INAM - A Scalable InfiniBand Network Analysis and
Monitoring Tool *

N. Dandapanthula', H. Subramoni', J. Vienne', K. Kandalla', S. Sur!, D. K. Panda', and R.
Brightwell?

! Department of Computer Science and Engineering,
The Ohio State University
{dandapan, subramon, viennej, kandalla, surs, panda} @cse.ohio-state.edu
2 Sandia National Laboratories
rbbrigh@sandia.gov

Abstract. InfiniBand’s popularity in the field of cluster and high performance computing can
be attributed to its open standard and high performance. As InfiniBand (IB) clusters grow in
size and scale, predicting the behavior of the IB network in terms of link usage and perfor-
mance becomes an increasingly challenging task. Although the IB specification proposes a
detailed subnet management infrastructure to handle various aspects of the network, there cur-
rently exists no open source tool that allows users to dynamically analyze and visualize the
communication pattern and link usage in the IB network. In this context, we design and de-
velop a scalable InfiniBand Network Analysis and Monitoring tool - INAM. INAM monitors
IB clusters in real time and queries the various subnet management entities in the IB network
to gather the various performance counters specified by the IB standard. We provide an easy to
use web-based interface to visualize performance counters and subnet management attributes
of a cluster in an on-demand basis. It is also capable of capturing the communication charac-
teristics of a subset of links in the network, thereby allowing users to visualize and analyze the
network communication characteristics of a job in a high performance computing environment.
Our experimental results show that INAM is able to accurately visualize the link utilization as
well as the communication pattern of target applications.

1 Introduction

Across various enterprise and scientific domains, users are constantly looking to push the envelope of
achievable performance. The need to achieve high resolution results with smaller turn around times
has been driving the evolution of enterprise and supercomputing systems over the last decade. Inter-
connection networks have also rapidly evolved to offer low latencies and high bandwidths to meet
the communication requirements of distributed computing applications. InfiniBand has emerged as
a popular high performance network interconnect and is being increasingly used to deploy some
of the top supercomputing installations around the world. According to the Top500 [13] ratings of
supercomputers done in June’ 11, 41.20% of the top 500 most powerful supercomputers in the world

* This research is supported in part by Sandia Laboratories grant #1024384, U.S. Department of Energy grants
#DE-FC02-06ER25749, #DE-FC02-06ER25755 and contract #DE-AC02-06CH11357; National Science
Foundation grants #CCF-0621484, #CCF-0702675, #CCF-0833169, #CCF-0916302 and #OCI-0926691;
grant from Wright Center for Innovation #WCI04-010-OSU-0; grants from Intel, Mellanox, Cisco, QLogic,
and Sun Microsystems; Equipment donations from Intel, Mellanox, AMD, Obsidian, Advanced Clustering,
Appro, QLogic, and Sun Microsystems.

are based on the InfiniBand interconnects. Recently, InfiniBand has also started to make in-roads
into the world of enterprise computing.

Different factors can affect the performance of applications utilizing IB clusters. One of these
factors is the routing of packets or messages. Due to static routing, it is important to ensure that
the routing table is correctly programmed. Hoefler et al. showed, in [4], the possible degradation in
performance if multiple messages traverse the same link at the same time. Unfortunately, there do
not exist any open-source tools that can provide information such as the communication matrix of a
given target application or the link usage in the various links in the network, in a user friendly way.

Most of the contemporary network monitoring tools for IB clusters have an overhead attached
to them which is caused by the execution of their respective daemons which needs to run every
monitored device on the subnet. The purpose of these daemons is to gather relevant data from their
respective hosts and transmit it to a central daemon manager which renders this information to the
user. Furthermore, the task of profiling an application at the IB level is difficult considering the issue
that most of the network monitoring tools are not highly responsive to the events occurring on the
network. For example, to reduce the overhead caused by constant gathering of information at the
node by the daemons, a common solution is to gather the information at some time intervals which
could be anywhere between 30 seconds to 5 minutes. This is called the sampling frequency. Thus,
the higher the sampling frequency, the higher the overhead created by the daemons. This causes
a tradeoff with the responsiveness of the network monitoring tool. This method has an additional
disadvantage in that, it does not allow us to monitor network devices such as switches and routers
where we will not be able to launch user specified daemon processes.

As IB clusters grow in size and scale, it becomes critical to understand the behavior of the
InfiniBand network fabric at scale. While the Ethernet ecosystem has a wide variety of matured tools
to monitor, analyze and visualize various elements of the Ethernet network, the InfiniBand network
management tools are still in their infancy. To the best of our knowledge, none of the available
open source IB network management tools allow users to visualize and analyze the communication
pattern and link usage in an IB network. These lead us to the following broad challenge - Can a
low overhead network monitoring tool be designed for IB clusters that is capable of depicting the
communication matrix of target applications and the link usage of various links in the InfiniBand
network?

In this paper we address this challenge by designing a scalable InfiniBand Network Analysis
and Monitoring tool - INAM. INAM monitors IB clusters in real time and queries the various subnet
management entities in the IB network to gather the various performance counters specified by the IB
standard. We provide an easy to use web interface to visualize the performance counters and subnet
management attributes of the entire cluster or a subset of it on the fly. It is also capable of capturing
the communication characteristics of a subset of links in the network, thereby allowing users to
visualize and analyze the network communication characteristics of a job in a high performance
computing environment. Our experimental results show that INAM is able to accurately visualize
the link usage within a network as well as the communication pattern of target applications.

The remainder of this paper is organized as follows. Section 2 gives a brief overview of Infini-
Band and the InfiniBand subnet management infrastructure. In Section 3 we present the framework
and design of INAM. We evaluate and analyze the correctness and performance of INAM in various
scenarios in Section 4, describe the currently available related tools in Section 5, and summarize the
conclusions and possible future work in Section 6.

2

2 Background

2.1 InfiniBand

InfiniBand is a very popular switched interconnect standard being used by almost 41% of the Top500
Supercomputing systems [13]. InfiniBand Architecture (IBA) [5] defines a switched network fabric
for interconnecting processing nodes and I/O nodes, using a queue-based model. InfiniBand standard
does not define a specific network topology or routing algorithm and provides the users with an
option to choose as per their requirements.

IB also proposes link layer Virtual Lanes (VL) that allows the physical link to be split into several
virtual links, each with their specific buffers and flow control mechanisms. This possibility allows
the creation of virtual networks over the physical topology. However, current generation InfiniBand
interfaces do not offer performance counters for different virtual lanes.

2.2 OFED

OFED, short for OpenFabrics Enterprise Distribution, is an open source software for RDMA and
kernel bypass applications. It is needed by the HPC community for applications which need low
latency and high efficiency and fast I/O. A detailed overview of OFED can be found in [11]. OFED
provides performance monitoring utilities which present the port counters and subnet management
attributes for all the device ports within the subnet. Some of the attributes which can be obtained
from these utilities are shown in Table 1.

[Utility [Attribute [Description |
perfquery | XmtData The number of 32 bit data words sent out through that port since last reset

perfquery |[RcvData The number of 32 bit data words received through that port since last reset
perfquery | XmtWait The number of units of time a packet waits to be transmitted from a port

smpquery |LinkActiveSpeed|The current speed of a link
smpquery |NeighborMTU | Active maximum transmission unit enabled on this port for transmit

Table 1. Sample of attributes provided by utilities inside OFED

OFED includes an InfiniBand subnet manager called OpenSM which configures an InfiniBand
subnet. It comprises of the subnet manager (SM) which scans the fabric, initiates the subnet and then
monitors it. The subnet management agents (SMA) are deployed on every device port of the subnet
to monitor their respective hosts. All management traffic including the communication between the
SMAs and the SM is done using subnet management packets (SMP). IBA allocates the Virtual lane
(VL) 15 for subnet management traffic. The general purpose traffic can use any of the other virtual
lanes from 1 to 14 but the traffic on VL 15 is independent of the general purpose traffic.

3 Design And Implementation of INAM

We describe the design and implementation details of our InfiniBand Network Analysis and Moni-
toring tool (INAM) in this section. For modularity and ease of portability, we separate the function-
ality of INAM into two distinct modules - the InfiniBand Network Querying Service (INQS) and
the Web-based Visualization Interface (WVI). INQS acts as a network data acquisition service. It
retrieves the requested information regarding ports on all the devices of the subnet to obtain the per-
formance counters and subnet management attributes. This information is then stored in a database
using MySQL methods [9]. The WVI module then communicates with the database to obtain the

data pertaining to any user requested port(s) in an on-demand basis. The WVTI is designed as a stan-
dard web application which can be accessed using any contemporary web browser. The two modes
of operation of the WVI include the live observation of the individual port counters of a particular
device and the long term storage of all the port counters of a subnet. This information can be queried
by the user in the future. INQS can be ported to any platform, independent of the cluster size and the
Linux distribution being used. INAM is initiated by the administrator and there exists a connection
thread pool through which individual users are served. As soon as a user exits the application, the
connection is returned to the pool. If all the connections are taken up, then the user has to wait.
Currently the size of this connection pool is 50 and can be increased.

As we saw in Section 1, a major challenge for contemporary IB network monitoring tools is the
necessity to deploy daemon processes on every monitored device on the subnet. The overhead in
terms of CPU utilization and network bandwidth caused by these daemons often cause considerable
perturbations in the performance of real user applications that use these clusters. INAM overcomes
this by utilizing the Subnet Management Agents (SMA) which are required to be present on each
IB enabled device on the subnet. The primary role of an SMA is to monitor and regulate all IB
network related activity on their respective host nodes. The INQS queries these SMAs to obtain the
performance counters and subnet management attributes of the IB device(s) on a particular host.
The INQS uses Management Datagram (MAD) packets to query the SMAs. As MAD packets use a
separate Virtual Lane (VL 15), they will not compete with application traffic for network bandwidth.
Thus, compared to contemporary InfiniBand network management tools, INAM is more responsive
and and causes less overhead.

INAM is also capable of monitoring and visualizing the utilization of a link within a subnet. To
obtain the link utilization, the XmtWait attribute alone or XmtData / RcvData and LinkActiveSpeed
attributes in combination are used. The XmtWait attribute corresponds to the period of time a packet
was waiting to be sent, but could not be sent due to lack of network resources. In short it is an
indication of how congested a link is. The LinkActiveSpeed attribute indicates the speed of the link.
This can be used in combination with the change in XmtData or RcvData attribute to see whether
the link is being over utilized or not. In either case, we update a variable called the link utilization
factor to depict the amount of traffic in the link. There is also an option to use just the INQS as
a stand alone system to save the device port information and the link usage information over a
period of time (time can be varied depending on the memory available) to analyze the traffic patterns
over an InfiniBand subnet. INQS initially creates a dynamic MySQL database of all the available
LID-Port combinations, along with the physical links interconnecting these ports. The LID-Port
combination signifies all combinations of the device LIDs in the subnet and their respective ports.
This information is updated periodically and thus adapts to any changes in the network topology.
The frequency at which the data is collected from the subnet and the frequency at which the data is
displayed on the WVI can both be modified as per the requirement of the user. The overhead here
would be associated with the WVI module. The display frequency can be reduced to 1 second and
this would serve the users for all practical purposes. If this display frequency is less then 1 second,
then we see a drop in the responsiveness of the dynamic graphs generated.

The WVI interacts with the database and displays the information requested by the user in the
form of a graphical chart. Dynamic graphs are generated by using HighCharts Js [2]. This model
currently does not support dynamic multiple data series displayed in the same diagram with a com-
mon y-axis. Thus the comparision is done using multiple graphs as shown in Figure 1. We use a push
model instead of a pull model to update the data in the WVI. The connection between the MySQL

database and the WVI is kept open and hosting server pushes data to the browser as soon as the
database is updated by INQS. This technique removes the overhead on the web server caused by
the browser constantly polling the database for new data. This is implemented using a methodology
called Comet [3]. This makes the web server stable and provides high availability even when de-
ployed on large InfiniBand clusters with heavy data flow. The rest of the functionalities of the web
server are implemented using Java 2 Platform Enterprise Edition (J2EE) [12]. The communication
pattern of an MPI job is created by WVI by querying the database and then by using the canvas
element of HTMLS5 [15] to chart out the physical topology and connections between the ports on a
subnet.

3.1 Features of INAM

INAM can monitor an InfiniBand cluster in real time by using the functionalities provided by Open
Fabrics Enterprise Distribution (OFED) stack. It can also monitor the link utilization on the fly and
provide a post mortem analysis of the communication pattern of any job running on the IB cluster.

The user can select the device he wants to monitor through a dynamically updated list of all
the currently active devices on the subnet. An option to provide a list of all the port counters which
need to be compared in real time, is given to the user. Only the counters of one particular port can
be monitored at a time. INAM shows the first derivative of the counter values. A detailed overview
of all the subnet management attributes of a particular port in a subnet can also be obtained. The
attributes are divided into four main categories which are Link Attributes, Virtual Lane Attributes,
MTU Attributes and Errors and Violations. INAM also provides dynamic updates regarding the
status of the master Subnet Manager (SM) instance to the user. If there is a change in the priority
of SM or if the Master SM instance fails or if a new slave SM takes over as a Master SM instance,
the status is updated and the user is notified. This can help to understand the fail-over properties of
OpenSM. Further more, a user can ask INAM to monitor the network for the time period of an MPI
job and then it helps the user understand the communication pattern of that job using a color coded
link utilization diagram.

4 Experimental Results

4.1 Experimental Setup

The experimental setup is a cluster of 71 nodes (8 cores per node with a total of 568 cores) which
are all dual Intel Xeons E5345 connected to an InfiniBand Switch which has an internal topology of
a Fat Tree. We use a part of this cluster to show the functionality of INAM. This set up comprises
of 6 leaf switches and 6 spine switches with 24 ports each and a total of 35 leaf nodes equipped
with ConnectX cards. The functioning of INAM is presented using a series of benchmarks in varied
scenarios. The first set of results are obtained using a bandwidth sharing benchmark to create traffic
patterns which are verified by visualizing the link usage using INAM. The second set of benchmarks
shows similar network communication patterns with MPI_Bcast configured for diverse scenarios.
The third set of experiments verifies the usage of INAM using the LU benchmark from the SpecMPI
suite.

4.2 Visualizing Port Counters

The user can select the device they want to monitor through a dynamically updated list of all the
currently active devices on the subnet. The user can also provide a list of all the port counters they

want to compare in real time. Figure 1 depicts how INAM allows users to visually compare multiple
attributes of a single port. In this example, we show how two attributes - transmitted packets and
received packets, of user selected port can be compared.

Fig. 1. Monitoring the XmtData and RcvData of a port

4.3 Point to Point Visualization: Synthetic Communication Pattern

We create custom communication patterns using the bandwidth sharing benchmark mentioned in
[14] to verify the functioning of INAM. The benchmark in question enables us to mention the num-
ber of processes transmitting messages and the number of processes receiving messages at leaf
switch level and thus creating a blocking point to point communication pattern. We created various
test patterns, each incrementally more communication intensive then the previous pattern, to help us
notice a difference in the pattern using INAM. Two of those patterns are mentioned in detail in the
consequent sections.

Test Pattern 1 The first test pattern is visualized in Figure 2. The process arrangement in this pattern
is such that 8 processes, one per each of the 8 leaf nodes connected to leaf switch 84, communicate
with one process, on each of the four leaf nodes connected to the each of the two switches 78 and
66. The thick green line indicates that multiple processes are using that link. In this case, it can be
observed that the thick green line originating from switch 84 splits into 2 at switch 110. The normal
green links symbolize that the links are not being over utilized, for this specific case.

Test Pattern 2 Figure 3 presents the network communication for test pattern 2. The process ar-
rangement in this pattern is such that 32 processes, four per each of the 8 leaf nodes connected to
leaf switch 84, communicate with two processes, on each of the eight leaf nodes connected to the
each of the two switches 78 and 66. 32 processes send out messages from switch 84 and 16 processes
on each of the switches 78 and 66 receive these messages. This increase in the number of processes
per leaf node explains the exorbitant increase in the number of links being overly utilized. Figure 3
also shows that all of the inter switch links are marked in thick lines, thus showing that each link is
being used by more then one process. The links depicted in red indicate that the link is over utilized.
Since each leaf node on switch 84 has four processes and each leaf node on the other switches have
two processes, the links connecting the leaf nodes to the switch are depicted as thick red lines.

‘SwitcthO ?witch llQ §witch 10} §witch 101 §witch 111 §witch 10? hSwitch 10|0 ‘Switch 1lQ §witch 104 Switch 101 SwitchlLl ‘Switch 105

AN N 74190 I o 70 oo) Lo

S lich 84 §witch 126 §witch T8 _Switch 70‘ ‘Switch 90 §witch 66J
! N ! |

- Suitch 70 Switch 90

|

Fig. 2. INAM depiction of network traffic pattern for 16 Fig. 3. INAM depiction of network traffic pattern for 64
processes processes

4.4 Link Utilization of Collective Operations: Case Study with MPI_Bcast Operation

In this set of experiments, we evaluate the visualization of the One-to-All broadcast algorithms typ-
ically used in MPI libraries, using INAM. MVAPICH?2 [8] uses the tree-based algorithms for small
and medium sized messages, and the scatter-allgather algorithm for larger messages. The tree-based
algorithms are designed to achieve lower latency by minimizing the number of communication steps.
However, due to the costs associated with the intermediate copy operations, the tree-based algo-
rithms are not suitable for larger messages and the scatter-allgather algorithm is used for such cases.
The scatter-allgather algorithm comprises of two steps. In the first step, the root of the broadcast op-
eration divides the data buffer and scatters it across all the processes using the binomial algorithm. In
the next step, all the processes participate in an allgather operation which can either be implemented
using the recursive doubling or the ring algorithms.

We designed a simple benchmark to study the link utilization pattern of the MPI_Bcast operation
with different message lengths. For brevity, we compare the link utilization pattern with the binomial
algorithm with 16KB message length and we study the scatter-allgather (ring) algorithm with a data
buffer of size IMB. We used six processes for these experiments, such that we have one process on
each of the leaf switches, as shown in Figure 4. In our controlled experiments, we assign the process
on switch 84 to be the root (rank 0) of the MPI_Bcast operation, switch 126 be rank 1 and so on
until the process on switch 66 is rank 5. Figure 4 shows a binomial traffic pattern for a broadcast
communication on 6 processes using a 16KB message size. The binomial communication pattern
with 6 processes is as follows:

— Stepl: RankO — Rank3
— Step2: RankO — Rank1 and Rank3 — Rank4
— Step3: Rankl — Rank?2 and Rank4 — Rank5

In Figure 4, a darker color is used to represent a link that has been used more than once during
the broadcast operation. We can see that processes with ranks O through 4, the link connecting

the compute nodes to their immediate leaf-level switches are used more than once, because these
processes participate in more than one send/recv operation. However, process P5 receives only one
message and INAM demonstrates this by choosing a lighter shade. We can also understand the
routing algorithm used between the leaf and the spine switches by observing the link utilization
pattern generated by INAM. We also observe that the process with rank4, uses the same link between
switches 90 and 110 for both its send and receive operations. Such a routing scheme is probably
more prone to contention, particularly at scale when multiple data streams are competing for the
same network link.

‘Switch 10‘0 §witch 11[) §witch 10J4 §witch 101 §witch11|1 §witch 105 LSwitch 1Q0 _SwitchllO Switch 104 ‘Switch 101 §witch 111 §witch 105
N 740 O 72 Y I NI 7000 B O\ W V Vs b |

WANE

Suitch 84 Swtcr126 Switch78 Switch70\Switch %0 Siich 66 Switch 84 SitgA26 SwitcJB Swic

7o VAR v O o 7 (L] (22

TMTERY |
)|

Fig. 4. Link utilization of binomial algorithm Fig. 5. Link utilization of scatter-allgather algorithm

Figure 5 presents the link utilization pattern for the scatter-allgather (ring) algorithm with 6
processes. We can see that the effective link utilization for this algorithm is considerably higher when
compared to the binomial exchange. This is because the scatter-allgather (ring) algorithm involves a
higher number of communication steps than the binomial exchange algorithm. With 6 processes, the
ring algorithm comprises of 6 communication steps. In each step, process Pi communicates with its
immediate logical neighbors processes P(i — 1) and P(i + 1). This implies that each link between
the neighboring processes are utilized exactly 6 times during the allgather phase.

4.5 Application Visualization: SpecMPI - LU

In this experiment, we ran the LU benchmark (137.Iu - medium size - mref) from the SpecMPI
suite [10] on a system size of 128 processes using 16 leaf nodes with 8 nodes on each of the two
leaf switches. The prominent communication used by LU comprises of MPI_Send and MPI_Recv.
The communication pattern is such that each process communicates with its nearest neighbors in
either directions (p2 communicates with pl and p3). In the next step, p0 communicates with p15, p1l
communicates with p16 and so on. This pattern is visualized by INAM and is shown in Figure 6. It
can be seen that a majority of the communication is occurring on an intra-switch level.

Switch 100 Switch 110 Switch 104 Switch 101 Switch 111 Switch 105

Switch 8 Switch 126 Switch 78 Switch 70 Switch 90 witch 66

Fig. 6. INAM depicting the communication pattern using LU benchmark

4.6 Overhead of Running INAM

Since we use the subnet management agent (SMA), which acts like daemons monitoring all the
devices of a subnet, we do not need to use any additional daemons installed on every device to obtain
this data. This is a major advantage as it avoids the overhead in the contemporary approach caused
by the daemons which are installed on every device. The user just needs to have the service opensmd
started on the subnet. Since the queries used communicate through Virtual Lane 15 for the purpose
of data acquisition, there is no interference with the generic cluster traffic. For the verification of
this, we compared the performance of an IMB alltoall benchmark while toggling the data collection
service on and off by using messages of size 16 KB and 512 KB for a system size varying from 16
cores to 512 cores. The results obtained are shown in Figure 7 which shows that the overhead is very
minimal even though the service is on and there is not much difference even though the message
size is increased.

lSystem Size H 16 cores\32 cores\64 cores\ 128 cores\256 cores\512 cores‘

Message size 16 KB 0.13%| 0.11%| 0.15%| 0.09%| 0.07%| 0.14%

Message size 512 KB|| 0.19%| 0.21%| 0.16%| 0.08%| 0.21%| 0.15%
Fig. 7. Overhead caused by running INAM

5 Related Tools

There is a plethora of free or commercial network monitoring tools that provide different kinds of
information to the system administrators or the users. But only a few of them provide specific in-
formation related to IB network. We focus here on three popular network monitoring tools: Ganglia
[6], Nagios[1] and FabriclT [7].

Ganglia is a widely used open-source scalable distributed monitoring system for high-performance
computing systems developed by the University of California inside the Berkeley Millennium Project.
One of the best features of Ganglia is to offer an overview of certain characteristics within all the
nodes of a cluster, like memory, CPU, disk and network utilization. At the IB level, Ganglia can
provide information through perfquery and smpquery. Nevertheless, Ganglia can’t show any infor-
mation related to the network topology or link usage. Furthermore, to get all the data, Ganglia needs
to run a daemon, called gmond, on each node, adding an additional overhead.

Nagios is another common open-source network monitoring tool. Nagios offers almost the same
information as Ganglia through a plug-in called “InfiniBand Performance Counters Check”. But, as
Ganglia, Nagios can’t provide any information related to the topology.

FabriclIT is a proprietary network monitoring tool developed by Mellanox. Like INAM, FabricIT
is able to provide more information than Ganglia or Nagios, but the free version of the tool does not
give a graphical representation of the link usage or the congestion.

INAM is different from the other existing tools by the richness of the given information and
also its unique link usage information, giving all the required elements to users to understand the
performance of applications at the IB level.

6 Conclusions and Future Work

In this paper, we have presented INAM - a scalable network monitoring and visualization tool for
InfiniBand networks which renders a global view of the subnet through a web-based interface (WVI)
to the user. INAM depends on many services provided by the open-source OFED stack to retrieve
necessary information from the IB network. INAM also has an online data collection module (INQS)
which runs in the background while a job is in progress. After the completion of the job, INAM
presents the communication pattern of the job in a graphical format. The overhead caused by this
tool is very minimal and it does not require the user to launch any special processes on the target
nodes. Instead, it queries on the IB devices directly through the network and gathers data.

In future, we would like to extend this work to do an online analysis of the traffic patterns on a
cluster. If next generation InfiniBand devices offer performance counters for each virtual lane, we
could leverage it to study link utilization and network contention patterns in a more scalable fashion.
Another dimension would be to create a time line graphical pattern to depict the exact amount of
data being communicated in the subnet during a particular interval. We would also like to extend the
functionality of INAM such that the user can monitor and compare various counters from different
ports. We would also like to show if the links are used multiple times simultaneously when the
communication matrix is generated.

References

Barth, W.: Nagios. System and Network Monitoring. No Starch Press, U.S. Ed edn. (2006)

Charts, H.: HighCharts JS - Interactive JavaScript Charting. http://www.highcharts.com/
DWR: DWR - Direct Web Remoting. http://directwebremoting.org/dwr/

Hoefler, T., Schneider, T., Lumsdaine, A.: Multistage Switches are not Crossbars: Effects of Static Routing
in High-Performance Networks. In: Proceedings of the 2008 IEEE Cluster Conference (Sep 2008)

bl NS

5. InfiniBand Trade Association: http://www.infinibandta.org/
6. Massie, M.L., Chun, B.N., Culler, D.E.: The Ganglia Distributed Monitoring System: Design, Implemen-
tation, and Experience. Parallel Computing 30(7) (Jul 2004)
7. Mellanox: Fabric-it. http://www.mellanox.com/pdf/prod_ib_switch_systems/pb_FabricIT_EFM.pdf
8. MVAPICH?2: http://mvapich.cse.ohio-state.edu/
9. MySQL: MySQL. http://www.mysqgl.com/
10. Mller, M.S., van Waveren, G.M., Lieberman, R., Whitney, B., Saito, H., Kumaran, K., Baron, J., Brantley,

W.C., Parrott, C., Elken, T., Feng, H., Ponder, C.: Spec mpi2007 - an application benchmark suite for
parallel systems using mpi. Concurrency and Computation: Practice and Experience pp. 191-205 (2010)

11. Open Fabrics Alliance: http://www.openfabrics.org/

12. SUN: Java 2 platform, enterprise edition (j2ee) overview. http://java.sun.com/j2ee

13. Top500: Top500 Supercomputing systems. http://www.top500.org (November 2010)

14. Vienne, J., Martinasso, M., Vincent, J.M., Méhaut, J.F.: Predictive models for bandwidth sharing in high
performance clusters. In: Proceedings of the 2008 IEEE Cluster Conference (Sep 2008)

15. W3C: HTMLS - Canvas Element. https://developer.mozilla.org/en/HTML/Canvas

10

