
High Performance Virtual Machine Migration with
RDMA over Modern Interconnects

Wei Huang #1, Qi Gao #2, Jiuxing Liu ∗3 , Dhabaleswar K. Panda #4

#Computer Science and Engineering, The Ohio State University
2015 Neil Avenue, Columbus, OH 43210, USA

1huanwei@cse.ohio-state.edu
2gaoq@cse.ohio-state.edu

4panda@cse.ohio-state.edu
∗IBM T. J. Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532, USA
3jl@us.ibm.com

Abstract— One of the most useful features provided by virtual
machine (VM) technologies is the ability to migrate running OS
instances across distinct physical nodes. As a basis for many
administration tools in modern clusters and data-centers, VM
migration is desired to be extremely efficient to reduce both
migration time and performance impact on hosted applications.

Currently, most VM environments use the Socket interface
and the TCP/IP protocol to transfer VM migration traffic. In
this paper, we propose a high performance VM migration design
by using RDMA (Remote Direct Memory Access). RDMA is
a feature provided by many modern high speed interconnects
that are currently being widely deployed in data-centers and
clusters. By taking advantage of the low software overhead and
the one-sided nature of RDMA, our design significantly improves
the efficiency of VM migration. We also contribute a set of
micro-benchmarks and application-level benchmark evaluations
aimed at evaluating important metrics of VM migration. The
evaluations using our prototype implementation over Xen and
InfiniBand show that RDMA can drastically reduce the migration
overhead: up to 80% on total migration time and up to 77% on
application observed downtime.

I. INTRODUCTION

Recently, virtual machine (VM) technologies are experienc-
ing resurgence in both industry and academia. They provide
desirable features to meet demanding requirements of comput-
ing resources in modern computing systems, including server
consolidation, performance isolation and ease of management.
Migration is one of the most important features provided
by modern VM technologies. It allows system administrators
to move an OS instance to another physical node without
interrupting any hosted services on the migrating OS. It is
an extremely powerful cluster administration tool and serves
as a basis for many modern administration frameworks which
aim to provide efficient online system maintenance, reconfigu-
ration, load balancing and proactive fault tolerance in clusters
and data-centers [2], [16], [24], [26]. As a result, it is desirable
that VM migration be carried out in a very efficient manner,
with both short migration time and low impact on hosted
applications.

The state-of-the-art VM technologies such as Xen [4]
and VMware [24] achieve VM migration by transferring the

memory pages of the guest OS from the source machine
to the destination host over the TCP socket and resuming
execution at the destination. While migrating over the TCP
socket ensures the solution can be applicable to the major-
ity of industry computing environments, it can also lead to
suboptimal performance due to high protocol overhead, heavy
kernel involvement and extra synchronization requirements of
the two sided operations, which may overshadow the benefits
of migration.

Meanwhile, recent high speed interconnects, such as In-
finiBand [10], Myrinet [15] and Quadrics [21], provide fea-
tures including OS-bypass communication and Remote Direct
Memory Access (RDMA). OS-bypass allows data communi-
cation to be directly initiated from process user space; on
top of that, RDMA allows direct data movement from the
memory of one computer into that of another. With very little
software overhead, those communication models allow data
to be transferred in a highly efficient manner. As a result,
they can benefit VM migration in various aspects. First, with
extremely high throughput offered by high speed interconnects
and RDMA, the time needed to transfer the memory pages can
be reduced significantly, which leads to an immediate save on
total VM migration time. Further, data communication over
OS-bypass and RDMA does not need to involve CPU, caches,
or context switches. This allows migration to be carried out
with minimum impact on guest operating systems and hosted
applications.

In this paper, we study RDMA based virtual machine
migration. We analyze the challenges to achieve efficient VM
migration over RDMA, including protocol design, memory
registration, non-contiguous data transfer, network QoS, etc.
We carefully address these challenges to fully leverage the
benefits of RDMA. This paper also contributes a set of
micro-benchmarks and application-level benchmark evalua-
tions, which reflect several important requirements on VM
migration posed by real-world usage scenarios. Evaluations
with our prototype implementation of Xen migration over
InfiniBand show that RDMA based protocols are able to
significantly improve the migration efficiency. For example,

compared with the original Xen migration over TCP/IP over
InfiniBand (IPoIB) [9], our design over InfiniBand RDMA
reduces the impact of migration on SPEC CINT 2000 Bench-
marks [22] by an average of 54% when the server is lightly
loaded, and an average of 70% when it is heavily loaded.

The rest of the paper is organized as follows: we start with
a brief overview of VM migration and InfiniBand architecture
as background in Sections II and III. We analyze the potential
benefits of RDMA based VM migration and identify several
key challenges towards an efficient design in Section IV.
Then, we address the detailed design issues in Section V and
carry out performance evaluations in Section VI. Last, we
discuss related work in Section VII and conclude the paper
in Section VIII.

II. VIRTUAL MACHINE MIGRATION

Xen [4] is a popular virtual machine technology originally
developed at University of Cambridge. Figure 1 illustrates
the structure of a physical machine hosting Xen. The Xen
hypervisor (the VMM) is at the lowest level and has direct
access to the hardware. Above the hypervisor are the Xen
domains (VMs) running guest OS instances. Each guest OS
uses a pre-configured share of physical memory. A privileged
domain called Domain0 (or Dom0), which is created at boot
time, is allowed to access the control interface provided by
the hypervisor and performs the tasks to create, terminate or
migrate other guest VMs (User Domain or DomU).

(Domain0)
VM0

Unmodified
User

Software

VM1 VM2
(Guest Domain) (Guest Domain)

Guest OS

Xen Hypervisor

Hardware (SMP, MMU, Physical Memory, Ethernet, SCSI/IDE)

Device Manager
and Control
Software

Guest OS

Unmodified
User

Software

Guest OS

Fig. 1. The structure of the Xen virtual machine monitor

When migrating a guest OS1, Xen first enters the pre-copy
stage, where all the memory pages used by the guest OS are
transferred from the source to pre-allocated memory regions
on the destination host. This is done by user level migration
helper processes in Dom0s of both hosts. All memory pages
of the migrating OS instance (VM) is mapped to the address
space of the helper processes. After that the memory pages
are sent to the destination host over TCP/IP sockets. Memory
pages containing page tables need special attention that all
machine dependent addresses (machine frame numbers or mfn)

1For Xen, each domain (VM) hosts only one Operating System. Thus,
in this paper, we do not necessarily distinguish among migrating a VM, a
domain, and an OS instance.

are translated to machine independent addresses (physical
frame numbers or pfn) before the pages are sent. The addresses
will be translated back to mfn at the destination host. This
ensures transparency since guest OSes reference memory by
pfn. Once all memory pages are transferred, the guest VM
on the source machine is discarded. And the execution will
resume on the destination host.

Xen also adopts live migration [3], where the pre-copy stage
involves multiple iterations. The first iteration sends all the
memory pages, and the subsequent iterations copy only those
pages dirtied during the previous transfer phase. The pre-copy
stage terminates when the page dirty rate exceeds the page
transfer rate or when the number of iterations exceeds a pre-
defined value. In this way, the only observed downtime by the
hosted applications is at the last iteration of pre-copy, when
the VM is shutdown to prevent any further modification to the
memory pages.

III. INFINIBAND ARCHITECTURE AND RDMA
InfiniBand [10] is an emerging interconnect offering high

performance and features such as OS-bypass and RDMA.
RDMA semantics can be used to directly read (RDMA read) or
modify (RDMA write) the contents of remote memory. RDMA
operations are one sided and do not incur software overhead
on remote side. Before RDMA operations can take place, the
target side of the operation must register the memory buffers
and send the remote key returned from the registration to the
operation initiator. The registration helps InfiniBand to get the
DMA addresses of the memory buffers used in user processes.
It also avoids faulty program from polluting memory on the
target machines. InfiniBand supports non-contiguity on the
initiators (RDMA read with scatter or RDMA write with
gather). However, the target buffers of RDMA operations must
be contiguous.

IV. MOTIVATION

In this section we look at the potential benefits of migration
over RDMA, which motivate the design of RDMA based
migration. We also analyze several design challenges to fully
exploit the benefits of RDMA.

A. Benefits of RDMA based Migration
Besides the increase of bandwidth, RDMA can benefit

virtual machine migration mainly from two aspects.
First, RDMA allows the memory to be directly accessed by

hardware I/O devices without OS involvement. It indicates that
the memory pages of the migrating OS instance can be directly
sent to the remote host in a zero-copy manner. This avoids the
TCP/IP stack processing overhead. Also for VM migration, it
reduces context switches between the migrating VM and the
privileged domain, which hosts the migration helper process.

Second, the one sided nature of RDMA operations can
alleviate the burden on the target side during data transfer.
This further saving on the CPU cycles is especially important
in some cases. For instance, one of the goals of VM technology
is server consolidation, where multiple OSes are hosted in

one physical box to efficiently utilize the resources. Thus,
in many cases a physical server may not have enough CPU
resources to handle migration traffic without degrading the
hosted application performance.

Direct memory access and the one sided nature of RDMA
can significantly reduce the software involvement during
migration. This reduced overhead is critical especially in
performance-sensitive scenarios, such as for load balancing
or proactive fault tolerance.
B. Design Challenges

Though RDMA has the potential to greatly improve the VM
migration efficiency, we need to address multiple challenges
to fully exploit the benefits of RDMA. Now we take a closer
look at those challenges. Our description here focuses on
Xen migration and InfiniBand RDMA. However, the issues
are common to other VM technologies and RDMA capable
interconnects.

Design of efficient migration protocol over RDMA: As
we have mentioned in Section II, normal data pages can be di-
rectly transferred during migration, but page table pages need
to be pre-processed before being copied out. Our migration
protocol should be carefully designed to efficiently handle both
types of memory pages. Also, RDMA write and RDMA read
both can be utilized for data transfer, but they have different
impact on the source or destination hosts. How to minimize
such impact during migration needs careful considerations.

Memory Registration: InfiniBand requires the data buffers
to be registered before they can be involved in data transfer.
Earlier research [12] in related areas proposed two solutions.
One is to copy the data into pre-registered buffers (copy-based
approach). The other is to register the user data buffers on
the fly (zero-copy approach). However, neither of these two
approaches works well in our case. Copy-based approach will
consume CPU cycles and pollute data caches, suffering the
same problem as TCP transfer. Zero-copy approach requires
registering the memory pages that belong to a foreign VM,
which is not currently supported by the InfiniBand driver for
security reasons.

Non-contiguous Transfer: Original Xen live migration
transfers the memory pages in page granularity. Each time the
source host only sends one memory page to the destination
host. This may be fine for TCP/IP communication. However,
it causes under-utilization of network link bandwidth when
transferring pages over InfiniBand RDMA. It is more desirable
to transfer multiple pages in one RDMA operation to fully
utilize the link bandwidth.

Network QoS: Though RDMA avoids most of the software
overheads involved in page transfer, the migration traffic
contends with other applications for network bandwidth. It
is preferable to explore an intelligent way that minimizes the
contention on network bandwidth, while utilizing the network
bandwidth efficiently.

V. DETAILED DESIGN ISSUES AND SOLUTIONS

In this section we present our design of virtual machine
migration over RDMA. We first introduce the overall design

of RDMA based migration protocols in Section V-A. Then we
explain in detail how we address other design challenges in
the later sections.

A. RDMA based Migration Protocols
As we have mentioned, there are two kinds of memory

pages that need to be handled during migration. Normal
memory pages will be transferred to the destination host
directly, and the page table pages will have to be translated
to use machine independent pfn before being sent. Translating
the page table pages will have to consume CPU cycles, while
other pages can be directly sent using RDMA.

Both RDMA read and RDMA write operations can be used
to transfer the memory pages. We have designed protocols
based on each of them. Figure 2 is a simplified illustration of
RDMA related traffic between the migration helper processes
in one iteration of the pre-copy stage. Actual design uses the
same concept, but is more complex due to other issues such
as flow control. Our principle is to issue RDMA operations
to send normal memory pages as early as possible. While the
transfer is taking place, we start to process the page table
pages, which requires more CPU cycles. In this way, we
overlap the translation with data transfer, and achieve minimal
total migration time. We use send/receive operations instead of
RDMA to send the page table pages because of two reasons.
First, the destination host needs to be notified when the page
table pages have arrived, so that it can start translating the
page tables. Using send/receive does not require explicit flag
messages to synchronize between the source and destination
hosts. Also, the number of page table pages is small, so most
migration traffic is still transferred over RDMA.

As it can be seen, RDMA read protocol requires more
work be done at the destination host while RDMA write
protocol puts more burden on the source host. Thus, we
dynamically select the suitable protocol based on runtime
server workloads. At the beginning of the pre-copy stage,
the source and destination hosts exchange load information
and the node with lighter workloads will initiate RDMA
operations.

B. Memory Registration
As indicated in Section IV-B, memory registration is a

critical issue because none of the existing approaches, either
copy based send or registration on the fly, works well here. We
use different techniques to handle this issue based on different
types of memory pages.

For page table pages, the migration helper processes have to
parse the pages in order to translate between machine depen-
dent machine frame number (mfn) and machine independent
physical frame number (pfn). Thus, there will be no additional
cost to use a copy-base approach. On the source host, the
migration helper process writes the translated pages directly
to the pre-registered buffers and then the data can be sent out
to the corresponding pre-registered buffers on the destination.
On the destination host, the migration helper process reads the

iteration

1

2

4

SRC DST

1. Source host sends addresses
 of memory pages to desti−
 nation host.

 RDMA reads on normal data
 pages
3. Translate and transfer page

 table pages

2. Destination host issues

4. Destination host acknow−
 ledges source host to go into
 the next iteration.

3

(a) Migration over RDMA read

iteration

2

4

1

SRC DST

1. Destination host sends addr−
 esses of memory pages to
 source host
2. Source host issues RDMA
 writes on normal data pages
3. Translate and Transfer page

 table pages
4. handshake to go into the
 next iteration.

3

(b) Migration over RDMA write

Fig. 2. Migration over RDMA

data from the pre-registered buffers and writes the translation
results into the new page table pages.

For other memory pages there will be additional cost
to use a copy based approach. And the migration helper
process cannot register the memory pages belonging to the
migrating VM directly. Fortunately, InfiniBand supports direct
data transfer using hardware addresses in kernel space, which
allows memory pages addressed by hardware DMA addresses
to be directly used in data transfer. The hardware addresses
are known in our case, by directly reading the page table
pages (mfn). The only remaining issue now is that the helper
processes in Xen are user level programs and cannot utilize
this kernel function. We make modifications to InfiniBand
drivers to extend this functionality to user level processes
and hence bypass the memory registration issue. Note that
this modification does not raise any security concerns because
we only export the interface to user processes in the control
domain (Dom0), where all programs running in this domain
are trusted to be secure and reliable.

C. Page Clustering
In this section, we first analyze how Xen organizes the

memory pages of a guest VM, and then propose a “page-
clustering” technique to address the issue of network under-
utilization caused by non-contiguous transfer. As shown in
Figure 3, Xen maintains an address mapping table which maps
machine independent pfn to machine dependent mfn for each
guest VM. This mapping can be arbitrary and the physical
layout of the memory pages used by a guest VM may not be
contiguous. During migration, a memory page is copied to a
destination memory page corresponding to the same pfn, which
guarantees application transparency to migration. For example,
in Figure 3, physical page 1 is copied to physical page 2 on the
destination host, because their corresponding pfn are both 3.
Xen randomly decides the order to transfer pages to better
estimate the page dirty rate. The non-contiguous physical
memory layout together with such randomness makes it very
unlikely that two consecutive transfers involve contiguous
memory pages so that they can be combined.

We propose page clustering to serve two purposes: first,
to send as many pages as possible in one RDMA operation

Mapping Table Mapping Table

Memory
Physical Physical

Memorymfnpfn

2

4

1

3

3

4

Pick
Random

2

1

mfn pfn

Source Memory pages

1

2

4

3

1

2

4

3

Pre−allocated destination
memory pages

Fig. 3. Memory page management for a “tiny” OS with four pages

to efficiently utilize the link bandwidth; second, to keep a
certain level of randomness in the transfer order for accurate
estimation of page dirty rate. Figure 4(a) illustrates the main
idea of page clustering using RDMA read. We first reorganize
the mapping tables based on the order of mfn at the source
host. Now contiguous physical memory pages correspond
to contiguous entries in the re-organized mapping table. In
order to keep randomness, we cluster the entries of the re-
organized mapping tables into multiple sets. Each set contains
a number of contiguous entries, which can be transferred in
one RDMA operation under most circumstances (We have to
use multiple RDMA operations in case that a set contains
the non-contiguous portion of physical memory pages used
by the VM). Each time we randomly pick a set of pages to
transfer. As shown in the figure, with sets of size two the whole
memory can be transferred within two RDMA read operations.
The size of each set is chosen empirically. We use 32 in
our actual implementation. Note that the memory pages on
the destination host need not be contiguous, since InfiniBand
supports RDMA read with scatter operation. RDMA write
protocol also uses the similar idea, except that we need
to reorganize the mapping tables based on the mfn at the
destination host to take advantage of RDMA write with gather,
as shown in Figure 4(b).

D. Network Quality of Service
By using RDMA based schemes we can achieve minimal

software overhead during migration. However, the migration

Memory
Physical Physical

Memorymfnpfn

Random

mfn pfn

Source Memory pages

3

1

4

2

1

2

3

4

2

3

1

4

3

1

4

2

Mapping Table Mapping Table
Re−organized Re−organized

Picked
Set

RDMA read
with Scatter

Pre−allocated destination
memory pages

(a) RDMA read

Memory
Physical Physical

Memorymfnpfn mfn pfn

Source Memory pages

2 4 4 2

Mapping Table Mapping Table
Re−organized Re−organized

Picked
Set

1

2

3

4

3

1

4

3

1

3

1

2

RDMA write
with Gather

Random

Pre−allocated destination
memory pages

(b) RDMA write

Fig. 4. Re-organizing mapping tables for page-clustering

traffic will unavoidably consume a certain amount of network
bandwidth, thus may affect the performance of other hosted
communication-intensive applications during migration.

To minimize network contention, Xen uses a dynamic
adaptive algorithm to limit the transfer rate of the migration
traffic. It always starts from a low transfer rate limit at the first
iteration of pre-copy. Then the rate limit is set to a constant
increment to the page dirty rate of the previous iteration, until
it exceeds a high rate limit, when Xen will terminate the pre-
copy stage. Although the same scheme can be used for RDMA
based migration, we would like a more intelligent scheme
because RDMA provides much higher network bandwidth.
If there is no other network traffic, limiting the transfer rate
unnecessarily prolongs the total migration time. We want the
pre-copy stage to be as short as possible if there is enough
network bandwidth, but to alleviate the network contention if
other applications are using the network.

We modify the adaptive rate limit algorithm used by Xen
to meet our purpose. We start from the highest rate limit
by assuming there is no other application using the network.
After sending a batch of pages, we estimate the theoretical
bandwidth the migration traffic should achieve based on the
average size of each RDMA operation. If the actual bandwidth
is smaller than that (the empirical threshold would be 80%
of the estimation), it probably means that there are other
applications sharing the network, either at the source or
destination host. Then we reduce the rate of migration traffic
by controlling the issuance of RDMA operations. We control
the transfer rate under a pre-defined low rate limit, or a
constant increment to the page dirty rate of the previous round,
whichever is higher. If this rate is lower than the high rate
limit, we try to raise the rate limit after sending a number of
pages. If there is no other application sharing the network at
the time, we will be able to achieve a full bandwidth. In this
case, we will keep sending at the high rate limit. Otherwise,
we will remain at the low rate limit some more time before
try to raise the limit again. Because RDMA transfers require
very little CPU involvement, its throughput depends mainly
on the network utilization. Thus, our scheme works well to

detect the network contention, and is able to efficiently utilize
the link bandwidth when there is less contention on network
resources.

VI. EVALUATION

In this section we present our performance evaluations,
which we design to address various important metrics of VM
migration. We first evaluate the basic migration performance
with respect to total migration time, migration downtime
and network contentions. Then we examine the impact of
migration on hosted applications using SPEC CINT2000 [22]
and NAS Parallel Benchmarks [18]. Finally we evaluate the
effect of our adaptive rate limit mechanism on network QoS.

A. Experimental Setup
We implement our RDMA based migration design with

InfiniBand OpenFabrics verbs [20] and Xen-3.0.3 release [26].
We compare our implementation with the original Xen migra-
tion over TCP. To make a fair comparison, all TCP/IP related
evaluations are carried over IP over InfiniBand (IPoIB [9]).
Though not shown in the paper, we found that migration over
IPoIB always achieves better performance than using the GigE
control networks of the cluster. And in all our evaluations
except in Section VI-E, we do not limit the transfer rate for
either TCP or RDMA based migration.

The experiments are carried out on an InfiniBand cluster.
Each system in the cluster is equipped with dual Intel Xeon
2.66 GHz CPUs, 2 GB memory and a Mellanox MT23108
PCI-X InfiniBand HCA. Xen-3.0.3 with the Linux 2.6.16.29
kernel is used on all computing nodes.

B. Basic Migration Performance
In this section we examine the basic migration performance.

We first look at the effect of page-clustering scheme proposed
in Section V-C. Figure 5 compares the total time to migrate
VMs with different sizes of memory configurations. We com-
pare four different schemes: migration using RDMA read or
RDMA write, and with or without page-clustering. Because
page-clustering tries to send larger trunks of memory pages to
utilize link bandwidth more efficiently, we observe that it can

constantly reduce the total migration time, up to 27% in case
of migrating a 1GB VM using RDMA Read. For RDMA write,
we do not see as much benefit of page-clustering as RDMA
read. This is because for messages around 4KB, InfiniBand
has more optimized RDMA write performance, the bandwidth
improvement from sending larger messages becomes smaller.
Since page-clustering constantly shows better performance, we
use page-clustering in all our later evaluations.

Next we compare the total migration time achieved over
IPoIB, RDMA read and RDMA write operations. Figure 6
shows the total migration time needed to migrate a VM with
varied memory configurations. As we can see, due to the
increased bandwidth provided by InfiniBand and RDMA, the
total migration time can be reduced by up to 80% by using
RDMA operations. RDMA read based migration has slightly
higher migration time; this is because InfiniBand RDMA write
operation typically provides a higher bandwidth.

Figure 7 shows a root-to-all style migration test. We first
launch multiple virtual machines on a source node, with each
using 256 MB of memory. We then start migrating all of them
to different hosts at the same time and measure the time to
finish all migrations. This emulates the requirements posed by
proactive fault tolerance, where all hosted VMs need to be
migrated to other hosts as fast as possible once the physical
host is predicted to fail. We also show the migration time
normalized to the case of migrating one VM. For IPoIB, there
is a sudden increase when the number of migrating VMs
reaches 3. This is because we have two CPUs on each physical
host. Handing three migration traffic leads to contention on
not only network bandwidth, but CPU resources as well. For
migration over RDMA, we observe almost linear increase of
the total migration time. RDMA read scales the best here
because it puts the least burden on the source physical host,
so that the contention on network is almost the only factor
affecting the total migration time in this case.

Fig. 5. Benefits of page-clustering

We have been evaluating total migration time that may be
hidden from applications through live migration. With live
migration, the application will only perceive the migration
downtime. The migration downtime mainly depends on two
factors. First is the application hosted on the migrating VM.
The faster application dirties memory pages, the more memory
pages may need to be sent in the last iteration of the pre-copy

Fig. 6. Total migration time

stage, which prolongs the downtime. Second is the network
bandwidth, a higher bandwidth shortens the time spent in
the last pre-copy iteration, resulting in shorter downtime. To
measure the migration downtime, we use a latency test. We
start a ping-pong latency test over InfiniBand with 4 bytes
messages between two VMs and then migrate one of the VMs.
The worst round-trip latency observed during migration can be
considered as a very accurate approximation of the migration
downtime, because a typical round-trip over InfiniBand will
take less than 10 µs.

We conduct the test while having a process continuously
tainting a pool of memory in the migrating VM. We vary
the size of pool to emulate applications dirtying the memory
pages at different rates. Only RDMA read results are shown
here because RDMA write performs very similarly. As shown
in Figure 8, downtimes of migrating over RDMA or IPoIB
are similar in case of no memory tainting. This is because the
time to transfer the dirty pages in the last iteration is very
small compared with other migration overhead such as re-
initializing the device drivers. While increasing the size of
the pool, we see a larger gap of the downtime. Due to the
high bandwidth achieved through RDMA, the downtime can
be reduced drastically, up to 77% in case of tainting a pool of
256MB memory.

In summary, due to increased bandwidth, RDMA operations
can significantly reduce the total migration time and migration
downtime in most cases. Low software overhead also gives
RDMA extra advantages while handling multiple migration
tasks at the same time.

Fig. 7. “Root-to-all” migration

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

IPoIB
RDMA

IPoIB
RDMA

IPoIB
RDMA

IPoIB
RDMA

IPoIB
RDMA

Ti
m

e
(m

s)

Last iteration time
Other overhead

Taint-256MBTaint-128MBTaint-64MBTaint-32MBNo taint

Fig. 8. Migration downtime

C. Impact of Migration on Hosted Applications
Now we evaluate the actual impact of migration on appli-

cations hosted in the migrating VM. We run SPEC CINT
2000 [22] benchmarks in a 512MB guest VM and migrate
the VM back and forth between two different physical hosts.
Because CINT is long running application, we migrate the
VM eight times to enlarge the impact of migration. As we
can see in Figure 9, live migration is able to hide the majority
of the total migration time to the hosted applications. However,
even in this case, RDMA based scheme is able to reduce the
migration overhead over IPoIB by an average of 54%.

For the results in Figure 9, we have 2 CPUs on each host,
providing enough resources to handle the migration traffic
while the guest VM is using one CPU for computing. As
we have mentioned in Section IV-A, in real production VM-
based environment, we may consolidate many servers onto
one physical host, leaving very few CPU resources to handle
migration traffic. To emulate this case, we disable one CPU
on the physical hosts and conduct the same test, as shown in
Figure 10. We observe that migration over IPoIB incurs much
more overhead in this case due to the contention on CPU
resources, while migration over RDMA does not have much
more overhead than the 2 CPU case. Compared with migration
over IPoIB, RDMA-based migration reduces the impact on
applications by up to 89%, an average of 70%.

Fig. 9. SPEC CINT 2000 (2 CPUs)

Migration will affect the application performance not only
on the migrating VM, but also on the other non-migrating

Fig. 10. SPEC CINT 2000 (1 CPU)

VMs on the same physical host as well. We evaluate this
impact in Figure 11. We first launch a VM on a physical
node, and run SPEC CINT benchmarks in this VM. Then
we migrate another VM to and from that physical host in
30 seconds interval to study the impact of migrations on the
total execution time. We use one CPU in this experiment. We
observe the same trend that migration over RDMA reduces
the overhead by an average of 64% compared with IPoIB.
Here we also show the hybrid approach. Based on server
loads, the hybrid approach automatically chooses RDMA read
when migrating VM out of the host and RDMA write when
migrating VM in. Table 1 shows the sample counts of total
instructions executed in the privileged domain, total L2 cache
misses and total TLB misses during each benchmark run. For
RDMA based migration we show the percentage of reductions
compared to IPoIB. All of these costs are directly contributing
to the overhead of migration. We observe that RDMA based
migration can reduce all the costs significantly. And the hybrid
scheme reduces the overhead further compared to RDMA read.
RDMA write scheme, by which server has less burden when
migrating VMs in but more when migrating VMs out, shows
very similar number to RDMA read. Thus we omit RDMA
write data for conciseness.

In summary, RDMA based migration can significantly re-
duce the migration overhead observed by applications hosted
on both the migrating VM and the non-migrating VMs. This
is especially true when the server is highly loaded and has less
CPU resources to handle the migration traffic.

Fig. 11. Impact of migration on applications in a non-migrating VM

TABLE I
SAMPLE INSTRUCTION COUNT, L2 CACHE MISSES AND TLB MISSES (COLLECTED USING XENOPROF [13])

Profile bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr
Inst. IPoIB 24178 9732 58999 12214 9908 16898 21434 28890 19590 47804 14688 23891

Count RDMA Read -62.7% -61.1% -62.5% -62.0% -58.4% -60.6% -61.8% -63.3% -62.5% -62.5% -62.40% -62.06%
RDMA Hybrid -64.3% -63.6% -65.4% -63.7% -59.6% -62.6% -63.4% -65.5% -63.7% -64.7% -64.37% -64.19%

L2 IPoIB 12372 1718 5714 3917 5359 2285 31554 8196 3523 27384 5567 16176
Cache RDMA Read -10.8% -36.9% -56.8% -15.4% -13.4% -43.6% -3.8% -21.7% -28.4% -12.6% -13.87% -10.10%
Miss RDMA Hybrid -11.1% -39.6% -58.8% -15.0% -15.7% -45.3% -4.0% -22.6% -28.5% -14.8% -14.03% -9.81%
TLB IPoIB 46784 153011 789042 27473 69309 33739 42116 59657 82135 216593 71239 67562
Miss RDMA Read -69.9% -10.2% -11.0% -61.9% -19.2% -68.1% -69.9% -66.1% -33.2% -31.1% -28.48% -49.78%

RDMA Hybrid -73.0% -10.5% -10.4% -64.5% -19.9% -70.4% -73.1% -68.4% -34.1% -32.0% -29.65% -51.78%

 0

 10

 20

 30

 40

 50

 60

 70

Ref
RDMA

IPoIB
Ref

RDMA
IPoIB

Ref
RDMA

IPoIB
Ref

RDMA
IPoIB

Ref
RDMA

IPoIB
Ref

RDMA
IPoIB

Ti
m

e
(s

ec
)

Migration

CG.B.8EP.B.9LU.A.8FT.B.8BT.A.9SP.A.9

(a) Total execution time (b) Effective bandwidth and Dom0 CPU utilization

Fig. 12. Impact of migration on NAS Parallel Benchmarks

D. Impact of Migration on HPC Applications
Several recent work shows the feasibility of VM-based

environments for HPC parallel applications [7], [16]. Thus,
we also study the impact of migration on Parallel HPC
applications. We conducted an experiment using NAS Parallel
Benchmarks (NPB) [18], which are derived from the comput-
ing kernels common on Computational Fluid Dynamics (CFD)
applications.

We use MVAPICH, a popular MPI implementation over
InfiniBand [14]. The benchmarks run with 8 or 9 processes
on separate VMs, each on different physical hosts and using
512MB of memory. We migrate a VM once during the exe-
cution to study the impact of migration on the total execution
time, as shown in Figure 12(a). Here RDMA read is used
for migration, because the destination host has lower load
than the source host. As we can see, the overhead caused
by migration is significantly reduced by RDMA, an average
of 79% compared with migration over IPoIB. We also mark
out the total migration time, which is not directly reflected in
the increase of total execution time because of live migration.
We observe that IPoIB has much longer migration time due to
the lower transfer rate and the contention on CPU resources.
In HPC it is very unlikely that people will spare one CPU
for migration traffic. Thus we use only one CPU on each host
in this experiment. As a result, the migration overhead here
for TCP/IPoIB is significantly higher than reported by other
relevant studies as in [8], [16].

Figure 12(b) further explains the gap we observed between

migration over IPoIB and RDMA. As we can see, while
migrating over IPoIB, the migration helper process in Dom0
uses up to 53% of the CPU resources but only achieves an
effective migration throughput up to 49MB/s (calculated by
dividing the memory footprint of the migrating OS by the
total migration time). Migrating over RDMA, in contrast, is
able to deliver up to 225MB/s while using a maximum of 14%
of the CPU resources.

E. Impact of Adaptive Limit Control on Network QoS
In this section we demonstrate the effectiveness of our

adaptive rate limit mechanism described in Section V-D. We
set the high limit of page transfer rate to be 300 MB/s and
the low limit to be 50 MB/s. As shown in Figure 13, we
first start a bi-directional bandwidth test between two physical
hosts, where we observe around 650MB/s throughput. At the
5th second, we start to migrate an 1GB VM between these
two hosts. As we can see, the migration process first tries
to send pages at the higher rate limit. However, because of
the bi-directional bandwidth test, it is only able to achieve
around 200 MB/s, which is less than the threshold (80%).
The migration process then detects the network contention
and starts to send pages at the lower rate. Thus, from the
Bidirectional bandwidth test we observe an initial drop, but
very quickly the throughput comes back to 600MB/s level. The
migration process tries to get back to the higher rate several
times between the 5th and the 15th seconds, but immediately
detects that there is still network contention and remains at

the lower rate. At the 15th second we stop the bandwidth test,
after that the migration traffic detects that it is able to achieve
a reasonable high bandwidth (around 267 MB/s), thus keeps
sending pages at the higher rate.

 0

 100

 200

 300

 400

 500

 600

 700

 800

5 10 15

Ba
nd

wi
dt

h
(M

B/
s)

Time (s)

Bidir Bandwidth Test
Migration Traffic

Fig. 13. Adaptive rate limit control

VII. RELATED WORK

In this paper we discussed improving virtual machine
migration using RDMA technologies. Our work is built on
top of Xen live migration [3]. Other popular virtual machine
technologies include VMware workstation [24] and VMware
ESX server [25]. VMware also supports guest OS migration
through VMotion [19]. Though the source code is unavailable,
from published documents we believe that they use similar
approaches as Xen. Thus, our solution can be applicable in
this context also.

Our work complements industry and research efforts that
use VM migration to support data-center management, such
as VMware VirtualCenter [24] and Xen Enterprise [26]. Also,
with the low overhead of Xen para-virtualization architecture,
researchers have been studying the feasibility of High Per-
formance Cluster [7], [8] or Grid Computing [5] with virtual
machines. Mueller et al. [16] have proposed proactive fault
tolerance for HPC based on VM migration. Our work can
seamlessly benefit those efforts that the migration can take
advantage of high speed interconnects, which leads to much
better efficiency in their proposed solutions.

Travostino et al. [23] studied VM migration over
MAN/WAN. And Nakashima et al. [17] applied RDMA mech-
anisms to VM migration over UZURA 10 Gb Ethernet-NIC.
Even though our general approach (optimizing memory page
transfer over new network technologies) is similar to theirs, our
work is different in multiple aspects. First, we work on Open-
Fabrics Alliance (OFA) [20] InfiniBand stack, which is an
open standard and is widely used. The detail design challenges
differ and we believe that our work is general enough to be
applied to more computing systems environments. Second, we
address extra optimization issues such as page clustering and
network QoS. Finally, we design thorough evaluations at both
micro-benchmarks and application-level benchmarks. Besides

total migration time and observed application downtime, we
focus on various important metrics reflecting the requirements
of VM migration posed by real world usage scenarios.

Our work aims to benefit VM migration by using the
OS-bypass and one-sided feature of RDMA. Exploiting the
benefits of RDMA has been widely studied in communication
subsystems, file systems, or storage areas [11], [12], [28].
Compared to these works, we work in a specialized domain
that minimizing system resource consumption is critical and
the migration process handles data that belongs to other
running OS instances, which leads to different research chal-
lenges.

Several studies have suggested that TCP-offload engines can
effectively reduce the TCP processing overhead [1], [6], [27].
VM migration can benefit from these technologies. Because
of the two sided synchronous model of the socket semantics,
however, we still cannot avoid frequent context switches
between the migrating domain and the control domain which
hosts the migration helper process. Thus, we believe RDMA
will still deliver better performance in handling migration
traffic. The detailed impact of TCP-offload engines is an inter-
esting topic and will be one of our future research directions.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we identify the limitations of migration over
the TCP/IP stack, such as lower transfer rate and high software
overhead. Correspondingly, we propose a high performance
virtual machine migration design based on RDMA. We address
several challenges to fully exploit the benefits of RDMA,
including efficient protocol designs, memory registration, non-
contiguous transfer and network QoS. Our design significantly
improves the efficiency of virtual machine migration, in terms
of both total migration time and software overhead. We
evaluate our solutions over Xen and InfiniBand through a set of
benchmarks that we design to measure the important metrics
of VM migration. We demonstrate that by using RDMA, we
are able to reduce the total migration time by up to 80%,
and migration downtime by up to 77%. We also evaluate the
impact of VM migration on hosted applications. We observe
that RDMA can reduce the migration cost on SPEC CINT
2000 benchmarks by an average of 54% when the server is
lightly loaded, and an average of 70% on a highly loaded
server.

In future, we will continue working on exploiting the
benefits of high speed interconnects for VM management.
We will explore more intelligent QoS schemes to further
reduce the impact of VM migration on the physical host, e.g.,
taking advantages of hardware QoS mechanisms to reduce the
contention on network traffic. We plan to analyze in detail the
impact of TCP-offload engines on virtual machine migration
traffic. Also, based on current work, we plan to explore virtual
machine save/restore over remote memory to benefit fault-
tolerance frameworks depending on such functionalities.

ACKNOWLEDGMENTS

This research is supported in part by an IBM PhD Scholar-
ship, and the following grants and equipment donations to the
Ohio State University: Department of Energy’s Grant #DE-
FC02-06ER25749 and #DE-FC02-06ER25755; National Sci-
ence Foundation grants #CNS-0403342 and #CCF-0702675;
grants from Intel, Mellanox, Sun, Cisco, and Linux Networx;
and equipment donations from Apple, AMD, IBM, Intel,
Microway, Pathscale, Silverstorm and Sun.

REFERENCES

[1] Annie P. Foong, Thomas R. Huff, Herbert H. Hum, Jaidev P. Patwardhan,
and Greg J. Regnier. TCP performance re-visited. In Proceedings
International Symposium on Performance Analysis of Systems and
Software (ISPASS), Austin, TX, March 2003.

[2] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors. ACM Trans-
actions on Computer Systems, 15(4):412–447, 1997.

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live Migration of Virtual Machines. In Proceedings
of 2nd Symposium on Networked Systems Design and Implementation,
2005.

[4] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the Art of Virtualization. In
Proceedings of the ACM Symposium on Operating Systems Principles,
Oct. 2003.

[5] R. Figueiredo, P. Dinda, and J. Fortes. A Case for Grid Computing
on Virtual Machines. In Proceedings of International Conference on
Distributed Computing Systems (ICDCS), May 2003., 2003.

[6] D. Freimuth, E. Hu, J. LaVoie, R. Mraz, E. Nahum, P. Pradhan, and
J. Tracey. Server Network Scalability and TCP Offload. In USENIX
2005, 2005.

[7] W. Huang, J. Liu, B. Abali, and D. K. Panda. A Case for High Perfor-
mance Computing with Virtual Machines. In International Conference
on Supercomputing (ICS), 2006.

[8] W. Huang, J. Liu, M. Koop, B. Abali, and D. Panda. Nomad: Migrating
OS-bypass Networks in Virtual Machines. In the 3rd ACM/USENIX
Conference on Virtual Execution Environment (VEE’07), June 2007.

[9] IETF IPoIB Workgroup.
http://www.ietf.org/html.charters/ipoib-charter.html.

[10] InfiniBand Trade Association. InfiniBand Architecture Specification,
Release 1.2.

[11] J. Liu, D. K. Panda, and M. Banikazemi. Evaluating the Impact of
RDMA on Storage I/O over InfiniBand. In SAN-03 Workshop (in
conjunction with HPCA), Feb. 2004.

[12] J. Liu, J. Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High Performance
RDMA-Based MPI Implementation over InfiniBand. In 17th Annual
ACM International Conference on Supercomputing, June 2003.

[13] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and W. Zwaenepoel.
Diagnosing Performance Overheads in the Xen Virtual Machine Envi-
ronment. In Proceedings of the 1st ACM/USENIX Conference on Virtual
Execution Environments (VEE’05), June 2005.

[14] MVAPICH Project Website. http://mvapich.cse.ohio-state.edu.
[15] Myricom, Inc. Myrinet. http://www.myri.com.
[16] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott. Proactive

Fault Tolerance for HPC with Xen Virtualization. In Proceedings of
the 21st Annual International Conference on Supercomputing (ICS’07),
Seattle, WA, June 2007.

[17] K. Nakashima, M. Sato, M. Goto, and K. Kumon. Application
of RDMA Data Transfer Mechanism over 10Gb Ethernet to Virtual
Machine Migration. IEICE technical report. Computer systems,Vol.106,
No.287(20061006) pp. 1-6 (In Japanese).

[18] NASA. NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

[19] M. Nelson, B.-H. Lim, and G. Hutchins. Fast Transparent Migration
for Virtual Machines. In Proceedings of USENIX 2005, Anaheim,
California.

[20] Open Fabrics Alliance. http://www.openfabrics.org.
[21] Quadrics, Ltd. QsNet. http://www.quadrics.com.
[22] SPEC CPU 2000 Benchmark. http://www.spec.org/.
[23] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat, J. Mambretti,

I. Monga, B. van Oudenaarde, S. Raghunath, and P. Y. Wang. Seamless
live migration of virtual machines over the MAN/WAN. Future Gener.
Comput. Syst., 22(8):901–907, 2006.

[24] VMware. http://www.vmware.com.
[25] C. Waldspurger. Memory resource management in VMware ESX

server. In the Fifth Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[26] XenSource. http://www.xensource.com/.
[27] H. youb Kim and S. Rixner. TCP Offload through Connection Handoff.

In Proceedings of EuroSys 2006, Leuven, Belgium, April 2006.
[28] W. Yu, S. Liang, and D. K. Panda. High Performance Support of Parallel

Virtual File System (PVFS2) over Quadrics. In International Conference
on Supercomputing (ICS-05), 2005.

