the ac-
cess requests from DomUs. The guest OS in DomU uses a
frontend driver to communicate with the backend. The split
driver organization provides security: misbehaving code in
one DomU will not result in failure of other domains.

3.2 InfiniBand
InfiniBand [16] is an emerging interconnect offering high

performance and features such as OS-bypass. InfiniBand
host channel adapters (HCAs) are the equivalent of network
interface cards (NICs) in traditional networks. A queue-
based model is presented to the customers. A Queue Pair
(QP) consists of a send work queue and a receive work queue.
Communication instructions are described in Work Queue

Requests (WQR), or descriptors, and are submitted to the
QPs. Submitted WQRs are executed by the HCA and the
completions are reported through a Completion Queue (CQ)
as Completion Queue Entries (CQE). InfiniBand requires all
buffers involved in communication be registered before they
can be used in data transfers. Upon the success of registra-
tion, a pair of local and remote keys are returned. They will
be used later for local and remote (RDMA) accesses.

Initiating data transfer (posting WQRs) and completion
of work requests notification (poll for completion) are time-
critical tasks that need to be performed by the application in
a OS-bypass manner. In the Mellanox [21] approach, which
represents a typical implementation of InfiniBand specifi-
cation, these operations are done by ringing a doorbell.
Doorbells are rung by writing to the registers that form
the User Access Region (UAR). UAR is memory-mapped
directly from a physical address space that is provided by
HCA. It allows access to HCA resources from privileged as
well as unprivileged mode. Posting a work request includes
putting the descriptors (WQR) to a QP buffer and writing
the doorbell to the UAR, which is completed without the
involvement of the operating system. CQ buffers, where the
CQEs are located, can also be directly accessed from the pro-
cess virtual address space. These OS-bypass features make
it possible for InfiniBand to provide very low communication
latency.

OS−bypass

User−level Application

User−level HCA Driver

InfiniBand HCA

Kernel
User−space

User −level Infiniband Service

Core Infiniband Modules

HCA Driver

Figure 2: Architectural overview of OpenIB Gen2
stack

OpenIB Gen2 [26] is a popular IB stack provided by the
OpenIB community. Xen-IB presented in this paper is based
on the OpenIB-Gen2 driver. Figure 2 illustrates the archi-
tecture of the Gen2 stack.

3.3 Xenoprof: Profiling in Xen VM Environ-
ments

Xenoprof [2] is an open source system-wide statistical pro-
filing toolkit developed by HP for the Xen VM environment.
The toolkit enables coordinated profiling of multiple VMs in
a system to obtain the distribution of hardware events such
as clock cycles, cache and TLB misses, etc.

Xenoprof is an extension to Oprofile [27], the statistical
profiling toolkit for Linux system. For example, Oprofile
can collect the PC value whenever the clock cycle counter
reaches a specific count to generate the distribution of time
spent in various routines at Xen domain level. And through
multi-domain coordination, Xenoprof is able to figure out
the distribution of execution time spent in various Xen do-
mains and the Xen hypervisor (VMM).

In this paper, we use Xenoprof as an important profiling
tool to identify the bottleneck of virtualization overhead for
HPC application running in Xen environments.

4. CHALLENGES FOR VM-BASED COM-
PUTING

In spite of the advantages of virtual machines, their usage
in cluster computing has hardly been adopted. Performance
overhead and management issues are the major bottlenecks
for VM-based computing. In this section, we identify the key
challenges to reduce the virtualization overhead and enhance
the management efficiency for VM-based computing.

4.1 Performance Overhead
The performance overhead of virtualization includes three

main aspects: CPU virtualization, memory virtualization
and I/O virtualization.

Recently high performance VM environments such as Xen
and VMware are able to achieve low cost CPU and mem-
ory virtualization [6, 40]. Most of the instructions can be
executed natively in the guest VMs except a few privileged
operations, which are trapped by the virtual machine mon-
itor. This overhead is not a big issue because applications
in the HPC area seldom call these privileged operations.

I/O virtualization, however, poses a more difficult prob-
lem. Because I/O devices are usually shared among all VMs
in a physical machine, the virtual machine monitor (VMM)
has to verify that accesses to them are legal. Currently, this
requires the VMM or a privileged domain to intervene on ev-
ery I/O access from guest VMs [34, 40, 12]. The intervention
leads to longer I/O latency and higher CPU overhead due
to context switches between the guest VMs and the VMM.

Figure 3: NAS Parallel Benchmarks

Figure 3 shows the performance of the NAS [25] Paral-
lel Benchmark suite on 4 processes with MPICH [3] over
TCP/IP. The processes are on 4 Xen guest domains (Do-
mUs), which are hosted on 4 physical machines. We com-
pare the relative execution time with the same test on 4
nodes with native environment. For communication inten-
sive benchmarks such as IS and CG, applications running
in virtualized environments perform 12% and 17% worse,
respectively. The EP benchmark, however, which is com-
putation intensive with only a few barrier synchronization,
maintains the native level of performance.

Table 1 illustrates the distribution of execution time col-
lected by Xenoprof. We find that for CG and IS, around
30% of the execution time is consumed by the isolated de-
vice domain (Dom0 in our case) and the Xen VMM for pro-
cessing the network I/O operations. On the other hand, for
EP benchmark, 99% of the execution time is spent natively
in the guest domain (DomU) due to a very low volume of
communication. We notice that if we run two DomUs per

Dom0 Xen DomU
CG 16.6% 10.7% 72.7%
IS 18.1% 13.1% 68.8%

EP 00.6% 00.3% 99.0%
BT 06.1% 04.0% 89.9%
SP 09.7% 06.5% 83.8%

Table 1: Distribution of execution time for NAS

node to utilize the dual CPUs, Dom0 starts competing for
CPU resources with user domains when processing I/O re-
quests, which leads to even larger performance degradation
compared to the native case.

This example identifies I/O virtualization as the main
bottleneck for virtualization, which leads to the observa-
tion that I/O virtualization with near-native performance
would allow us to achieve application performance in VMs
that rivals native environments.

4.2 Management Efficiency
VM technologies decouple the computing environments

from the physical resources. As mentioned in Section 2, this
different view of computing resources bring numerous ben-
efits such as ease of management, ability to use customized
OSes, and flexible security rules. Although with VM en-
vironments, many of the administration tasks can be com-
pleted without restarting the physical systems, it is required
that VM images be dynamically distributed to the physical
computing nodes and VMs be instantiated each time the
administrator reconfigure the cluster. Since VM images are
often housed on storage nodes which are separate from the
computing nodes, this poses additional challenges on VM
image management and distribution. Especially for large
scale clusters, the benefits of VMs cannot be achieved unless
VM images can be distributed and instantiated efficiently.

5. A FRAMEWORK FOR HIGH PERFOR-
MANCE COMPUTING WITH VIRTUAL
MACHINES

In this section, we propose a framework for VM-based
cluster computing for HPC applications. We start with
a high-level view of the design, explaining the key tech-
niques used to address the challenges of VM-based com-
puting. Then we introduce our framework and its major
components. Last, we present a prototype implementation
of the framework – an InfiniBand cluster based on Xen vir-
tual machines.

5.1 Design Overview
As mentioned in the last section, reducing the I/O virtual-

ization overhead and enhancing the management efficiency
are the key issues for VM-based computing.

To reduce the I/O virtualization overhead we use a tech-
nique termed Virtual Machine Monitor bypass (VMM-bypass)
I/O, which was proposed in our previous work [18]. VMM-
bypass I/O extends the idea of OS-bypass I/O in the context
of VM environments. The overall idea of VMM-bypass I/O
is illustrated in Figure 4. A guest module in the VM man-
ages all the privileged accesses, such as creating the virtual
access points (i.e. UAR for InfiniBand) and mapping them
into the address space of user processes. Guest modules
in a guest VM cannot directly access the device hardware.
Thus a backend module provides such accesses for guest mod-

Privileged Access
VMM−Bypass Access

......

VM

Backend Module

ModulePrivilegded

VMM

Device

OS

Device Driver VM
Application

Guest Module

Figure 4: VMM-Bypass I/O

ules. This backend module can either reside in the device
domain (such as Xen) or in the virtual machine monitor
for other VM environments like VMware ESX server. The
communication between guest modules and backend module
is achieved through the inter-VM communication schemes
provided by the VM environment. After the initial setup
process, communication operations can be initiated directly
from the user process. By removing the VMM from the
critical path of communication, VMM-bypass I/O is able to
achieve near-native I/O performance in VM environments.

To achieve the second goal, improving the VM image man-
agement efficiency, our approach has three aspects: cus-
tomizing small kernels/OSes for HPC applications to reduce
the size of VM images that need to be distributed, devel-
oping fast and scalable distributing schemes for large-scale
clusters and VM image caching on computing nodes. Reduc-
ing the VM image size is possible because the customized
OS/kernel only needs to support a special type of HPC ap-
plications and thus needs very few services. We will discuss
the detailed schemes in Section 5.3.

5.2 A Framework for VM-Based Computing

Physical Resources Computing Nodes

VMM

Guest VMs
Front−End

Management
Module

Storage Nodes

VM Image
Manager

Submit Jobs/
VMs

VM Image Distribution/
User Generated Data

Execute Jobs
Instantiate VMs/

Control

UpdateUser Submitted
Query/

VMs

Figure 5: Framework for Cluster with Virtual Ma-
chine Environment

Figure 5 illustrates the framework that we propose for
a cluster running in virtual machine environments. The
framework takes a similar approach as batch scheduling,
which is a common paradigm for modern production clus-
ter computing environments. We have a highly modularized
design so that we can focus on the overall framework and
leave the detailed issues like resource matching, scheduling
algorithms, etc., which may vary depending on different en-
vironments, to the implementations.

The framework consists of the following five major parts:

• Front-end Nodes: End users submit batch job re-

quests to the management module. Besides the appli-
cation binaries and the number of processes required,
a typical job request also includes the runtime environ-
ment requirements for the application, such as required
OS type, kernel version, system shared libraries etc.
Users can execute privileged operations such as load-
ing kernel modules in their jobs, which is a major ad-
vantage over normal cluster environment where users
only have access to a restricted set of non-privilege op-
erations. Users can be allowed to submit customized
VMs containing special purpose kernels/OSes or to up-
date the VM which they previously submitted. As dis-
cussed in Section 2, hosting user-customized VMs, just
like running user-space applications, will not compro-
mise the system integrity. The detailed rules to submit
such user-customized VM images can be dependent on
various cluster administration policies and we will not
discuss them further in this paper.

• Physical Resources: These are the cluster comput-
ing nodes connected via high speed interconnects. Each
of the physical nodes hosts a VMM and perhaps a priv-
ileged host OS (such as Xen Dom0) to take charge of
the start-up and shut-down of the guest VMs. To avoid
unnecessary kernel noise and OS overhead, the host
OS/VMM may only provide limited services which are
necessary to host VM management software and dif-
ferent backend daemons to enable physical device ac-
cesses from guest VMs. For HPC applications, a physi-
cal node will typically host no more VM instances than
the number of CPUs/cores. This is different from the
requirements of other computing areas such as high-
end data centers, where tens of guest VMs can be
hosted in a single physical box.

• Management Module: The management module is
the key part of our framework. It maintains the map-
ping between VMs and the physical resources. The
management module receives user requests from the
front-end node and determines if there are enough idle
VM instances that match the user requirements. If
there are not enough VM instances available, the man-
agement module will query the VM image manger to
find the VM image matching the runtime requirements
for the submitted user applications. This matching
process can be similar to those found in previous re-
search work on resource matching in Grid environ-
ments, such as Matchmaker in Condor [37]. The man-
agement module will then schedule physical resources,
distribute the image, and instantiate the VMs on the
allocated computing nodes. A good scheduling method-
ology will not only consider those merits that have
been studied in current cluster environment [8], but
also take into account the cost of distributing and in-
stantiating VMs, where reuse of already instantiated
VMs is preferred.

• VM Image Manager: The VM image manager man-
ages the pool of VM images, which are stored in the
storage system. To accomplish this, VM image man-
ager hosts a database containing all the VM image
information, such as OS/kernel type, special user li-
braries installed, etc. It provides the management
module with information so correct VM images are

selected to match the user requirements. The VM
images can be created by system administrator, who
understands the requirements for the most commonly
used high performance computing applications, or VM
images can also be submitted by users if their applica-
tions have special requirements.

• Storage: The performance of the storage system as
well as the cluster file system will be critical in the
framework. VM images, which are stored in the stor-
age nodes, may need to be transferred to the comput-
ing nodes during runtime, utilizing the underlying file
system. To reduce the management overhead, high
performance storage and file systems are desirable.

5.3 An InfiniBand Cluster with Xen VM En-
vironment

To further demonstrate our ideas of VM-based comput-
ing, we present a case of an InfiniBand cluster with Xen
virtual machine environments. Our prototype implementa-
tion does not address the problems of resource matching and
node scheduling, which we believe have been well studied in
literature. Instead, we focus on reducing the virtualization
overhead and the VM image management cost.

5.3.1 Reducing Virtualization Overhead

HCA Hardware

HCA Provider

Core IB Module

Back−end Daemon Virtual HCA Provider

Xen Guest DomainXen Device Domain

VMM−Bypass Direct Access

User−level IB Provider

Core IB Module

Figure 6: Xen-IB Architecture: Virtualizing Infini-
Band with VMM-bypass I/O

As mentioned in Section 5.1, I/O virtualization overhead
can be significantly reduced with VMM-bypass I/O tech-
niques. Xen-IB [18] is a VMM-bypass I/O prototype imple-
mentation we developed to virtualize the InfiniBand device
for Xen. Figure 6 illustrates the general design of Xen-IB.
Xen-IB involves the device domain for privileged InfiniBand
operations such as initializing HCA, creating queue pair and
completion queues, etc. However, Xen-IB is able to expose
the User Access Regions to guest VMs and allow direct DMA
operations. Thus, Xen-IB executes time critical operations
such as posting work requests and polling for completion
natively without sacrificing the system integrity. With the
very low I/O virtualization overhead through Xen-IB, HPC
applications have the potential to achieve near-native per-
formance in VM-based computing environments.

Additional memory consumption is also a part of virtual-
ization overhead. In the Xen virtual machine environment,
the memory overhead mainly consists of the memory foot-
prints of three components: the Xen VMM, the privileged
domain, and the operating systems of the guest domains.
The memory footprints of the virtual machine monitor is
examined in detail in [6], which can be as small as 20KB
of state per guest domain. The OS in Dom0 needs only

support VM management software and the physical device
accesses. And customized OSes in DomUs are providing the
“minimum” services needed for HPC applications. Thus the
memory footprints can be reduced to a small value. Simply
by removing the unnecessary kernel options and OS services
for HPC applications, we are able to reduce the memory
usage of the guest OS in DomU to around 23MB when the
OS is idle, more than two-thirds of reduction compared with
running normal Linux AS4 OS. We believe it can be further
reduced if more careful tuning is carried out here.

5.3.2 Reducing VM Image Management Cost
As previously mentioned, we take three approaches to

minimize the VM image management overhead: making the
virtual machine images as small as possible, developing scal-
able schemes to distribute the VM images to different com-
puting nodes, and VM image caching.

Minimizing VM Images: In literature, there are lots
of research efforts on customized OSes [14, 20, 22, 4], whose
purpose is to develop infrastructures for parallel resource
management and to enhance the OS for the ability to sup-
port systems with very large number of processors. In our
Xen-based computing environment, our VM images include
customized OS environments as thin as just one contain-
ing an MPI library, a very small set of system utilities, and
some runtime environmental requirements such as ssh dae-
mon. Such customized VM image can be very small and can
be transferred through network and boot-up very efficiently.

Fast and Scalable Image Distribution: HPC applica-
tions will typically require multiple computing nodes. This
requires VM images to be broadcasted to multiple physical
nodes where the VMs will be instantiated. Even though a
small VM image can be transferred very efficiently between
the storage nodes and the computing nodes, we need a scal-
able VM image distribution scheme for large-scale clusters
where jobs can include many nodes. For this purpose, we
build a VM distribution module to broadcast the images to
destination physical nodes through a binomial tree struc-
ture, which significantly speeds the VM image distribution.

VM Image Caching: We also use VM image caching
on computing nodes to accelerate the time to launch a user
request. The main idea is to cache the VM image on the lo-
cal storage of the computing nodes, provided there is avail-
able space. In this case, we do not need to transfer the VM
image to a computing node if the VM has not been updated
since the last time it was instantiated on that computing
node. We will continue to work on more advanced schemes
to transfer only the updated portion of the VM image so the
transfer will only include the difference, likely much smaller
than the whole VM image. All these caching schemes will
require additional coordination between the management
module and the VM image manager to maintain consistency
between different versions of VM images.

6. EVALUATION
In this section, we evaluate the performance overhead and

the VM management efficiency of an InfiniBand cluster with
Xen VM environments. We first provide MPI-level perfor-
mance results at both the micro-benchmark and application
levels. Then, we present different efficiency metrics for VM
image management, including image distribution time, ad-
ditional memory consumption for the guest VMs, and time
needed for startup/shutdown of a VM.

6.1 Experimental Setup
We conducted our performance evaluations on an eight-

node InfiniBand cluster. Each node in the cluster is equipped
with dual Intel Xeon 3.0GHz CPUs, 2 GB of memory and
a Mellanox MT23108 PCI-X InfiniBand HCA. The systems
are connected with an InfiniScale InfiniBand switch. The
same cluster is used to obtain performance results for both
the VM-based environment and the native, non-virtualized
environment. In VM-based environments, we use Xen 3.0.
The Xen domain0 hosts RedHat AS4 with kernel 2.6.12 with
256MB memory. All user domains are running with a single
virtual CPU and 896 MB memory, which allows two Do-
mUs per physical machine. Each guest OS in DomUs uses
the 2.6.12 kernel with all unnecessary services removed. The
OS is derived from ttylinux [36], with minimum changes in
order to host MPI applications as mentioned in Section 5.3.
In the native environment, we also use RedHat AS4 but with
SMP mode.

Our performance results are collected using MVAPICH, a
popular MPI implementation over InfiniBand [23, 19].

6.2 Micro-benchmark Evaluations
In this section, we compare MPI-level micro-benchmark

performance between the Xen-based cluster and the native
InfiniBand cluster. Tests were conducted between two user
domains running on two different physical machines with
Xen or between two different nodes in native environments.

The latency test repeated ping-pong communication for
many times and the average half round-trip time is reported
as one-way latency. As shown in Figure 7, there is very lit-
tle difference between the Xen and the native environment,
with both achieving 4.9µs for 1 byte messages. This shows
the benefit of VMM-bypass I/O, where all communication
operations in Xen are completed by directly accessing the
HCAs from the user domains.

 0

 5

 10

 15

 20

 25

 30

8k4k2k1k 512 256 128 64 32 16 8 4 2 1

La
te

nc
y

(u
s)

Message Size (Bytes)

Xen
Native

Figure 7: MPI latency test

In the bandwidth tests, a sender sent a number of mes-
sages to a receiver using MPI non-blocking communication
primitives. It then waited for an acknowledgment and re-
ported bandwidth by dividing number of bytes transferred
by the elapsed time. We again see almost no difference be-
tween Xen and native environments. As shown in Figure 8,
in both cases we achieved 880MB/sec. (Please note that all
bandwidth numbers in this paper are reported in millions of
bytes per second.)

MVAPICH implements a registration cache, which allows
zero-copy transfer for large messages without memory reg-
istration if the communication buffer is reused [19]. The
above tests benefited from this technique. However, our

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1M256k64K16k4k1k 256 64 16 4 1

Th
ro

ug
hp

ut
 (M

ill
io

nB
yt

es
/s

)

Message Size (Bytes)

Xen
Native

Figure 8: MPI bandwidth test

previous work [18] revealed that buffer registration in Xen
user domain is more costly, as illustrated in Figure 9. It is
because registration is a privileged operation and needs to
be conducted in the device domain.

 0

 100

 200

 300

 400

 500

 600

 1000 800 600 400 200 0

R
eg

is
tra

tio
n

Ti
m

e
(u

s)

Number of pages

Xen
Native

Figure 9: Memory registration time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

2M1M512k256k128k64K32k

La
te

nc
y

(u
s)

Message Size (Bytes)

Xen
Native

Figure 10: MPI latency test without registration
cache (large messages)

To show the worst-case scenario in the Xen-based environ-
ment, we repeated the above tests with registration cache
disabled. We observed no difference for short message la-
tency and bandwidth because MVAPICH copies the short
messages to pre-registered buffers and sends them out. For
large messages (from 16KB), MVAPICH registers the user
buffer on the fly and send out the message using RDMA
without extra copy. Because of the extra registration cost,
we observe in Figure 10 that large message latencies in Xen
environment is constantly around 200µs higher, which con-
forms to what we observed in Figure 9 since both the sender
and the receiver side need to register the communication

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1M256k64K16k4k1k 256 64 16 4 1

Th
ro

ug
hp

ut
 (M

ill
io

nB
yt

es
/s

)

Message Size (Bytes)

Xen
Native

Figure 11: MPI bandwidth test without registration
cache

buffers. For bandwidth test, registration time can be over-
lapped with network communication. Thus in Figure 11 we
see only a maximum 11% difference between the Xen and
native environment for medium size messages (16KB), and
virtually no difference for large messages. Again, this is
the worst case scenario for Xen-based environments. Actual
HPC applications usually have good buffer reuse patterns
and in most cases we will not see this difference.

6.3 HPC Application Evaluations
In this section, we evaluate the Xen-based computing en-

vironment with actual HPC applications. We instantiate
two DomUs on each physical machine and run one pro-
cess per DomU for the Xen case. (Each DomU runs a uni-
processor kernel.) And for native environment, we run two
processes per physical node.

We evaluate both NAS parallel benchmarks and High Per-
formance Linpack (HPL). HPL is the parallel implementa-
tion of Linpack [28] and the performance measure for rank-
ing the computer systems of Top 500 supercomputer list.

Figure 12: NAS Parallel Benchmarks (16 processes,
class B)

The execution time for NAS has been normalized based
on the native environment in Figure 12. We observed that
Xen-based environment performs comparably with the na-
tive environment. For NAS applications CG and FT, where
native environment performs around 4% better, the gap is
due to the ability of MVAPICH to utilize shared memory
communication for processes on the same node in the na-
tive environment. Our prototype implementation of VM-
based computing currently does not have this feature. How-
ever, high speed communication between Xen domains on

Figure 13: HPL on 2, 4, 8 and 16 processes

Dom0 Xen DomUs
IS 3.6 1.9 94.5
SP 0.3 0.1 99.6
BT 0.4 0.2 99.4
EP 0.6 0.3 99.3
CG 0.6 0.3 99.0
LU 0.6 0.3 99.0
FT 1.6 0.5 97.9
MG 1.8 1.0 97.3

Table 2: Distribution of execution time for NAS

the same physical node can be added by taking advantage
of the page sharing mechanism provided by Xen.

We also report the Gflops achieved in HPL on 2, 4, 8 and
16 processes in Figure 13. We observe very close perfor-
mance here with native case outperforms at most 1%.

Table 2 shows the distribution of the execution time among
Dom0, Xen hypervisor, and two DomUs (sum) for NAS
benchmarks. As we can see, due to VMM-bypass approach,
most of the instructions are executed locally in user do-
mains, which achieves highly efficient computing. For IS,
the time taken by Dom0 and the Xen hypervisor is slightly
higher. This is because IS has very short running time
and Dom0/hypervisor are mainly involved during applica-
tion startup/finalize, where all the connections need to be
set up and communication buffers need to be pre-registered.

6.4 VM Image Management Evaluation
In this section, we evaluate the VM image management

overhead for the Xen-based environment.
Table 3 shows the time to startup and shutdown a do-

main in Xen environments as well as the extra memory con-
sumed by the OSes (after a fresh startup) running in each
user domain. As we can see, managing a guest domain with
a customized OS/kernel (ttylinux) has much less overhead
compared with a guest domain with normal full featured OS
(AS4). Additionally, the extra memory consumption is also
reduced to around 23.6 MB for ttylinux, which is about 1.2%
of the total memory we have on each physical node. We also
include the startup/shutdown time and memory consump-
tion for RedHat AS4 on native servers as a reference. We can
clearly see that starting a VM is much faster than starting
an physical server.

We also measure the VM image distribution time. As we
are using customized OS for the guest VMs, we were able to
reduce the VM image size to around 30MB. We distribute
the VM image to the physical nodes through a binomial
tree topology over IPoIB (IP over InfiniBand [15]). As we

startup shutdown memory
ttylinux-domu 5.3s 5.0s 23.6MB

AS4-domu 24.1s 13.2s 77.1MB
AS4-native 58.9s 18.4s 90.0MB

Table 3: Startup, shutdown time and extra memory
consumption

Scheme 1 2 4 8
Binomial tree 1.3s 2.8s 3.7s 5.0s

NFS 4.1s 6.2s 12.1s 16.1s

Table 4: VM image distribution time

can see in Table 4, the binomial tree distribution algorithm
can distribute the image to 8 physical nodes within 5 sec-
onds. While using normal NFS, the distribution process
needs around 16 seconds. Since the distribution time with
the binomial tree algorithm increases proportional to logN,
where N is the number of destination nodes, we believe our
VM image distribution scales for very large size clusters.
Note that the VM image distribution occurs only if VM
image is not cached or has been updated, in practice, the
distribution time can be even smaller due to caching.

7. DISCUSSION
In this section we discuss several issues with our current

prototype of a virtualized InfiniBand cluster and how they
can be addressed in future.

7.1 Checkpoint and Migration
Although our framework can take advantage of VM check-

point and migration, the VMM-bypass approach that we
propose to reduce the I/O virtualization overhead poses
additional challenges. With VMM-bypass I/O, the VMM
is not involved in I/O operations, and thus cannot easily
suspend and buffer those operations when checkpoint or
migration starts. Further, high-speed interconnects where
VMM-bypass approaches are applicable usually store part
of the communication context on board. For example, In-
finiBand HCAs will store information such as created queue-
pair structure, a translation table between virtual address
and actual PCI address, etc. on the device. This makes
checkpointing or migration even more difficult since part
of the VM status is not accessible from the VMM. To ad-
dress these issues, we plan to involve guest virtual machines,
which have the knowledge of the communication status, in
the checkpoint and migration process.

7.2 Memory Consumption of the Privileged
Domain

The Xen virtual machine environment needs a privileged
domain (Dom0) running on each machine to manage other
user domains. Xen must allocate memory for the privileged
domain at the boot time of the physical machine. At our
current stage of research, we are focusing on customizing
guest OS/kernels in user domains. Thus we just statically
allocate 256 MB for Dom0, which is hosting a normal Red-
Hat AS4 OS. Since this part of memory is used for Dom0,
it cannot be used for actual computing applications. How-
ever, since Dom0 is hardly involved in HPC applications
especially with VMM-bypass I/O, this overhead can be sig-
nificantly reduced by careful tuning of the host OS. Mean-
while, since privileged operations will still need to be taken

care of in Dom0, it is important to understand the memory
requirements for Dom0 for hosting different applications in
the user domains. We plan to carry more studies along this
direction in future.

8. RELATED WORK
Currently, many VM designs exploit multiple VMs in cluster-

like environments. For example, the Xenoserver project [32]
builds a VM-based infrastructure for wide-area distributed
computing. The vMatrix [5] project proposed the idea of
using a network of virtual machine monitors for dynamic
content distribution. However, none of the above address
the problem of using VMs for high performance computing.
In [11], the authors advocate an approach of using VMs for
grid computing. However, the hardware environments for
grid computing are usually loosely-coupled, wide-area sys-
tems. Therefore, they did not explicitly address the issues of
I/O performance degradation due to virtualization. In our
work, we focus on traditional high performance computing
environments, which are more tightly-coupled and have very
stringent requirements for communication performance.

We first presented the idea of VMM-bypass in [18]. VMM-
bypass extends the idea of OS-bypass to VM environments.
OS-bypass is a feature found in user-level communication
protocols such as active messages [39] and U-Net [38]. It
was later adopted by InfiniBand.

Virtual machine OS image distribution and start-up are
important issues in any VM-based environment. However,
our use of VMs in cluster-based HPC systems introduces
new challenges because these systems can be very large scale,
which requires a highly scalable approach. Complementary
to our work, scalable job launching in traditional HPC en-
vironments has been discussed in studies such as [42] and
[7].

High level middleware- and language-based virtual ma-
chines have been studied and used for high performance
computing. Examples include PVM [13], HPVM [1], and
Java. In our work, virtual machines refer to those which
provide abstractions identical or similar to existing hard-
ware. Therefore, our VM-based platform is implemented at
a much lower level and provides more flexibility. For exam-
ple, our approach can not only support MPI, but also all
the middleware- and language-based virtual machines men-
tioned above.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a framework for VM-based

computing for HPC applications. We presented a case for
building an InfiniBand cluster with the Xen virtual machine
environment. We explained how we reduced I/O virtual-
ization overhead with VMM-bypass I/O and addressed the
efficiency for management operations in such VM-based en-
vironments. Our performance evaluation showed that HPC
applications can achieve almost the same performance as
those running in a native, non-virtualized environment. We
also demonstrated quantitatively that other costs of virtual-
ization, such as extra memory consumption and VM image
management, can be reduced significantly by optimization.
Our approach can potentially benefit HPC applications with
desirable features of virtual machine technologies, including
ease of management, OS customization, performance isola-
tion, check-pointing, and migration, with very little perfor-

mance degradation.
In future, we will work on checkpoint/migration support

for Xen-IB, our VMM-bypass I/O implementation to virtu-
alize InfiniBand in the Xen virtual environment. We plan
to investigate scheduling and resource management schemes
for the efficient management in VM-based clusters. We will
also carry out more detailed performance evaluations of VM-
based computing on clusters with larger numbers of nodes.

Acknowledgments
We would like to thank Matthew J. Koop from the Network Based
Computing Laboratory at the Ohio State University for the valu-
able discussions to improve this paper. We also thank the anony-
mous reviewers for their insightful comments.

This research is supported in part by the following grants and

equipment donations to the Ohio State University: Department of

Energy’s Grant #DE-FC02-01ER25506; National Science Foun-

dation grants #CNS-0403342 and #CCR-0509452; grants from

Intel, Mellanox, Sun, Cisco, and Linux Networx; and equipment

donations from Apple, AMD, Dell, IBM, Intel, Microway, Path-

scale, Silverstorm and Sun.

10. REFERENCES
[1] A. Chien et al. Design and Evaluation of an HPVM-Based

Windows NT Supercomputer. The International Journal of
High Performance Computing Applications, 13(3):201–219,
Fall 1999.

[2] A. Menon et al. Diagnosing Performance Overheads in the
Xen Virtual Machine Environment. In Proceedings of the
First ACM/USENIX Conference on Virtual Execution
Environments (VEE’05), June 2005.

[3] Argonne National Laboratory.
http://www-unix.mcs.anl.gov/mpi/mpich/.

[4] Argonne National Laboratory. Zeptoos: The small linux for
big computers. http://www-unix.mcs.anl.gov/zeptoos/.

[5] A. Awadallah and M. Rosenblum. The vMatrix: A network
of virtual machine monitors for dynamic content
distribution. In Seventh International Workshop on Web
Content Caching and Distribution, 2002.

[6] B. Dragovic et al. Xen and the Art of Virtualization. In
Proceedings of the ACM Symposium on Operating Systems
Principles, Oct. 2003.

[7] R. Brightwell and L. A. Fisk. Scalable Parallel Application
Launch on Cplant. In Proceedings of SC ’01, 2001.

[8] B. Chun and D. Culler. User-centric Performance Analysis
of Market-based Cluster Batch Schedulers. In Proceedings
of CCGrid, 2002.

[9] R. J. Creasy. The Origin of the VM/370 Time-sharing
System. IBM Journal of Research and Development,
25(5):483–490, 1981.

[10] FastOS: Forum to Address Scalable Technology for runtime
and Operating Systems. http://www.cs.unm.edu/ fastos/.

[11] R. Figueiredo, P. Dinda, and J. Fortes. A Case for Grid
Computing on Virtual Machines. In Proceedings of
International Conference on Distributed Computing
Systems (ICDCS), May 2003., 2003.

[12] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. W. and
M. Williamson. Safe Hardware Access with the Xen Virtual
Machine Monitor. In Proceedings of OASIS ASPLOS
Workshop, 2004.

[13] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. S. Sunderam. PVM: Parallel Virtual Machine: A
Users’ Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge, MA, USA, 1994.

[14] HPC-Colony Project: Services and Interfaces for Very
Large Linux Clusters. http://www.hpc-colony.org/.

[15] IETF IPoIB Workgroup.
http://www.ietf.org/html.charters/ipoib-charter.html.

[16] InfiniBand Trade Association. InfiniBand Architecture
Specification, Release 1.2.

[17] K. Koch. How does ASCI Actually Complete Multi-month
1000-processor Milestone Simulations? In Proceedings of
the Conference on High Speed Computing, 2002.

[18] J. Liu, W. Huang, B. Abali, and D. K. Panda. High
Performance VMM-Bypass I/O in Virtual Machines. In
Proceedings of USENIX ’06, Boston, MA, 2006.

[19] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda.
High Performance RDMA-Based MPI Implementation over
InfiniBand. In Proceedings of ICS ’03, June 2003.

[20] B. Maccabe, P. G. Bridges, R. Brightwell, R. Riesen, and
T. Hudson. Highly Configurable Operating Systems for
Ultrascale Systems. In Proceedings of the First
International Workshop on Operating Systems,
Programming Environments and Management Tools for
High-Performance Computing on Clusters, 2004.

[21] Mellanox Technologies. http://www.mellanox.com.
[22] MOLAR: Modular Linux and Adaptive Runtime Support

for High-end Computing Operating and Runtime Systems.
http://forge-fre.ornl.gov/molar/.

[23] MVAPICH Project Website. http://nowlab.cse.ohio-
state.edu/projects/mpi-iba/index.html.

[24] Myricom, Inc. Myrinet. http://www.myri.com.
[25] NASA. NAS Parallel Benchmarks.

http://www.nas.nasa.gov/Software/NPB/.
[26] Open InfiniBand Alliance. http://www.openib.org.
[27] OProfile. http://oprofile.sourceforge.net.
[28] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL

- A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers.
http://www.netlib.org/benchmark/hpl/.

[29] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of the
Missing Supercomputer Performance: Achieving Optimal
Performance on the 8,192 Processors of ASCI Q. In
Proceedings of SC ’03, Washington, DC, USA, 2003.

[30] I. Pratt. Xen Virtualization. Linux World 2005
Virtualization BOF Presentation.

[31] Quadrics, Ltd. QsNet. http://www.quadrics.com.
[32] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.

Xenoservers: Accountable Execution of Untrusted
Programs. In Workshop on Hot Topics in Operating
Systems, 1999.

[33] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors:
Current Technology and Future Trends. IEEE Computer,
38(5):39–47, 2005.

[34] J. Sugerman, G. Venkitachalam, and B. H. Lim.
Virtualizing I/O Devices on VMware Workstation’s Hosted
Virtual Machine Monitor. In Proceedings of USENIX, 2001.

[35] Top 500 Supercomputer Site. http://www.top500.com.
[36] ttylinux. http://www.minimalinux.org/.
[37] University of Wisconsin. Condor High Throughput

Computing. http://www.cs.wisc.edu/condor/.
[38] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A

User-level Network Interface for Parallel and Distributed
Computing. In ACM Symposium on Operating Systems
Principles, 1995.

[39] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: A Mechanism for Integrated
Communication and Computation. In International
Symposium on Computer Architecture, 1992.

[40] C. Waldspurger. Memory resource management in VMware
ESX server. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation, 2002.

[41] A. Whitaker, M. Shaw, and S. D. Gribble. Denali:
Lightweight Virtual Machines for Distributed and
Networked Applications. Technical report, University of
Washington, February 2002.

[42] W. Yu, J. Wu, and D. K. Panda. Fast and Scalable Startup
of MPI Programs In InfiniBand Clusters. In Proceedings of
HiPC’04, Banglore, Inida, December 2004.

