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Abstract—Large scale compute clusters continue to grow
to ever-increasing proportions. However, as clusters and
applications continue to grow, the Mean Time Between
Failures (MTBF) has reduced from days to hours. As
a result, fault tolerance within the cluster has become
imperative.

MPI, the de-facto standard for parallel programming, is
widely used on such large clusters. Many MPI implemen-
tations use Checkpoint/Restart schemes using the Berke-
ley Lab Checkpoint Restart (BLCR) Library to achieve
some level of fault tolerance. However, the performance
of the Checkpoint/Restart mechanism does not scale well
with increasing job size. As a result, the deployment of
Checkpoint/Restart mechanisms for large scale parallel
applications is compromised.

In our previous work, we proposed a technique to
aggregate certain categories of checkpoint writes to reduce
the checkpointing overhead. However, an application still
experiences slow checkpoint writing because it is blocked
waiting for its checkpoint file writes to complete. In this
paper, we propose the Write Aggregation with Dynamic
Buffer and Interleaving scheme to reduce the overhead
related to checkpoint creation. By aggregating all checkpoint
writes into a dynamic buffer pool and overlapping the
application progress with the file writes, our algorithm is
able to significantly reduce checkpoint creation overhead.
In the experiments using 64 processor cores, our design
demonstrates a speedup of 2.62 times in terms of checkpoint
creation time when compared to the original BLCR design.
Our scheme also reduces the impact of checkpointing on
the application execution time from 20% to 6% when 3
checkpoints are taken during an application run.

I. I NTRODUCTION

The trend in the High Performance Computing commu-
nity over the past couple of years has been to use a large
number of distributed processing elements, connected
together using a high performance network interconnect.
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With this exponential increase in the number of com-
ponents in the cluster, the Mean Time Between Failures
(MTBF) has reduced from days to a couple of hours[12],
[10]. As a result, it has become vital for such clusters to
be equipped with fault tolerance capabilities.

MPI is the de facto standard for parallel programming.
Many scientific applications written in MPI take days
to complete their computation. Given that the MTBF
of modern clusters is smaller than the average running
time of the application, failures are expected during the
lifetime of a large scale application. Many MPI libraries
have builtin checkpointing capabilities that allow appli-
cations to be checkpointed at regular intervals. Check-
pointing saves the complete state of the MPI process
to disk so that in the event of a failure, the process
can be restarted from the saved image. Berkeley Lab
Checkpoint/Restart software package (BLCR)[8] is a pop-
ular Checkpoint/Restart solution that is used by many
MPI implementations, including MVAPICH2[1], [18],
OpenMPI[11] and LAM/MPI[19].

Although BLCR has the capability to save and re-
store the MPI process’s execution context, most modern
interconnects store a substantial amount of information
pertaining to the communication endpoint on the intercon-
nect hardware itself. BLCR cannot access this information
and so cannot save/restore the communication endpoint.
Additionally, all the processes that are part of the MPI
job must be in a consistent state before they are check-
pointed. As a result, the process of checkpointing an MPI
application usually involves the following phases.

Phase 1: Suspend communication between all pro-
cesses in the parallel application and tear down the
communication end points.

Phase 2:Use a checkpoint library to dump the indi-
vidual process’s memory image to a checkpoint file.

Phase 3: Re-establish connections among the MPI
processes and continue execution.

At phase 2, a process’s context and memory contents
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are stored to a file on a reliable storage medium, usually
a local disk or a parallel file system. Hence, the time
spent in phase 2 dominates the time to create a check-
point. To understand the process of checkpointing, we
profiled the checkpoint writing for several applications
from the NAS Parallel Benchmark suite[23] using BLCR
and MVAPICH2[1]. The profiling provides insights into
the characteristics of checkpoint writing.

Our previous work [24] explored the option of aggre-
gating small and medium writes to a process’s local buffer
to reduce the checkpoint overhead. However, an appli-
cation still experiences slow checkpoint writing because
it is blocked waiting for its large checkpoint writes to
complete. On multicore systems, this constraint becomes
more severe due to many processes concurrently writing
to the VFS layer.

In order to accelerate checkpointing, one has to decou-
ple checkpoint writing from the slow file IO. However
the file IO overhead is fixed for given amount of data
and file system capabilities. The choice we make is to
hide the checkpoint IO overhead from the application.
Multiple application processes interleave their operations
to copy their process image to a shared buffer pool,
while a set of dedicated IO threads take care of writing
the buffered data to disk files. In order to exploit the
potentials of interleaving checkpoint data into the buffer
pool and overlapping file IO with application progress,
several questions must be addressed.

• How to construct the buffer pool to achieve both
efficient data copy and low memory footprint?

• How should application processes access the buffer
pool in order to improve data copy efficiency?

• What’s the strategy for the IO threads to perform file
write to improve memory utilization efficiency?

In this paper, we propose a Write Aggregation with
Dynamic Buffer and Interleaving strategy to reduce the
overhead related to checkpoint creation. By aggregating
all checkpoint writes into a dynamic buffer pool and
overlapping the application progress with the file writes,
our design is able to accelerate checkpoint creation by
2.62 times compared to the original BLCR. In terms of
application execution time, our new design brings down
the overhead from 20% to 6% when 3 checkpoints are
taken during the lifetime of the application.

The rest of paper is organized as follows. In section
2, we describe the background of checkpoint and restart.
In section 3, we analyze the profiling information col-
lected for the NAS Parallel Benchmark to characterize
checkpoint writing. In section 4, we present our detailed
designs and discuss our design choices. In section 5, we
conduct experiments evaluating our designs and present
results that indicate improvement. In section 6, we discuss
the related work. Finally we provide our conclusion and

state the direction of the research we intend to conduct
in future.

II. BACKGROUND

Checkpointing is the process of saving the state of a
program, usually to stable storage, at a given point of
time during its execution, so that the program may be
reconstructed at a later point in time. The process of
reconstructing the program from a checkpoint is referred
to as Restart.

A. Applications of Checkpoint/Restart

Checkpoint/Restart has many applications in the con-
text of High Performance Computing[9].

Multiuser Scheduling: HPC Clusters usually employ
a job scheduler which enables multiple users to share the
cluster’s resources. Based on the scheduling policy used
by the scheduler, there may be a necessity to preempt
a long running job to run a shorter job that arrived
much later. Checkpoint/Restart can be used to achieve
this preemption.

Application Migration: Well designed
Checkpoint/Restart schemes allow processes to be
checkpointed on one node and be restarted on another.
This feature can be exploited to achieve process
migration on computing clusters.

Application Backup: Checkpointing provides the
backbone for fault tolerance through rollback recovery.
An application maybe checkpointed periodically so that
only the computation performed after the most recent
checkpoint is lost in the event of a failure. The rest
of the discussion focuses on this application of Check-
point/Restart.

B. Checkpoint/Restart in MVAPICH2

MVAPICH2 is a MPI library with native support for In-
finiBand and 10GigE/iWARP [1]. It supports application
initiated and system initiated checkpointing [18], [17]
using the BLCR Library for Checkpoint/Restart [15].
Checkpointing in MVAPICH2 involves the following
three steps.

• Draining the communication channels of all pend-
ing messages and tearing down the communication
endpoints on each process.

• Using the BLCR Library to independently request
the checkpoint of every process that is part of the
MPI job. The checkpoint is taken by BLCR in a
blocking manner with the data being written to one
file per process.

• Re-establishing the communication endpoints on ev-
ery process.

The application continues its execution after the check-
point is taken.
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III. PROFILING CHECKPOINT CREATION

To understand the characteristics of checkpoint file IO,
we ran NAS parallel benchmarks LU, BT and SP using
the MVAPICH2 C/R framework with BLCR modified to
provide profiling information. We chose Class C with 64
processes. The applications were run on a 64 node cluster.
Each node has 8 processor cores on 2 Intel Xeon 2.33
GHz Quad-core CPUs. Each application was run on 8
nodes with one process per core. An application process
wrote its checkpoint data to a separate checkpoint file on
a local ext3 file system.

First, we measured the execution time of the appli-
cation without checkpoints and with three checkpoints
evenly distributed during the lifetime of the application.
The results are displayed in Figure 1(a). The numbers
above the bars indicate the overhead in execution time
caused by the checkpoints. For example, BT.C.64 takes
169.9s to complete without any checkpoints. With the
checkpoints, it takes 205.19s. This translates to an over-
head of 20.77%. For larger scale application with thou-
sands of processes, we expect the checkpoint overhead to
be more adverse. Our observation is consistent with the
results reported in [12].

(a) Application Execution Time
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Fig. 1. NAS Parallel Benchmark Checkpoint Profiling

Figure 1(b) decomposes the time required for one
checkpoint into phases 1, 2 and 3. In phase 1, communi-
cation is suspended and the end points are torn down. The

time taken for phase 1 to complete is negligible compared
to the other two phases. In phase 2, the process image is
written to a checkpoint file, which is the major portion of
the checkpoint time. In phase 3, communication channels
are reestablished among all processes. The cost of phase
3 is relatively constant for a given number of processes.
Table I indicates some basic information pertaining to
the number of VFS writes and the size of the checkpoint
data.

The information above indicates that phase 2 dominates
the checkpoint overhead. In this phase, BLCR performs
a lot of VFS writes to dump the process image to disk.
We further profiled phase 2 of the checkpoint process and
categorized all VFS writes into different classes based on
the size of data written in each write. Figure 2 depicts
this information. The first bar indicates the percentage of
the total number of VFS writes that fall in the indicated
range. The second bar indicates the percentage of the total
data amount in the indicated range. The third bar indicates
the percentage of the total time spent in doing the VFS
write in the indicated range. We can see some interesting
trend in this figure.

TABLE I
BASIC CHECKPOINT INFORMATION

LU.C.64 BT.C.64 SP.C.64
Checkpoint file size(MB) per
process

23 40.0 39.5

Total data size(MB) per node 184 320.0 316.0
Number of VFS write per
process

975 1057 1156

Total VFS write per node 7800 8456 9248

Firstly, a large portion of the VFS writes are asso-
ciated with very small amount of data. For example in
LU.C.64, more than 50% of VFS writes are of less
than 64 bytes. Such writes account for less than 0.5%
out of the total checkpoint data. These small writes are
initiated by BLCR to save the process’s open file table,
CPU register set, timers, process/group/session id, signal
handler table, metadata of Virtual Memory regions and
other data structures that are small in size. Since these
writes are buffered by the VFS layer, the time spent in
this category is less than 0.2% of total time cost.

Secondly, there are a lot of writes in the range of 4KB
to 64KB. These medium writes correspond to consecutive
pages in a process’s virtual memory area. For LU, about
37% of the VFS writes fall within the range of 4KB to
64KB. These account for about 12% of total checkpoint
data. However, these writes account for about 50% of
total write time. BT and SP also show a similar trend.

Thirdly, we find a few large writes that correspond to
large blocks of consecutive pages in the process’s Virtual
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Memory (VM) area. In LU, for example, only 1% of the
VFS writes are larger than 512 KB. However, 86% of
checkpoint data is dumped by these large writes. They
contribute to about 35% of the total checkpoint time.
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(a) LU.C.64
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(b) BT.C.64
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Fig. 2. Profiling of Time Spent in Phase 2

In our previous work [24], we made initial attempts to
aggregate small and medium VFS writes to a node’s local
buffer to reduce checkpoint overhead. By coalescing these
writes and performing large VFS writes directly to the
checkpoint file, we demonstrated that the checkpoint time
could be significantly reduced. However, the previous
work has a few drawbacks. Firstly, large VFS writes are
directly performed to disk files. Since these account for
the majority of data, a large part of the checkpoint time
is wasted in waiting for the VFS layer to complete the

writes. In a multicore system, this problem becomes more
severe due to many processes concurrently writing to the
VFS layer. Secondly, medium writes are aggregated to
a buffer shared by all application processes. Although
this marginally reduces the memory footprint, each write
incurs additional overhead to synchronize access to the
shared buffer.

In the following section, we propose new designs that
can achieve better performances by overcoming these
limitations.

IV. REDUCE CHECKPOINT TIME BY

WRITE-AGGREGATION AND INTERLEAVING

In this section we present two improved design strate-
gies to accelerate checkpointing parallel applications on
multicore systems.

A. Write Aggregation (WAG)

Through the profiling data collected in section III,
we find that medium VFS writes constitute a significant
portion of checkpoint write time. We also find that a large
portion of VFS writes are of very small size. Therefore
we propose a basic Write Aggregation(WAG) design to
coalesce all small and medium writes to a process-specific
buffer, which is illustrated by figure 3(a).

This strategy differs from our previous work [24] in
two important places. (1) In [24] all processes in a node
send their medium writes to a shared buffer. This causes
additional synchronization overhead for each write. In
WAG, each process copies its medium writes to its
own buffer. Therefore no inter-process synchronization is
required. (2) In WAG, small writes are also absorbed into
the same process-specific buffer to achieve a simplified
buffer design. As a comparison, [24] allocates a separate
local buffer for each process to aggregate small writes,
which complicates the buffer management.

(a) Write Aggregation (WAG) Design

Data sizeProcess Rank Original Offset Data

(b) Format of a Chunk

Fig. 3. Node-level Write Aggregation Design
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1) Design Strategy: Figure 3(a) illustrates our Write
Aggregation (WAG) design. A parallel job has many
application processes (APs) running on one node. When
a checkpoint of a AP is requested, a buffer is allocated
by BLCR and the VM area of the AP is copied to the
allocated buffer, based on the following policy.

(1) If the write size is smaller than some threshold, it is
copied to the local buffer till the buffer is filled. When the
buffer is filled, it is written to a separate file on disk. The
procedure is repeated as long as there is data available.
Before the copy can happen, a header is prepended to
the data. The structure of the header is shown in Figure
3(b). The header records the rank of the process, the size
of data and the offset within the checkpoint file. The
“original offset” is used to reconstruct the checkpoint file
from the individual file fragments.

(2) If the data is greater than or equal to the threshold,
it will not be aggregated. It will instead be directly written
to a file. At the same time, a header will be prepended to
this data to record the location of this chunk within the
checkpoint file. This is again necessary to construct the
checkpoint file.

2) Design Choices: The choice of the threshold plays
an important role in the Write Aggregation design. It
determines which VFS writes are copied to the local
buffer, and which ones are directly written to disk. It
also decides the amount of data that will be coalesced.
In section V, we evaluate WAG design performance for
different thresholds.

3) Restart with WAG: The restart process of our design
follows the BLCR framework. Since we have altered the
file organization, we have to reconstruct the checkpoint
file to a format that can be interpreted by BLCR. We have
designed an offline tool to construct checkpoint files by
parsing the headers in the data files created by WAG.
Once the checkpoint file is rebuilt for each process, the
parallel job can be restarted from the checkpoint files.

B. Write Aggregation with Dynamic Buffer and Interleav-
ing (WAG-DBI)

Although Write Aggregation effectively reduces the
checkpointing overhead for small and medium writes,
our previous design in [24] still shows a large delay in
writing the checkpoint. Further investigation reveals that
an AP spends a lot of time waiting for large VFS writes
to complete before it can proceed to handle next chunk
of data. Moreover, the wait time is worse for multicore
systems where a lot of the APs on a same node, compete
for IO. For a given amount of data, traditional checkpoint
writing semantics that serialize VFS writes cannot do
well.

To speed up checkpoint creation, we have to decouple
checkpoint progress and the slow file IO. We propose

to aggressively use the residual local memory to buffer
all checkpoint writes. While an AP proceeds to buffer all
checkpoint data in local memory, a set of IO threads write
the buffered data to disk. All APs interleave their data
copy into the shared buffer pool. By overlapping the file
writing with checkpoint data copy, we expect a significant
reduction in checkpoint write time at the cost of additional
memory usage. On the other hand, a recent study [2]
suggests that even large scale parallel jobs seldom use all
available local memory. Therefore we feel it is reasonable
to allocate part of the available local memory to the buffer
pool to accommodate checkpoint data writing.

1) Design Strategy: Figure 4 illustrates our Write Ag-
gregation with Dynamic Buffer and Interleaving (WAG-
DBI) design. The most prominent difference of this
design from the previous one is the use of a buffer pool
that is shared by all processes on the node. When a
checkpoint is requested, certain amount of memory is
reserved for the buffer pool. When a process needs to
write its checkpoint data, it first grabs a free chunk of
buffer from the pool. All its data is copied to this chunk
of buffer. If the chunk is filled, the process returns it to
buffer pool, and requests for a new free chunk from the
pool. This process is repeated by all APs till they finish
writing all their checkpoint data.

Fig. 4. Write Aggregation with Dynamic Buffer and Interleaving
(WAG-DBI)

A set of IO threads constantly monitor the usage of
the buffer pool. Once a free chunk is filled with data and
returned to the buffer pool, an IO thread is activated to
write this chunk to a separate file. The rank information
and the offset of the data is encoded within the file. This
information is used to rebuild the original checkpoint file.
fsync() is called to flush all buffered data to disk before
the file is closed. After the file is closed, the IO thread
returns this chunk to the buffer pool as a free chunk.

2) Overlapping Between Application Processes and IO
Threads: The benefit of WAG-DBI comes from its ability
to hide the checkpoint write delay from the application.
This is illustrated in Figure 5. At timet1, a checkpoint
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is requested. All the APs enter phase 1 to suspend
communications. They then enter phase 2 to store their
process images using WAG-DBI. In this phase an AP
repeatedly grabs free chunks from the buffer pool, copies
data to the buffer chunk, and returns full chunks to the
buffer pool. As full chunks are returned to pool, IO
threads are woken up to write these chunks to disk. When
an AP finishes copying its checkpoint data, it enters phase
3 to reestablish the communication channels with other
processes. At some timet2, all APs return from phase
3. At this point of time, the parallel job resumes its
computation. From an application’s point of view, the
“perceived checkpoint time” ist2 − t1. However, the
checkpoint data is not completely written to disk till time
t3. Hence, the “actual checkpoint time” ist3 − t1. The
checkpoint delay experienced by an application is only
t2 − t1.

Fig. 5. How the APs and IO Threads Overlap

WAG-DBI effectively relaxes the file IO semantics.
Instead of waiting for the data to be written to stable
storage, a process returns from checkpoint writing once
it has copied all its data to the buffer pool. In doing
so we risk the possibility to lose a checkpoint if a
failure happens during the periodt2 to t3. In situations
where high data reliability is desired, we also provide an
interface for an application process to poll the IO threads
for the completion of all file writes. In the next section
we measure the overlapping timet3 − t2 for different
applications.

3) Design Choices: Several parameters play important
roles in WAG-DBI design.

1) Buffer pool size. This parameter determines the
degree of overlap between APs and IO threads.
Large buffer pools provide higher opportunities to
overlap, since more data can be held in the buffer

pools. We measure the impact of this parameter in
checkpoint creation in next section.

2) Chunk size. For a given size of the buffer pool, the
chunk size determines the number of chunks in the
buffer pool, and therefore impacts the waiting time
of an AP to grab a free chunk. We intend to study
the effect of this parameter in our future work.

V. EXPERIMENTAL RESULTS

We have implemented WAG and WAG- designs into
BLCR-0.8.0. We have also integrated the modified BLCR
into MVAPICH2 1.2 [1] checkpoint/restart framework. In
this section, we conduct various experiments to evaluate
the performance of our design. A 64 nodes RedHat
Enterprise Linux 5 cluster is used in the evaluation.
Each node has 8 processor cores on 2 Intel Xeon 2.33
GHz Quad-core CPUs. All our experiments are based on
MVAPICH2 1.2 as the MPI library with modified BLCR
0.8.0. In all the experiments conducted, the checkpoint
files are written to the local ext3 file system. However our
design is generic and can be applied to any file system.

A. Performance of WAG

In this section we measure the checkpointing per-
formance of the WAG scheme using the LU and BT
applications from the NAS Parallel Benchmark suite
3.2.1 [23]. Each application is evaluated with class C
and 64 processes. Each application process runs on a
separate core, so 8 nodes(8 cores per node) are used in
this experiment.

Figure 6(a) compares the time to make one checkpoint
at different aggregation thresholds. The checkpoint time
has been categorized into 3 phases as described in section
I. “Phase 1” and “Phase 3” are the time spent by the MPI
library to tear down and reestablish the communication
end points. “Phase 2” is the time spent by MPI processes
within the BLCR library to take a local checkpoint.
“Original” refers to the current BLCR design without any
optimization. The rest of the bars in the figure refer to the
WAG design suggested in this work. The numbers below
these bars indicate the value of the aggregation threshold.

From Figure 6(a), it can be seen that WAG can
consistently reduce the checkpoint time. Furthermore,
it is observed that the checkpoint time decreases with
increasing values of aggregation threshold. In the example
of LU.C.64, a threshold value of 16 KB reduces the
checkpoint time by 10.18%. Larger threshold values 64
KB, 256 KB and 512 KB reduces checkpoint time by
14.84%, 33.41% and 35.20%, respectively. For BT.C.64,
the corresponding numbers are 9.8%,12.30%, 18.21% and
32.75%. This is due to the fact that more writes are
coalesced for larger thresholds.
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We have also measured the overall application execu-
tion time, which is depicted in Figure 6(b). “No Check-
point” represents the application execution time in the
absence of checkpoints as the baseline for comparison.
The rest of the bars indicate the application execution
time with three checkpoints taken at equal intervals.
Original BLCR produces an overhead of 13.86% and
20.77% for LU.C.64 and BT.C.64, respectively. WAG can
reduce the corresponding overheads to 9.21% and 13.64%
at threshold value 512 KB.
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Fig. 6. Evaluation of WAG

As the aggregation threshold is increased, the memory
required to perform the aggregation also increases as
shown in Table II. In this experiment with WAG, we
let each process allocate a sufficiently large buffer at the
beginning of a checkpoint, and report the actual amount
of usage at different aggregation threshold. This simplifies
the test, but doesn’t affect the characteristics of our study.
This table can be related to Figure 2. Figure 2 shows the
profiling of an process’s virtual memory size distribution,
which is a snapshot of a process’s memory usage pattern
at the moment when a checkpoint is taken. A process’s
virtual memory usage pattern evolves over time, and Table
II captures the total memory usage at certain threshold
values after 3 checkpoints have completed. We can find

that different applications require varied amount of mem-
ory for a given aggregation threshold, while increasing
the threshold value always enlarges memory usage. On
a multicore system where a lot of processes run on a
same node, a large threshold can quickly exhaust local
available memory. This makes using very large thresholds
impractical for large parallel applications on multicore
systems.

TABLE II
MEMORY USAGE PERNODE(IN MB)

16 KB 64 KB 256 KB 512 KB
LU.C.64 42.6 50.0 78.2 80
BT.C.64 33.6 44.8 81.2 160.5

B. Performance of WAG-DBI

In this section we measure the checkpointing per-
formance of the WAG-DBI scheme using 64 processes
class C LU and BT applications from the NAS Parallel
Benchmark suite. Since each process runs on a separate
processor core, 8 nodes (8 cores per node) are used.

Figure 7(a) shows the breakdown of the time to do one
checkpoint. The overhead is categorized into 3 phases as
described in section I. Phase 2 is further divided into
3 parts. “Buffer” denotes the time spent by a process to
acquire/return buffers. “Memcpy” denotes the time for
a process to copy its memory image to the acquired
buffers. “Other” denotes the time spent on the rest of
the operations in phase 2, such as freezing threads, etc.

The values below each bar indicate the buffer pool
sizes. A chunk size of 4 MB is used in each case. From
this figure, it can be seen that WAG-DBI significantly
reduces the time cost to make a checkpoint. WAG-DBI
does a very good job in reducing the time spent in phase
2 to write checkpoint data. Although time spent in phase
1 and phase 3 remains constant, the total checkpoint time
drops significantly as phase 2 dominates the overhead of
a checkpoint. In the test with BT.C.64, original BLCR
incurs an overhead of 11.2 seconds to make a checkpoint
(indicated in Figure 1(b)), while WAG-DBI reduces this
overhead to only 4.27 seconds when a 64 MB buffer pool
is used. This leads to a speedup of 2.62 times. Faster
checkpoint creation can be achieved when the buffer pool
is enlarged, as can be seen in Figure 7(a).

Figure 7(b) reports the overall application execution
time at different buffer pool sizes. Take BT.C.64 for
example. Without any checkpoints the application com-
pletes in 169.9 seconds. When 3 checkpoints are taken at
equal intervals using original BLCR, the execution time is
prolonged to 204.9 seconds, which implies the checkpoint
overhead to be 20.77%. When WAG-DBI with 64 MB
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buffer pool is used to take 3 checkpoints, the application
completes in 181.5 seconds. The overhead is driven down
to only 6.86%.

Using large buffer pool can further reduce checkpoint
time, but the improvement flattens beyond certain amount
of buffer. This is because the IO threads and application
processes are totally overlapped at certain buffer pool
size. Increasing buffer pool beyond this level isn’t able to
yield additional benefits. This “critical level” depends on
an application’s virtual memory usage pattern. We plan
to investigate along this direction in future work.
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Fig. 7. Evaluation of WAG-DBI

C. Comparing WAG and WAG-DBI

In this section we compare the performance of WAG
and WAG-DBI at similar memory usage. We set the
aggregation threshold of WAG to be 256 KB. With this
setting, 78.2 MB and 81.2 MB memories are used at
each node for one checkpoint by LU.C.64 and BT.C.64
respectively(as indicated in Table II). The buffer pool
size is set to be 64 MB for WAG-DBI at each node.

Figure 8(a) shows the breakdown of the time to do
one checkpoint. “Original” refers to the current BLCR
design without any optimization. The numbers above each
bar indicate the speedup achieved by different strategies

compared to original BLCR. For application LU.C.64,
WAG can speed up checkpoint creation by 1.5 times at
memory usage of 78.2 MB. As a comparison, WAG-
DBI yields a speedup of 2.23 times at 64 MB buffer
pool. For BT.C.64, WAG can accelerate checkpointing
by 1.22 times at memory usage of 81.2 MB, while WAG-
DBI accelerates checkpointing by 2.62 times with 64 MB
buffer pool.

(a) Decomposition of Checkpoint Time

(b) Application Execution Time

Fig. 8. Comparing WAG and WAG-DBI

WAG-DBI outperforms WAG in terms of checkpoint
creation time with less amount of memory usage. The
reason behind is that, WAG forces a process to wait
for its large VFS write to complete before handling the
next chunk of data, while WAG-DBI allows a process to
proceed once it has handed over its checkpoint data to
the buffer pool.

Figure 8(b) compares the application execution time
with different strategies when 3 checkpoints are taken at
equal intervals during the application run. “No Check-
point” represents the execution time without any check-
points. The numbers above each bar represent the over-
head caused by 3 checkpoints with different checkpoint
strategies. We can observe that WAG performs better than
original BLCR. We also observe that WAG-DBI con-
sistently outperforms WAG. At BT.C.64, WAG reduces
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the overhead in execution time from 20.77% to 15.77%.
WAG-DBI can further drive this overhead down to 6.86%.

D. WAG-DBI: Overlapping

WAG-DBI effectively overlaps IO and computation.
In this experiment we measure WAG-DBI’s overlapping
time between IO threads and application processes at
different buffer pool sizes. Figure 5 illustrates how
IO threads are overlapped with application by WAG-
DBI. After copying checkpoint data to the buffer pool,
a checkpoint is regarded as completed at timet2 when
communication end points are reestablished between all
processes. But IO threads haven’t finished writing check-
point data to disk files until timet3. The period between
t2 and t3 is overlapping between IO and computation.
Figure 9 reports this time at varied buffer pool sizes.
The legend “N MB” represents the buffer pool size of N
MB. Table I indicates that LU.C.64 generates 184 MB of
data per node in one checkpoint, while BT.C.64 generates
320 MB data per node in one checkpoint. Therefore IO
threads need longer time to write BT.C.64’s checkpoint
data to disk files, which leads to a longer overlapping
time than LU.C.64. We also find this overlapping time
tends to be shorter for a smaller buffer pool size. This
is because an application process spends longer time in
phase 2 to acquire free buffers at a smaller buffer pool(as
can be seen in Figure 7(a)). IO threads start writing to
files at phase 2. A longer phase 2 hides part of IO time.
As a result, the remaining IO time after phase 2 becomes
shorter leading to a shorter overlapping time.
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Fig. 9. IO Threads Overlapping with Application

E. WAG-DBI: Restart

In WAG-DBI, an IO thread writes each chunk of buffer
to a separate file. The file name encodes the process id
which generates this data, and the offset of this chunk in
original checkpoint file. Reconstructing a checkpoint file
only requires concatenating the individual chunk files in

order of their offsets, the cost of which is linearly propor-
tional to the original checkpoint file size. After recovering
the checkpoint files, an application can be restarted using
BLCR as usual. Table III measures the time cost to
rebuild the checkpoint file for one application process. It
also reports the time cost to restart an application. Take
LU.C.64 for example. It takes 1.59 seconds to rebuild a
checkpoint file for one process of LU.C.64. 9.25 seconds
are required to restart the application LU.C.64. Cost to
rebuild a checkpoint file is 17.19% of the restart cost.
However the checkpoint data is read only at restart after
a failure. Therefor the cost of rebuilding checkpoint files
is largely amortized in the lifespan of an application run.

TABLE III
OVERHEAD AT RESTART (SECONDS)

Time to rebuild
one checkpoint

Restart time percentage

LU.C.64 1.59 9.25 17.19
BT.C.64 3.18 9.52 33.40

VI. RELATED WORK

Checkpointing an application and restarting it from
the last checkpoint is a widely adopted mechanism for
serve fault tolerance. Many works have been done to
provide checkpoint/restart facilities for standalone ap-
plications [14], [8], [25], [16], [5]. Checkpoint/restart
mechanisms have been incorporated into MPI libraries
such as LAM/MPI [19], MVAPICH2 C/R [18], MPICH-
V [6] and OpenMPI [11].

The overhead of checkpoint/restart on file IO has been
studied by [12]. Milo etc. [3] proposes the use of log-
based file structures at the server side to serialize all
file writing requests for checkpoint. This structure is
optimized for a checkpoint writing pattern where mul-
tiple processes write to a single file. The server has to
be altered to adopt this file structure which makes it
infeasible for many existing applications. Stdchk [4] tries
to scavenge spare storage resources from all participating
nodes to form a dedicated storage space for checkpoint
data. Our work differs from it in that we focus on utilizing
local residual memory as a buffer pool. [13] proposes
a CLL algorithm to reduce checkpoint overhead. It’s a
user-level optimization, and its buffer management incurs
significant overhead to synchronize the copier thread and
application thread on every common page access. On
the contrary, our work is purely in kernel level, and our
algorithms synchronize at chunk level which can largely
mitigate buffer management overhead.

Another direction for fault tolerance is to proactively
migrate the processes on a failing node to a spare node
before the failure actually happens. [22], [21] propose to
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migrate a process while the parallel application is active.
However, the effectiveness of this scheme heavily relies
on the accuracy to predict a pending failure. If it fails
to predict a failure, or if the prediction comes too late,
the migration itself can fail, in which case, the entire
system has to rollback to the previous checkpoint. Hence,
a complete checkpoint is still mandatory, in which case,
our design is still relevant.

VII. C ONCLUSION AND FUTURE WORK

In this paper we propose a Write Aggregation with
Dynamic Buffer and Interleaving (WAG-DBI) strategy to
reduce the overhead related to checkpoint creation. By
aggregating all checkpoint writes into a dynamic buffer
pool and overlapping the application progress with the file
writes, our design is able to accelerate checkpoint writing
significantly.

As part of the future work, we plan to study the effect
of varying chunk sizes on the WAG-DBI scheme. We also
intend conducting experiments on the Lustre File System
[7]. Additionally, we plan to explore the use of I/O AT
to copy a process’s memory contents to the buffer pool.
Furthermore, we intend to perform collective IO [20] to
aggregate data from multiple nodes.
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