
HIGH PERFORMANCEAND SCALABLEMPI
INTRA-NODE COMMUNICATION MIDDLEWARE FOR

MULTI-CORE CLUSTERS

DISSERTATION

Presented in Partial Ful�llmen t of the Requirements for

the DegreeDoctor of Philosophy in the

Graduate School of The Ohio State University

By

Lei Chai, Master of Science

* * * * *

The Ohio State University

2009

Dissertation Committee:

Prof. D. K. Panda, Adviser

Prof. P. Sadayappan

Prof. F. Qin

Approved by

Adviser

Graduate Program in
Computer Scienceand

Engineering

c
 Copyright by

Lei Chai

2009

ABSTRA CT

Cluster of workstations is one of the most popular architectures in high perfor-

mance computing, thanks to its cost-to-performancee�ectiveness. As multi-core

technologiesarebecomingmainstream,moreand moreclustersaredeploying multi-

coreprocessorsasthe build unit. In the latest Top500supercomputerlist published

in November 2008,about 85%of the sites usemulti-core processorsfrom Intel and

AMD. MessagePassingInterface (MPI) is one of the most popular programming

models for cluster computing. With increaseddeployment of multi-core systemsin

clusters, it is expected that considerablecommunication will take place within a

node. This suggeststhat MPI intra-node communication is going to play a key role

in the overall application performance.

This dissertation presents novel MPI intra-node communication designs,includ-

ing user level sharedmemory basedapproach, kernel assisteddirect copy approach,

and e�cien t multi-core awarehybrid approach. The userlevel sharedmemorybased

approach is portable acrossoperating systemsand platforms. The processescopy

messagesinto and from a shared memory area for communication. The shared

bu�ers are organizedin a way such that it is e�cien t in cache utilization and mem-

ory usage.The kernel assisteddirect copy approach takeshelp from the operating

system kernel and directly copiesmessagefrom one processto another so that it

ii

only needsonecopy and improvesperformancefrom the sharedmemory basedap-

proach. In this approach, the memory copy can be either CPU basedor DMA

based.This dissertationexploresboth directions and for DMA basedmemorycopy,

we take advantageof novel mechanismsuch asI/O AT to achieve better performance

and computation and communication overlap. To optimize performanceon multi-

core systems,we e�cien tly combine the sharedmemory approach and the kernel

assisteddirect copy approach and proposea topology-aware and skew-aware hybrid

approach. The dissertationalsopresents comprehensive performanceevaluation and

analysisof the approacheson contemporary multi-core systemssuch asIntel Clover-

town cluster and AMD Barcelonacluster, both of which are quad-coreprocessors

basedsystems.

Software developed as a part of this dissertation is available in MVAPICH and

MVAPICH2, which are popular open-sourceimplementations of MPI-1 and MPI-2

libraries over In�niBand and other RDMA-enablednetworks and areusedby several

hundred top computing sitesall around the world.

iii

Dedicatedto My Family

iv

A CKNO WLEDGMENTS

I would like to thank my adviser,Prof. D. K. Panda for guiding me throughout

the duration of my PhD study. I'm thankful for all the e�orts he took for my

dissertation. I would like to thank him for his friendship and counselduring the

past years.

I would like to thank my committee membersProf. P. Sadayappanand Prof. F.

Qin for their valuable guidanceand suggestions.

I'm especially grateful to have had Dr. JieshengWu asa mentor during my �rst

year of graduatestudy. I'm also grateful to Donald Traub and SpencerSheplerfor

their guidanceand adviceduring my internships at Sun Microsystems.

I would like to thank all my seniorNowlab membersfor their patienceand guid-

ance,Dr. Pavan Balaji, WeihangJiang, Dr. Hyun-Wook Jin, Dr. Jiuxing Liu, Dr.

Amith Mamidala, Dr. SundeepNarravula, Dr. Ranjit Noronha, Dr. Sayantan Sur,

Dr. Karthik Vaidyanathan, Dr. Abhinav Vishnu, and Dr. Weikuan Yu. I would

also like to thank all my colleagues,Krishna Chaitanya, Tejus Gangadharappa,

Karthik Gopalakrishnan,Wei Huang, Matthew Koop, Ping Lai, Greg Marsh, Xi-

angyong Ouyang, Jonathan Perkins, Ajay Sampat, Gopal Santhanaraman, Jaidev

Sridhar, and Hari Subramoni. I'm especially grateful to Sayantan, Jin, Wei, Matt,

and Weikuan and I'm lucky to have worked closelywith them on di�erent projects.

v

During all theseyears,I met many peopleat Ohio State, someof whom become

very closefriends, and I'm thankful for their friendship.

Finally, I would like to thank my family members, my husband Guoqiang, my

son Terry, my dad and my mom. I would not have had made it this far without

their love and support.

vi

VIT A

April 22, 1980 .Born - Qingdao,China.

September 1999- June 2003B. Engr. Computer Science and
Engineering, Zhejiang Univeristy,
Hangzhou,China.

September 2003- August 2004 DistinguishedUniversity Fellow,
The Ohio State University.

October 2004- December 2007 Graduate Research Associate,
The Ohio State University.

June 2006- September 2006SummerIntern,
Sun Microsystems,Austin, TX.

June 2007- September 2007SummerIntern,
Sun Microsystems,Menlo Park, CA.

January 2008- December 2008 DistinguishedUniversity Fellow,
The Ohio State University.

January 2009- March 2009Graduate Research Associate,
The Ohio State University.

PUBLICA TIONS

L. Chai, P. Lai, H.-W. Jin and D. K. Panda, \Designing An E�cien t Kernel-level
and User-level Hybrid Approach for MPI Intra-node Communication on Multi-core
Systems",International Conferenceon Parallel Processing(ICPP 2008),Sept. 2008.

L. Chai, X. Ouyang, R. Noronhaand D.K. Panda, \pNFS/PVFS2 over In�niBand:
Early Experiences",PetascaleData StorageWorkshop 2007, in conjunction with
SuperComputing (SC) 2007,Reno,NV, November 2007.

vii

H. -W. Jin, S. Sur, L. Chai, D. K. Panda, \Ligh tweight Kernel-Level Primitiv es
for High-PerformanceMPI Intra-Node Communication over Multi-Core Systems",
IEEE Cluster 2007(Poster), Austin, TX, September 2007.

K. Vaidyanathan, L. Chai, W. Huang and D. K. Panda, \E�cien t Asynchronous
Memory Copy Operationson Multi-Core Systemsand I/O AT", IEEE Cluster 2007,
Austin, TX, September 2007.

R. Noronha, L. Chai, T. Talpey and D. K. Panda, \Designing NFS With RDMA
For Security, Performanceand Scalability", The 2007International Conferenceon
Parallel Processing(ICPP-07), Xi'an, China.

S. Sur, M. Koop, L. Chai and D. K. Panda, \P erformanceAnalysis and Evaluation
of Mellanox ConnectX In�niBand Architecture with Multi-Core Platforms", 15th
Symposium on High-PerformanceInterconnects(HOTI-15), August 2007.

L. Chai, Q. Gao and D. K. Panda, \Understanding the Impact of Multi-Core Ar-
chitecture in Cluster Computing: A CaseStudy with Intel Dual-CoreSystem", The
7th IEEE International Symposium on Cluster Computing and the Grid (CCGrid
2007),May 2007.

L. Chai, A. Hartono and D. K. Panda, \Designing High Performanceand Scalable
MPI Intra-node Communication Support for Clusters", The IEEE International
Conferenceon Cluster Computing (Cluster 2006),September 2006.

L. Chai, R. Noronha and D. K. Panda, \MPI over uDAPL: Can High Performance
and Portabilit y Exist AcrossArchitectures?", The 6th IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid 2006),May 2006.

S. Sur, L. Chai, H.-W. Jin and D. K. Panda, \Shared Receive QueueBasedScal-
able MPI Design for In�niBand Clusters", International Parallel and Distributed
ProcessingSymposium (IPDPS 2006),April 25-29,2006,RhodesIsland, Greece.

S. Sur, H.-W. Jin, L. Chai and D. K. Panda, \RDMA Read Based Rendezvous
Protocol for MPI over In�niBand: DesignAlternativ es and Bene�ts", Symposium
on Principles and Practice of Parallel Programming (PPOPP 2006), March 29-31,
2006,Manhattan, New York City.

L. Chai, R. Noronha,P. Gupta, G. Brown, and D. K. Panda, \Designing a Portable
MPI-2 over Modern InterconnectsUsing uDAPL Interface", EuroPVM/MPI 2005,
Sept. 2005.

viii

H.-W. Jin, S.Sur, L. Chai and D. K. Panda, \LiMIC: Support for High-Performance
MPI Intra-Node Communication on Linux Clusters", International Conferenceon
Parallel Processing(ICPP-05), June 14-17,2005,Oslo, Norway.

L. Chai, S. Sur, H.-W. Jin and D. K. Panda, \Analysis of DesignConsiderations
for Optimizing Multi-Channel MPI over In�niBand", Workshopon Communication
Architecture for Clusters(CAC 2005);In Conjunction with IPDPS, April 4-8, 2005,
Denver, Colorado.

FIELDS OF STUD Y

Major Field: Computer Scienceand Engineering

Studiesin:

Computer Architecture Prof. D. K. Panda
Computer Networks Prof. D. Xuan
Software Systems Prof. G. Agrawal

ix

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Tables . xiv

List of Figures . xv

Chapters:

1. Introduction . 1

1.1 Architectures of Multi-core Clusters 3
1.2 MPI Intra-node Communication 6
1.3 Problem Statement . 10
1.4 Research Approaches . 13
1.5 Dissertation Overview . 16

2. Understandingthe Communication Characteristicson Multi-core Clusters 18

2.1 Designof Experiments for Evaluating Multi-core Clusters 19
2.1.1 Programming Model and Benchmarks 19
2.1.2 Designof Experiments . 19
2.1.3 ProcessorA�nit y . 21

2.2 PerformanceEvaluation . 21
2.2.1 Latency and Bandwidth . 22
2.2.2 MessageDistribution . 23

x

2.2.3 Potential Cache and Memory Contention 30
2.2.4 Bene�ts of Data Tiling . 31
2.2.5 Scalability . 32

2.3 Summary . 33

3. SharedMemory BasedDesign . 35

3.1 Basic SharedMemory BasedDesign 35
3.1.1 Design. 36
3.1.2 Optimization for NUMA systems 38
3.1.3 Exploiting ProcessorA�nit y 39

3.2 AdvancedSharedMemory BasedDesign 39
3.2.1 Overall Architecture . 39
3.2.2 MessageTransferSchemes. 41
3.2.3 Analysis of the Design . 44
3.2.4 Optimization Strategies . 47

3.3 PerformanceEvaluation . 48
3.3.1 Latency and Bandwidth on NUMA Cluster 49
3.3.2 L2 Cache Miss Rate . 50
3.3.3 Impact on MPI Collective Functions 50
3.3.4 Latency and Bandwidth on Dual Core NUMA Cluster . . . 52
3.3.5 Application Performanceon Intel Clovertown Cluster 53

3.4 Summary . 54

4. CPU BasedKernel AssistedDirect Copy 56

4.1 Limitations of the Existing Approach and Overall Designof LiMIC 57
4.1.1 Kernel-BasedMemory Mapping 57
4.1.2 Our Approach: LiMIC . 58

4.2 Designand Implementation Issues 60
4.2.1 Portable and MPI Friendly Interface 60
4.2.2 Memory Mapping Mechanism 61
4.2.3 Copy Mechanism . 63
4.2.4 MPI MessageMatching . 64

4.3 PerformanceEvaluation . 65
4.3.1 PerformanceEvaluation of LiMIC on a Single-coreCluster . 65
4.3.2 Application Performanceof LiMIC2 on an AMD

BarcelonaSystem . 74
4.3.3 PerformanceImpact on MPI+Op enMP Model 74

4.4 Summary . 76

xi

5. DMA BasedKernel AssistedDirect Copy 78

5.1 Designof the DMA BasedSchemes. 79
5.1.1 SCI (Single-Corewith I/O AT) 79
5.1.2 MCI (Multi-Core with I/O AT) 80
5.1.3 MCNI (Multi-Core with No I/O AT) 82

5.2 Integration with MVAPICH . 83
5.3 PerformanceEvaluation . 85
5.4 Summary . 88

6. E�cien t Kernel-level and User-level Hybrid Approach 89

6.1 Introduction of LiMIC2 . 90
6.2 Initial PerformanceEvaluation and Analysis: Micro-Benchmarks . 91

6.2.1 Impact of ProcessorTopology 91
6.2.2 Impact of Bu�er Reuse . 93
6.2.3 L2 Cache Utilization . 94
6.2.4 Impact of ProcessSkew . 95

6.3 Designingthe Hybrid Approach . 98
6.3.1 Topology Aware Thresholds 98
6.3.2 Skew Aware Thresholds . 100

6.4 PerformanceEvaluation with Collectivesand Applications 102
6.4.1 Impact on Collectives . 102
6.4.2 Impact on Applications . 103

6.5 Summary . 104

7. Analysis of DesignConsiderationsfor Multi-c hannel MPI 108

7.1 Channelpolling . 109
7.1.1 Channelpolling overheads. 109
7.1.2 Channelpolling schemes. 111

7.2 Channel thresholds . 113
7.2.1 Communication startup and messagetransmission

overheads . 114
7.2.2 Threshold decisionmethodology 115

7.3 PerformanceEvaluation . 116
7.3.1 Evaluation of Polling Schemes. 116
7.3.2 Evaluation of Thresholds 119

7.4 Summary . 122

xii

8. Open SourceSoftware Releaseand its Impact 124

9. Conclusionsand Future Research Directions 126

9.1 Summary of Research Contributions 126
9.1.1 High Performanceand ScalableMPI Intra-node Communi-

cation Designs . 127
9.1.2 Multi-core Aware Optimizations 128
9.1.3 ComprehensiveAnalysisof Considerationsfor Multi-c hannel

MPI . 128
9.1.4 In-depth Understandingof Application Behaviors on Multi-

coreClusters . 128
9.2 Future Research Directions . 129

Bibliography . 132

xiii

LIST OF TABLES

Table Page

2.1 MessageDistribution in NAS Benchmarks ClassB on 16 Cores. . . . 27

2.2 MessageDistribution in NAS Benchmarks ClassC on 256Cores . . . 29

4.1 b e� ResultsComparisons(MB/s) . 71

4.2 Intra-Node MessageSizeDistribution for IS ClassA 73

5.1 Basic Interfacesfor Using I/O AT Copy Engine 80

5.2 Kernel Module Interfacesfor IPC . 83

5.3 MessageSizeDistribution of MPI benchmarks 87

6.1 MessageSizeDistribution (Single Node 1x8) 106

xiv

LIST OF FIGURES

Figure Page

1.1 Illustration of Multi-Core Cluster . 5

1.2 Memory Transactionsfor Di�eren t Intra-NodeCommunication Schemes 7

1.3 Problem Spaceof this Dissertation 11

2.1 Latency and Bandwidth in Multi-core Cluster 23

2.2 MessageDistribution of NAMD on 16 Cores 24

2.3 MessageDistribution of HPL on 16 Cores 24

2.4 MessageDistribution of HPL on 256Cores 28

2.5 Application Performanceon Di�eren t Con�gurations 29

2.6 E�ect of Data Tiling . 30

2.7 Application Scalability . 33

3.1 Basic SharedMemory BasedDesign 36

3.2 Overall Architecture of the ProposedDesign 40

3.3 Send/Receive Mechanism for a Small Message 42

3.4 Send/Receive Mechanism for a Large Message. 42

3.5 Memory Usageof the ProposedNew DesignWithin a Node. 46

xv

3.6 Latency on NUMA Cluster . 49

3.7 Bandwidth on NUMA Cluster . 51

3.8 L2 Cache Miss Rate . 51

3.9 MPI Barrier Performance . 51

3.10 MPI Alltoall Performance . 51

3.11 Latency on Dual Core NUMA Cluster 52

3.12 Bandwidth on Dual Core NUMA Cluster 53

3.13 Application PerformanceComparison 54

4.1 Approachesfor Kernel-BasedDesign 59

4.2 Memory Mapping Mechanism . 62

4.3 MPI Level Latency and Bandwidth 68

4.4 LiMIC Cost Breakdown (Percentage of Overall Overhead) 69

4.5 IS Total Execution Time Comparisons:(a) ClassA, (b) ClassB, and
(c) ClassC . 71

4.6 IS PerformanceImprovement . 73

4.7 Application Performanceof LiMIC2 on an AMD BarcelonaSystem . 74

4.8 PerformanceImpact on MPI+Op enMP Model 76

5.1 Copy Engine Architecture and SCI Scheme 81

5.2 Asynchronous Memory Copy Operations: (a) MCI Schemeand (b)
MCNI Scheme. 81

5.3 MPI-level Latency and Bandwidth 86

5.4 MPI Application Performance . 87

xvi

6.1 Illustration of Intel Clovertown Processor 91

6.2 Multi-pair Bandwidth . 92

6.3 Impact of Bu�er Reuse(Intra-socket) 95

6.4 L2 Cache Misses . 96

6.5 ProcessSkew Benchmark . 97

6.6 Impact of ProcessSkew . 98

6.7 Multi-pair Bandwidth with Topology Aware Thresholds. 100

6.8 Impact of Skew Aware Thresholds 101

6.9 Collective Results(Single Node 1x8) 103

6.10 Application Performance(Single Node 1x8) 104

6.11 L2 Cache Missesin Applications (Single Node 1x8) 105

6.12 Application Performanceon 8 nodes(8x8) 107

7.1 Polling overheadof network channel and sharedmemory channel . . . 110

7.2 Latency of static polling scheme . 117

7.3 Messagediscovery microbenchmark 118

7.4 Messagediscovery time of dynamic polling scheme. 118

7.5 Latency and bandwidth comparisons 121

7.6 Computation/communication overlap 122

xvii

CHAPTER 1

INTR ODUCTION

The pacepeoplepursuingcomputing power hasnever sloweddown. Moore'sLaw

hasbeenproven to be true over the passageof time - the performanceof microchips

has been increasingat an exponential rate, doubling every two years. \In 1978,a

commercial
igh t between New York and Paris cost around $900 and took seven

hours. If the principles of Moore'sLaw had beenapplied to the airline industry the

way they have to the semiconductorindustry since1978,that
igh t would now cost

about a penny and take lessthan one second."(a statement from Intel) However,

it becomesmore di�cult to speedupprocessorsnowadays by increasingfrequency.

One major barrier is the overheat problem, which high-frequencyCPU must deal

with carefully. The other issueis power consumption. Theseconcernsmake it less

cost-to-performancee�ective to increaseprocessorclock rate. Therefore,computer

architects have designedmulti-core processor,which meansto place two or more

processingcoreson the samechip [29]. Multi-core processorsspeedupapplication

performanceby dividing the workload to di�erent cores. It is also referred to as

Chip Multiprocessor (CMP).

On the other hand, clusters[4] have beenoneof the most popular environments

in parallel computing for decades. The emergenceof multi-core architecture has

1

brought clustersinto a multi-core era. As a matter of fact, multi-core processorshave

already beenwidely deployed in parallel computing. In the Top500supercomputer

list published in 2007, more than 77% processorsare multi-core processorsfrom

Intel and AMD [24]. This number becomes85%in the latest Top500list published

in November, 2008.

MessagePassingInterface (MPI) [61] is one of the most popular programming

models for cluster computing. With the rapid deployment of multi-core systemsin

clusters,more and more communication will take placeinside a node, which means

MPI intra-node communication will play a critical role to the overall application

performance.

MVAPICH [15] is an MPI library that delivershigh performance,scalability and

fault tolerance for high-end computing systemsand servers using In�niBand [6],

iWARP [13] and other RDMA-enabled [67] interconnect networking technologies.

MVAPICH2 is MPI-2 [62] compliant. MVAPICH and MVAPICH2 are being used

by morethan 840organizationsworld-wide to extract the potential of theseemerging

networking technologiesfor modern systems.

In this dissertation we useMVAPICH as the framework and explore the alter-

natives of designing MPI intra-node communication, come up with optimization

strategiesfor multi-core clusters, and study on the factors that a�ect MPI intra-

node communication performance. Further, we conduct in-depth evaluation and

analysison application characteristicson multi-core clusters.

2

The rest of the chapter is organizedas follows. First we provide an overview of

the architectures of multi-core processors.Then we introducethe basicMPI intra-

nodecommunication schemes.Following that wepresent the problemstatement and

our research approaches. And �nally we provide an overview of this dissertation.

1.1 Arc hitectures of Multi-core Clusters

Multi-core meansto integrate two or more completecomputational coreswithin

a singlechip [29]. The motivation of the development of multi-core processorsis the

fact that scalingup processorspeedresults in dramatic rise in power consumption

and heat generation. In addition, it becomesmore di�cult to increaseprocessor

speednowadays that even a little increasein performancewill be costly. Realizing

thesefactors,computerarchitects haveproposedmulti-core processorsthat speedup

application performanceby dividing the workload amongmultiple processingcores

instead of using one \super fast" single processor.Multi-core processoris also re-

ferredto asChip Multiprocessor(CMP). Sincea processingcorecanbeviewed asan

independent processor,in this proposalwe useprocessor and core interchangeably.

Most processorvendershave multi-core products, e.g. Intel Quad-core[11] and

Dual-core[9] Xeon, AMD Quad-core[21] and Dual-coreOpteron [3], Sun Microsys-

tems UltraSPARC T1 (8 cores)[25], IBM Cell [23], etc. There are various alterna-

tivesin designingcachehierarchy organizationand memoryaccessmodel. Figure 1.1

illustrates two typical multi-core systemdesigns. The left box shows a NUMA [1]

baseddual-core system in which each core has its own L2 cache. Two coreson

the samechip sharethe memory controller and local memory. Processorscan also

accessremotememory, although local memory accessis much faster. The right box

3

shows a bus baseddual-coresystem,in which two coreson the samechip sharethe

sameL2 cache and memory controller, and all the coresaccessthe main memory

through a sharedbus. Intel Woodcrest processors[12] belong to this architecture.

Intel Clovertown processors(quad-core)[7] are madeof two Woodcrest processors.

Therearemoreadvancedsystemsemergingrecently, e.g. AMD Barcelonaquad-core

processors,in which four coreson the samechip have their own L2 cachesbut share

the sameL3 cache. The L3 cache is not a traditional inclusive cache, when data

is loaded from the L3 cache to the L1 cache (L2 is always bypassed)the data can

be removed from L3 or remain there dependingon whether other coresare likely to

accessthe data in the future. In addition, the L3 cache doesn't load data from the

memory, it acts like a spill-over cache for items evicted from the L2 cache.

NUMA is a computer memory designwhere the memory accesstime depends

on the memory location relative to a processor.Under NUMA, memory is shared

between processors,but a processorcan accessits own local memory faster than

non-local memory. Therefore, data locality is critical to the performanceof an

application. AMD systemsare mostly basedon NUMA architecture. Modern op-

erating systemsallocate memory in a NUMA-aware manner. Memory pagesare

always physically allocated local to processorswhere they are �rst touched, unless

the desiredmemory is not available. Solarishas beensupporting NUMA architec-

ture for a number of years [71]. Linux also started to be NUMA-aware from 2.6

kernel. In our work so far we focuson Linux.

Due to its greatercomputing power and cost-to-performancee�ectiveness,multi-

core processorhas been deployed in cluster computing. In a multi-core cluster,

there are three levelsof communication asshown in Figure 1.1. The communication

4

M
e
m
o
r
y
 M
e
m
o
r
y

M
e
m
o
r
y

C
o
r
e

L
2

C
a
c
h
e

C
o
r
e

L
2

C
a
c
h
e

L
2

C
a
c
h
e

C
o
r
e

L
2

C
a
c
h
e

C
o
r
e
 C
o
r
e

L
2

C
a
c
h
e

C
o
r
e
 C
o
r
e

L
2

C
a
c
h
e

C
o
r
e

I
n
t
r
a
-
C
M
P
 I
n
t
e
r
-
C
M
P

D
u
a
l

C
o
r
e

C
h
i
p
 D
u
a
l

C
o
r
e

C
h
i
p
 D
u
a
l

C
o
r
e

C
h
i
p
 D
u
a
l

C
o
r
e

C
h
i
p

I
n
t
r
a
-
C
M
P
 I
n
t
e
r
-
C
M
P

N
U
M
A
-
b
a
s
e
d

D
e
s
i
g
n
 B
u
s
-
b
a
s
e
d

D
e
s
i
g
n

N
e
t
w
o
r
k

I
n
t
e
r
-
N
o
d
e

Figure 1.1: Illustration of Multi-Core Cluster

betweentwo processorson the samechip is referredto asintr a-CMP communication

in this proposal. The communication acrosschips but within a node is referred to

as inter-CMP communication. And the communication betweentwo processorson

di�erent nodesis referredto as inter-node communication.

Multi-core cluster imposesnewchallengesin softwaredesign,both on middleware

level and application level. How to designmulti-core aware parallel programsand

communication middleware to get optimal performanceis a hot topic. There have

beenstudieson multi-core systems.Koop, et al in [53] have evaluated the memory

subsystemof Bensleyplatform using microbenchmarks. Alam, et al have done a

scienti�c workloadscharacterizationon AMD Opteronbasedmulti-core systems[40].

Realizing the importance and popularity of multi-core architectures, researchers

start to proposetechniquesfor application optimization onmulti-core systems.Some

of the techniques are discussedin [36], [42], and [73]. Discussionsof OpenMP on

multi-core processorscan be found in [39].

5

1.2 MPI In tra-no de Comm unication

MPI standsfor MessagePassingInterface [61]. It is the de facto standard used

for cluster computing. There are multiple MPI libraries in addition to MVAPICH,

such as MPICH [45], MPICH2 [16], OpenMPI [17], HP MPI [5], Intel MPI [10],

etc. Most clusters are built with multi-pro cessorsystemswhich meansinter-node

and intra-node communication co-existsin cluster computing. In this section we

introducethe basicapproachesfor MPI intra-node communication.

NIC-Based Message Lo opback

An intelligent NIC can provide a NIC-basedloopback. When a messagetransfer

is initiated, the NIC candetect whether the destination is on the samephysicalnode

or not. By initiating a local DMA from the NIC memory back to the host memory

as shown in Figure 1.2(a), we can eliminate overheadson the network link because

the messageis not injected into the network. However, there still exist two DMA

operations. Although I/O busesare getting faster, the DMA overheadis still high.

Further, the DMA operations cannot utilize the cache e�ect.

In�niHost [59]is a Mellanox's secondgenerationIn�niBand Host ChannelAdapter

(HCA). It provides internal loopback for packets transmitted between two Queue

Pairs (connections)that are assignedto the sameHCA port. Most of other high-

speed interconnectionssuch as Myrinet [27] and Quadrics [64] also provide NIC-

basedmessageloopback. Ciaccio [32] alsoutilized NIC-level loopback to implement

an e�cien t memcpy().

6

�������

������� ��������� �������

send buf recv buf

1 3

I/
O

 B
u
s

NIC

Memory

2

(a) NIC-Based Mes-
sageLoopback

���������

���������

���������

���������

���������

���������

	�	�	�	�	

	�	�	�	�	

2

3

4a

6

CPU

Memory
Shared

CPU

Cache

Cache

Memory

send buf

recv buf

4b-1

4b-2
5

7

1

(b) User-SpaceShared Mem-
ory

�
�
�
�

�
�
�
�

�������

�������

�
�
�
�

�
�
�
�

�������

�������

send buf

CPU

CPU

System

Memory

4

Cache

Cache

3

1

2

Bus

recv buf

(c) Kernel-Based Memory
Mapping

Figure 1.2: Memory Transactionsfor Di�eren t Intra-Node Communication Schemes

User-Space Shared Memory

This design alternative involves each MPI processon a local node, attaching

itself to a shared memory region. This shared memory region can then be used

amongst the local processesto exchange messagesand other control information.

The sendingprocesscopiesthe messageto the sharedmemory area. The receiving

processcan then copy over the messageto its own bu�er. This approach involves

minimal setup overheadfor every messageexchangeand shows better performance

for small and medium messagesizesthan NIC-level messageloopback.

Figure 1.2(b) shows the various memory transactionswhich happen during the

messagetransfer. In the �rst memory transaction labeled as 1; the MPI process

needsto bring the sendbu�er to the cache. The secondoperation is a write into

the sharedmemory bu�er, labeled as 3. If the block of sharedmemory is not in

cache, another memory transaction, labeled as 2 will occur to bring the block in

cache. After this, the sharedmemory block will be accessedby the receivingMPI

7

process.The memory transactionswill depend on the policy of the cache coherency

implementation and canresult in either operation 4aor 4b-1followedby 4b-2. Then

the receivingprocessneedsto write into the receive bu�er, operation labeled as 6.

If the receive bu�er is not in cache, then it will result in operation labeled as 5.

Finally, depending on the cache block replacement scheme,step 7 might occur. It

is to be noted that there are at least two copiesinvolved in the messageexchange.

This approach might tie down the CPU with memorycopy time. In addition, asthe

size of the messagegrows, the performancedeterioratesbecausevigorous copy-in

and copy-out alsodestroys the cache contents for the end MPI application.

This sharedmemory baseddesignhas beenusedin MPICH-GM [63] and other

MPI implementations such as MVAPICH [15]. In addition, Lumetta et al. [56]

have dealt with e�cien t design of shared memory messagepassingprotocol and

multiproto col implementation. MPICH-Madeleine[26] and MPICH-G2 [41,52] also

have suggestedmulti-proto col communication, which can provide a framework for

having di�erent channelsfor inter and intra-node communication.

CPU Based Kernel Mo dules for Memory Mapping

Kernel-BasedMemory Mapping approach takeshelp from the operating system

kernel to copy messagesdirectly from one user processto another without any

additional copy operation. The senderor the receiver processposts the message

requestdescriptor in a messagequeueindicating its virtual address,tag, etc. This

memory is mapped into the kernel addressspacewhen the other processarrivesat

the messageexchangepoint. Then the kernelperformsa direct copy from the sender

bu�er to the receiver application bu�er. Thus this approach involvesonly onecopy.

8

Figure 1.2(c) demonstratesthe memorytransactionsneededfor copying from the

senderbu�er directly to the receiver bu�er. In step1, the receivingprocessneedsto

bring the sendingprocess'bu�er into its cache block. Then in step 3, the receiving

processcan write this bu�er into its own receive bu�er. This may generatestep 2

basedon whether the block was in cache already or not. Then, depending on the

cache block replacement policy, step 4 might be generatedimplicitly .

It is to benoted that the number of possiblememorytransactionsfor the Kernel-

BasedMemory Mapping is always lessthan the number in User-SpaceSharedMem-

ory approach. We also note that due to the reducednumber of copiesto and from

various bu�ers, we can maximize the cache utilization. However, there are other

overheads. The overheadsinclude time to trap into the kernel, memory mapping

overhead,and TLB
ush time. In addition, still the CPU resourceis required to

perform a copy operation. There are several previous works that adopt this ap-

proach, which include [43, 72]. We have exploredthe kernel basedapproaches,and

implemented a kernel module called LiMIC which will be described in Chapter 4.

I/O AT Based Kernel Mo dules

As mentioned in Section1.2,DMA basedapproachesusually havehigh overhead.

Recently, Intel's I/O Acceleration Technology (I/O AT) [44, 57, 68] introduced an

asynchronous DMA copy engine within the chip that has direct accessto main

memory to improve performanceand reducethe overheadsmentioned above. I/O

Acceleration Technology o�oads the data copy operation from the CPU with the

addition of an asynchronous DMA copy engine. The copy engine is implemented

as a PCI-enumerated device in the chipset and has multiple independent DMA

channelswith direct accessto main memory. When the processorrequestsa block

9

memory copy operation from the engine, it can then asynchronously perform the

data transfer with no host processorintervention. When the enginecompletesa

copy, it canoptionally generatean interrupt. As mentioned in [44], I/O AT supports

several interfacesin kernel spacefor copying data from a sourcepage/bu�er to a

destination page/bu�er. These interfaces are asynchronous and the copy is not

guaranteed to be completedwhen the function returns. Theseinterfacesreturn a

non-negative cookie value on success,which is used to check for completion of a

particular memory operation.

We have designedkernel modulesto utilize I/O AT technology for memory copy.

The details are described in Chapter 5.

1.3 Problem Statemen t

The scope of this dissertation is shown in Figure 1.3. In short, we aim to design

high performanceand scalableMPI intra-node communication schemesand study

their impacts on applications in-depth. We intend to understandthe characteristics

of multi-core clusters,and optimize MPI performanceon them. In Figure 1.3, the

white boxesstand for the existing components, the dark shadedboxes indicate the

components we have been working on, and the light shadedboxes are our future

work.

We present the problem statement of this dissertation in detail as follows:

� Can we have a signi�can tly better understanding on application

characteristics on multi-core clusters, especially with respect to com-

munication performance, message distribution, cache utilization, and

scalabilit y? - With the rapid emergenceof multi-core architecture, clusters

10

LiMIC

MCI

SCI

MCNI

Shared Memory Based Kernel Based Approach
Approach

AdvancedBasic

Based
NIC

Loopback
Approach

MPI Intra-node Communication

Optimizations

Approaches

MPI Inter-node Communication

......

Gen2 uDAPL VAPI

Gen2
UD

PSM

......

Multi-core Architectures

Intel Woodcrest
Dual-core

Intel Clovertown
Quad-core

AMD Barcelona
Quad-core

AMD Dual-core
Opteron

High-speed Networks

InfiniBand iWARP

......

MPI Middleware

MPI Applications
Application

with MPI

Middleware

and Hardware

Architectures

Interactions

Intel

Woodcrest

Dual-core

Quad-core

Intel

Clovertown

NUMA
Aware

Skew
Aware

Thresholds
Selection

Polling
Schemes

Processor
Affinity

Topology
Aware

Figure 1.3: Problem Spaceof this Dissertation

haveentered a multi-core era. In order to get optimal performance,it is crucial

to have in-depth understandingon application behaviors and trends on multi-

core clusters. It is also very important to identify potential bottlenecks in

multi-core clusters through evaluation, and explore possiblesolutions. How-

ever, since multi-core is a relatively new technology, few research has been

donein the literature.

� Can we design a shared memory based approac h to allo w MV A-

PICH to have better in tra-no de comm unication performance? - The

original MVAPICH usedto useNIC baseloopback approach. While it eases

code design - we do not need to distinguish between intra- and inter-node

communication, the performanceis not optimal. Further, with the emergence

of multi-core systems,more and more corescan residewithin one node, and

11

the NIC basedloopback approach may not be scalablesinceall the intra-node

communication will go through the PCI bus and the PCI bus may becomea

bottleneck. It is essential to have a more e�cien t intra-node communication

scheme.

� Can we optimize the shared memory based approac h to have lower

latency , better cache utilization, and reduced memory usage, th us

have impro ved performance especially on multi-core clusters? - There

are limitations in the current existing sharedmemory schemes.Someare not

scalablewith respect to memory usage,and somerequire locking mechanisms

amongprocessesto maintain consistency. Thus the performanceis suboptimal

for a largenumber of processes.Moreover, fewresearch hasbeendoneto study

the interaction betweenthe multi-core systemsand MPI implementations. We

needto take on the challengesand optimize the current sharedmemorybased

schemesto improve MPI intra-node communication performance.

� Can we design MV APICH in tra-no de comm unication to utilize ker-

nel module based approac h to reduce the number of copies and

poten tially bene�t applications? - As mentioned in Section1.2, one ap-

proach to avoid extra messagecopies is to use operating system kernel to

provide a direct copy from oneprocessto another. Inside the kernel module,

it can either useCPU to do memory copy, or take advantage of any DMA en-

ginesthat are available for memorycopy. Sincethis kind of approach requires

only onememory copy, it may improve MVAPICH intra-node communication

12

performance. And if we use the DMA for memory copy, we can potentially

achieve better computation and communication overlap.

� Can we design an e�cien t hybrid approac h that utilizes both the

kernel module based approac h and the shared memory based ap-

proac h to get optimal performance, especially on multi-core clus-

ters? - User-level shared memory and kernel assisteddirect copy are two

popular approaches. Both of them have advantagesand disadvantages. How-

ever, we do not know if one of these approaches is su�cien t for multi-core

clusters. In order to obtain optimized performance,it is important to have

a comprehensive understanding of these two approaches and combine them

e�ectively.

� What are the factors that a�ect MV APICH In tra-no de comm uni-

cation and how can we tune them to get the optimal performance?

- To optimize communication performance,many MPI implementations such

asMVAPICH provide multiple communication channels.Thesechannelsmay

be usedeither for intra- or inter-node communication. Two important factors

that a�ect application performanceare channel polling and threshold selec-

tion. It is important to understand how the applications perform with these

factors and have e�cien t channel polling and threshold selectionalgorithms

to improve on performance.

1.4 Research Approac hes

In this sectionwe present our generalapproachesto the above mentioned issues.

13

1. Understanding the application characteristics on multi-core clusters

- We have designeda set of experiments to study the impact of multi-core ar-

chitecture on cluster computing. The purposeis to give both application and

communication middleware developers insights on how to improve overall per-

formanceon multi-core clusters. The study includesMPI intra-node commu-

nication characteristics on multi-core clusters, messagedistribution in terms

of both communication channel and messagesize,cache utilization/p otential

bottleneck identi�cation, and initial scalability study.

2. Designing a basic user-lev el shared memory based approac h for MPI

in tra-no de comm unication - We have designeda sharedmemorybasedim-

plementation for MVAPICH intra-node communication. A temporary �le is

created and all the processesmap the temporary �le to their own memory

spacesasa sharedmemory areaand usethis sharedmemory areafor commu-

nication.

3. Designing an advanced user-lev el shared memory based approac h for

MPI in tra-no de comm unication for optimized performance - We have

optimized the basic sharedmemory baseddesign to get better performance

and scalability. We want to achieve two goals in our design: 1. To obtain

low latency and high bandwidth between processes,and 2. To have reduced

memory usagefor better scalability. We achieve the �rst goal by e�cien tly

utilizing the L2 cache and avoiding the use of lock. We achieve the second

goalby separatingthe bu�er structuresfor small and largemessages,andusing

a sharedbu�er pool for each processto send large messages.We have also

14

exploredvarious optimization strategiesto further improve the performance,

such as reducing the polling overhead,etc.

4. Designing kernel assisted direct copy approac hes to eliminate extra

copies and achiev e better computation and comm unication overlap

- We have designedtwo major kernelmodulesfor MPI intra-node communica-

tion. Oneis calledLiMIC/LiMIC2, which usesCPU basedmemorycopy. And

the other usesIntel I/O AT which is an on-chip DMA to do memory copy. We

have alsomodi�ed MVAPICH and MVAPICH2 to utilize the kernel modules.

5. Designing an e�cien t user-lev el and kernel-lev el hybrid approac h

for multi-core clusters - We have carefully consideredthe characteristicsof

the sharedmemory and kernel module basedapproaches,especially how they

perform with multi-core processors.We have analyzedtheseapproachesand

comeup with a topology-aware and skew-aware approach that combines the

two approachese�cien tly for multi-core clusters.

6. Analyzing factors that a�ect multi-c hannel MPI performance and

designing optimization schemes - Channelpolling and threshold selection

are two important factors for multi-channel MPI implementations. We have

designede�cien t polling schemesamongmultiple channels. We have alsoex-

plored methodologiesto decidethe thresholdsbetweenmultiple channels. We

considerlatency, bandwidth, and CPU resourcerequirement of each channel

to decidethe thresholds.

15

1.5 Dissertation Overview

We present our research over the next several chapters. In Chapter 2, we present

our study of application characteristicson multi-core clusters. We have donea com-

prehensive performanceevaluation, pro�ling, and analysisusing both microbench-

marks and application level benchmarks. We have several interesting observations

from the experimental results, including the impact of procesortopology, the im-

portanceof MPI intra-node communication, the potential bottlenecks in multi-core

systems,and scalability of multi-core clusters.

In Chapter 3, we present our sharedmemory baseddesignsfor MPI intra-node

communication. In the sharedmemory baseddesigns,all the processesmap a tem-

porary �le to their own memory spacesand use it as a shared memory area for

communication. We start with a basic design, in which the bu�ers are organized

such that every processhas a receive queuecorresponding to every other process.

We then present an advancedesignthat reorganizesthe communication bu�ers in

a more e�cien t way so that we can get lower latency, higher bandwidth, and less

memory usage.

In Chapters 4 and 5, we take on the challengesand designkernel assistedap-

proaches for MPI intra-node communication. We have designedtwo major kernel

modules, one using CPU basedmemory copy and other using Intel I/O AT. Both

the kernel moduleseliminate the extra copiesand achieve better performance,and

using I/O AT can alsoachieve better computation and communication overlap.

In Chapter 6, we use a three-step methodology to design a hybrid approach

for MPI intra-node communication using two popular approaches,sharedmemory

(MVAPICH) and OS kernel assisteddirect copy (MVAPICH-LiMIC2). The study

16

has beendone on an Intel quad-core(Clovertown) cluster. We have evaluated the

impacts of processortopology, communication bu�er reuse,and processskew e�ects

on thesetwo approaches,and pro�led the L2 cache utilization. And basedon the

results and analysis we have proposedtopology-aware and skew-aware thresholds

to build an e�cien t hybrid approach which shows promising results on multi-core

clusters.

Sincemany MPI implementations utilize multiple channelsfor communication,

in Chapter 7 we have studied important factors to optimize multi-channelMPI. We

have proposedseveral di�erent schemesfor polling communication channels,includ-

ing static polling schemeand dynamic polling scheme. In addition, sincemultiple

channelscan be used for MPI intra-node communication, we have also evaluated

thresholdsfor each channel both basedon raw MPI latenciesand bandwidths and

alsoCPU utilization. Theseoptimizations demonstratelarge performanceimprove-

ment.

17

CHAPTER 2

UNDERST ANDING THE COMMUNICA TION
CHARA CTERISTICS ON MUL TI-CORE CLUSTERS

Clusters have beenoneof the most popular environments in parallel computing

for decades. The emergenceof multi-core architecture is bringing clusters into a

multi-core era. In order to get optimal performance,it is crucial to have in-depth

understanding on application behaviors and trends on multi-core clusters. It is

alsovery important to identify potential bottlenecks in multi-core clustersthrough

evaluation, and explore possiblesolutions. In this chapter, we designa set of ex-

periments to study the impact of multi-core architecture on cluster computing. We

aim to answer the following questions:

� What are the application communication characteristics on multi-core clus-

ters?

� What are the potential communication bottlenecks in multi-core clustersand

how to possiblyavoid them?

� Can multi-core clustersscalewell?

18

The rest of the chapter is organizedas follows: In Section 2.1 we describe the

methodologyof our evaluation. The evaluation resultsand analysisare presented in

Section2.2. Finally wesummarizethe resultsand impact of this work in Section2.3.

2.1 Design of Exp erimen ts for Evaluating Multi-core Clus-
ters

To answer the questionsmentioned in the beginningof this chapter, we describe

the evaluation methodologyand explain the designand rational of each experiment.

2.1.1 Programming Mo del and Benchmarks

We chooseto useMPI [14] as the programmingmodel becauseit is the de facto

standard usedin cluster computing. The MPI library usedis MVAPICH2 [15]. In

MVAPICH2, intra-node communication, including both intra-CMP and inter-CMP,

is achieved by user level memory copy.

We evaluate both microbenchmarks and application level benchmarks to get

a comprehensive understanding on the system. Microbenchmarks include latency

and bandwidth tests. And application level benchmarks include HPL from HPCC

benchmark suite [47],NAMD [65] apoa1data set,andNAS parallel benchmarks[38].

2.1.2 Design of Exp erimen ts

Wehavedesignedto carry out four setsof experiments for our study: latency and

bandwidth, messagedistribution, potential bottleneck identi�cation, and scalability

tests. We describe them in detail below.

19

� Latency and Bandwidth: These are standard ping-pong latency and band-

width tests to characterize the three levels of communication in multi-core

cluster: intra-CMP, inter-CMP, and inter-node communication.

� MessageDistribution: We de�ne messagedistribution as a two dimensional

metric. One dimension is with respect to the communication channel, i.e.

the percentage of tra�c going through intra-CMP, inter-CMP, and inter-node

respectively. The other dimension is in terms of messagesize. This experi-

ment is very important becauseunderstandingmessagedistribution facilitates

communication middleware developers, e.g. MPI implementors, to optimize

critical communication channelsand messagesizerangefor applications. The

messagedistribution is measuredin terms of both number of messagesand

data volume.

� Potential Bottleneck Identi�cation: In this experiment, we run application

level benchmarks on di�erent con�gurations, e.g. four processeson the same

node, four processeson two di�erent nodes,and four processeson four di�erent

nodes. We want to discover the potential bottlenecks in multi-core cluster if

any, and exploreapproachesto alleviate or eliminate the bottlenecks. This will

give insights to application writers how to optimize algorithms and/or data

distribution for multi-core cluster. We alsodesignan exampleto demonstrate

the e�ect of multi-core aware algorithm.

� Scalability Tests: This setof experiments is carriedout to study the scalability

of multi-core cluster.

20

2.1.3 Pro cessor A�nit y

In all our experiments, we usesched a�nity systemcall to ensurethe binding of

processwith processor.The e�ect of processora�nit y is two-fold. First, it easesour

analysis,becausewe know exactly the mapping of processeswith processors.And

second,it makes application performancemore stable, becauseprocessmigration

requirescache invalidation and may degradeperformance.

2.2 Performance Evaluation

In this sectionwepresent the experimental resultsand the analysisof the results.

We usethe format pxq to represent a con�guration. Herep is the number of nodes,

and q is the number of processorsper node.

Evaluation Platforms: We use two multi-core clusters and one single-core

cluster for the experiments. Their setup is speci�ed below:

Cluster A: Cluster A consistsof 4 Intel Bensleysystemsconnectedby In�niBand.

Each node is equipped with two setsof dual-core2.6GHzWoodcrest processor,i.e.

4 processorsper node. Two processorson the samechip sharea 4MB L2 cache. The

overall architecture is similar to that shown in the right box in Figure 1.1. However,

Bensley system has added more dedicated memory bandwidth per processorby

doubling up on memory buses,with one bus dedicated to each of Bensley's two

CPU chips. The In�niBand HCA is Mellanox MT25208 DDR and the operating

systemis Linux 2.6.

Cluster B: Cluster B is an Intel Clovertown cluster with 72 nodes. Each node

is equipped with dual quad-coreXeon processor,i.e. 8 coresper node, running at

2.0GHz. Each node has4GB main memory. The nodesare connectedby Mellanox

21

In�niBand DDR cards. The operating system is Linux 2.6.18We use32 nodes in

Cluster B for our experiments.

Cluster C: Cluster C is a single-coreIntel cluster connectedby In�niBand. Each

node is equipped with dual Intel Xeon 3.6GHz processorand each processorhas a

2MB L2 cache. Cluster C is usedto comparethe scalability.

In the following sections,Cluster A is usedby default unlessspeci�ed explicitly.

2.2.1 Latency and Bandwidth

Figure 2.1 shows the basic latency and bandwidth of the three levels of commu-

nication in a multi-core cluster. The numbersare taken at the MPI level. The small

messagelatency is 0.42us,0.89us,and 2.83usfor intra-CMP, inter-CMP, and inter-

nodecommunication respectively. The correspondingpeakbandwidth is 6684MB/s,

1258MB/s, and 1532MB/s.

From Figure 2.1we canseethat intra-CMP performanceis far better than inter-

CMP and inter-node performance,especially for small and medium messages.This

is becausein Intel Bensleysystem two coreson the samechip share the sameL2

cache. Therefore,the communication just involvestwo cache operations if the com-

munication bu�ers are in the cache. From the �gure we can also seethat for large

messages,inter-CMP performanceis not as good as inter-node performance, al-

though memory performanceis supposedto be better than network performance.

This is becausethe intra-node communication is achieved through a sharedbu�er,

wheretwo memory copiesare involved. On the other hand, the inter-node commu-

nication usesthe Remote Direct Memory Access(RDMA) operation provided by

22

In�niBand and rendezvous protocol [55], which forms a zero-copy and high perfor-

mancescheme. This alsoexplainswhy for large messages(when the bu�ers are out

of cache) intra-CMP and inter-node perform comparably.

This set of results indicate that to optimize MPI intra-node communication

performance,oneway is to have better L2 cache utilization to keepcommunication

bu�ers in the L2 cache as much as possible,and the other way is to reduce the

number of memory copies. We have proposeda preliminary enhancedMPI intra-

node communication designin our previouswork [30].

(a) Small Message La-
tency

(b) Large Message La-
tency

(c) Bandwidth

Figure 2.1: Latency and Bandwidth in Multi-core Cluster

2.2.2 Message Distribution

As mentioned in Section 2.1, this set of experiments is designedto get more

insights with respect to the usagepattern of the communication channels,aswell as

the messagesizedistribution. In this section,we �rst present the results measured

on Cluster A and then present the results on Cluster B.

23

(a) Number of Messages (b) Data Volume

Figure 2.2: MessageDistribution of NAMD on 16 Cores

(a) Number of Messages (b) Data Volume

Figure 2.3: MessageDistribution of HPL on 16 Cores

24

Message Distribution on Cluster A: Figures2.2 and 2.3 show the pro�ling

results for NAMD and HPL respectively. The results for NAS benchmarks are

listed in Table 6.1. The experiments are carried out on a 4x4 con�guration and the

numbers are the averageof all the processes.

Figures 2.2 and 2.3 are interpreted as the following. Supposethere are n mes-

sagestransferred during the application run, in which m messagesare in the range

(a;b]. Also supposein thesem messages,m1 are transferred through intra-CMP,

m2 through inter-CMP, and m3 through inter-node. Then:

� Bar Intra-CMP(a, b] = m1/m

� Bar Inter-CMP(a, b] = m2/m

� Bar Inter-node(a, b] = m3/m

� Point Overall(a, b] = m/n

From Figure 2.2 we have observed that most of the messagesin NAMD are

of size 4KB to 64KB. Messagesin this range take more than 90% of the total

number of messagesand byte volume. Optimizing medium messagecommunication

is important to NAMD performance. In the 4KB to 64KB messagerange, about

10%messagesaretransferredthrough intra-CMP, 30%aretransferredthrough inter-

CMP, and 60% are transferred through inter-node. This is interesting and kind of

surprising. Intuitiv ely, in a cluster environment intra-node communication is much

lessthan inter-node communication, becausea processhas much more inter-node

peersthan intra-node peers. E.g. in our testbed, a processhas 1 intra-CMP peer,

2 inter-CMP peers,and 12 inter-node peers. If a processhas the samechanceto

communicate with every other process,then theoretically:

25

� Intra-CMP = 1/15 = 6.7%

� Inter-CMP = 2/15 = 13.3%

� Inter-node = 12/15 = 80%

If we call this distribution evendistribution, then we seethat intra-node com-

munication in NAMD is well above that in even distribution, for almost all the

messagesizes.Optimizing intra-node communication is as important asoptimizing

inter-node communication to NAMD.

From Figure 2.3 we observe that most messagesare small messagesin HPL,

from 256 bytes to 4KB. However, with respect to data volume messageslarger

than 256KB take more percentage. We also �nd that almost all the messagesare

transferred through intra-node in our experiment. However, this is a special case.

In HPL, a processonly talks to processeson the samerow or column with itself. In

our 4x4 con�guration, a processand its row or column peersare always mapped to

the samenode, therefore, almost all the communication take place within a node.

We have alsoconductedthe sameexperiment on a 32x8con�guration for HPL. The

results are shown later in this section.

Table 6.1 presents the total messagedistribution in NAS benchmarks, in terms

of communication channel. Again, weseethat the amount of intra-node(intra-CMP

and inter-CMP) communication is much larger than that in even distribution for

most benchmarks. On an average,about 50% messagesgoing through intra-node

communication. This trend is not random. It is becausemost applications have

certain communication patterns, e.g. row or column basedcommunication, ring

basedcommunication, etc. which increasethe intra-node communication chance.

26

Therefore,even in a large multi-core cluster, optimizing intra-node communication

is critical to the overall application performance.

Table 2.1: MessageDistribution in NAS Benchmarks ClassB on 16 Cores

metric bench. intra-cmp inter-cmp inter-node
number IS 13% 18% 69%

of FT 9% 16% 75%
messages CG 45% 45% 10%

MG 32% 32% 36%
BT 1% 33% 66%
SP 1% 33% 66%
LU 1% 50% 49%

data IS 7% 13% 80%
volume FT 7% 13% 80%

CG 36% 37% 27%
MG 25% 25% 50%
BT 0 33% 67%
SP 0 33% 67%
LU 0 50% 50%

Message Distribution on Cluster B: Figure 2.4 shows the messagedistribu-

tion of HPL on Cluster B with a 32x8con�guration. In this con�guration, the even

distribution is calculatedas follows:

� Intra-CMP = 1/255 = 0.4%

� Inter-CMP = 7/255 = 2.7%

� Inter-node = 248/255= 96.1%

27

From the experimental results we seethat the percentage of intra-node tra�c is

much higher than that in even distribution. The overall messagedistribution during

HPL executionis summarizedas the follows:

� Intra-CMP = 15.4%(number of messages),3.5%(data volume)

� Inter-CMP = 42.6%(number of messages),19.9%(data volume)

� Inter-node = 42.0%(number of messages),76.6%(data volume)

The NAS messagedistribution on Cluster B is shown in Table 2.2 which shows

the sametrend that the intra-node tra�c is much higher than that in even distri-

bution for many applications. From this set of experiments we can concludethat

even in a large cluster, intra-node communication plays a critical role.

� � �
� � �
� � �
� � �
� � �
� � �
	 � �

 � �

� � � �

� �
� � �
� � �

�
 � � � �� � � �
 � � � �� � � �
 � � � �
 � � � � � � � � ��

(a) Number of Messages

� � �
� � �
� � �
� � �
� � �
� � �
	 � �

 � �

� � � �

� �
� � �
� � �

�
 � � � �� � � �
 � � � �� � � �
 � � � �
 � � � � � � � � ��

(b) Data Volume

Figure 2.4: MessageDistribution of HPL on 256Cores

28

Table 2.2: MessageDistribution in NAS Benchmarks ClassC on 256Cores

metric bench. intra-cmp inter-cmp inter-node
number IS 1% 4% 95%

of FT 1% 3% 96%
messages CG 23% 47% 30%

MG 15% 32% 53%
BT 0% 29% 71%
SP 0% 29% 71%
LU 0% 47% 53%

data IS 1% 4% 95%
volume FT 1% 2% 97%

CG 20% 41% 39%
MG 20% 19% 61%
BT 0 29% 71%
SP 0 29% 71%
LU 0 47% 53%

(a) 4 Processes (b) 2 Processes

Figure 2.5: Application Performanceon Di�eren t Con�gurations

29

Figure 2.6: E�ect of Data Tiling

2.2.3 Poten tial Cache and Memory Con ten tion

In this experiment, we run all the benchmarks on 1x4, 2x2, and 4x1 con�gura-

tions respectively, to examinethe potential bottleneck in the system. As mentioned

in the beginningof Section2.2, we usethe format pxq to represent a con�guration,

in which p is the number of nodes,and q is the number of processorsper node. The

resultsare shown in Figure 2.5(a). The executiontime is normalizedto that on 4x1

con�guration.

One of the observations from Figure 2.5(a) is that 1x4 con�guration does not

perform as well as 2x2 and 4x1 con�gurations for many applications, e.g. IS, FT,

CG, SP, and HPL. This is becausein 1x4 con�guration all the coresareactivated for

execution. As described earlier, on our evaluation platform, two coreson the same

chip sharethe L2 cache and memory controller, thus cache and memory contention

is a potential bottleneck. Memory contention is not a problem for processorson dif-

ferent chips, becauseIntel Bensleysystemhasdedicatedbus for each chip for higher

memory bandwidth. This is why 2x2 and 4x1 con�gurations perform comparably.

30

The sametrend can be observed from Figure 2.5(b). In this experiment, we run

2 processeson 2 processorsfrom the samechip, 2 processorsacrosschips, and 2

processorsacrossnodes respectively. We seethat inter-CMP and inter-node per-

formanceare comparableand higher than intra-CMP. The only special caseis IS,

whoseinter-CMP performanceis noticeably lower than inter-node. This is because

IS usesmany large messagesand inter-node performs better than inter-CMP for

large messagesas shown in Figure 2.1.

This set of experiments indicates that to fully take advantage of multi-core

architecture, both communication middleware and applications should be multi-

core aware to reducecache and memory contention. Communication middleware

shouldavoid cachepollution asmuch aspossible,e.g. increasecommunication bu�er

reuse[30], usecache bypassmemorycopy [28], or eliminate intermediatebu�er [49].

Applications should be optimized to increasedata locality. E.g. Data tiling [51] is

a commontechnique to reduceunnecessarymemory tra�c. If a large data bu�er is

to be processedmultiple times, then insteadof going through the wholebu�er mul-

tiple times, we can divide the bu�er into smallerchunks and processthe bu�er in a

chunk granularit y so that the data chunks stay in the cache for multiple operations.

We show a small example in the next section to demonstratehow data tiling can

potentially improve application performanceon multi-core system.

2.2.4 Bene�ts of Data Tiling

To study the bene�ts of data tiling on multi-core cluster,wedesigna microbench-

mark, which doescomputation and communication in a ring-basedmanner. Each

processhas a piece of data (64MB) to be processedfor a number of iterations.

31

During execution, each processcomputeson its own data, sendsthem to its right

neighbor and receivesdata from its left neighbor, and then starts another iteration

of computation. In the original scheme,the data processedin the original chunk size

(64MB) while in the data tiling scheme,the data are divided in to smaller chunks

in the sizeof 256KB, which can easily �t in L2 cache.

Figure 2.6 shows the bene�ts of data-tiling, from which we observe that the

execution time reducedsigni�cantly. This is becausein the tiling case,since the

intra-node communication is using CPU-basedmemory copy, the data are actually

preloadedinto L2 cache during the communication. In addition, we observe that

in the caseswhere 2 processesrunning on 2 coreson the samechip, since most

communication happens in L2 cache in data tiling case,the improvement is most

signi�cant, around 70% percent. The improvement in the casewhere 4 processes

running on 4 cores on the same node, 8 processesrunning on 2 nodes, and 16

processesrunning on 4 nodesis 60%,50%,and 50%respectively. The improvements

are not as large as that in the 2 processcasebecausethe communication of inter-

CMP and inter-node is not as e�cien t as the intra-CMP for 256KB messagesize.

2.2.5 Scalabilit y

In this sectionwe present our initial resultson multi-core cluster scalability. We

also compare the scalability of multi-core cluster with that of single-corecluster.

The results are shown in Figure 2.7. It is to be noted that the performanceis

normalizedto that on 2 processes,so8 is the ideal speedupfor the 16 processcase.

It can be seenfrom Figure 2.7(a) that some applications show almost ideal

speedupon multi-core cluster, e.g. LU and MG. Comparedwith single-corecluster

32

(a) MG, LU, and NAMD (b) IS, FT, CG, and HPL

Figure 2.7: Application Scalability

scalability, we �nd that for applications that show cache or memory contention

in Figure 2.5(a), such as IS, FT, and CG, the scalability on single-corecluster is

better than that on multi-core cluster. For other applications such as MG, LU and

NAMD, multi-core cluster shows the samescalability as single-corecluster. As an

initial study we �nd that multi-core cluster is promising in scalability.

2.3 Summary

In this chapter we have donea comprehensive performanceevaluation, pro�ling,

and analysis on multi-core cluster, using both microbenchmarks and application

level benchmarks. We have several interesting observations from the experimental

results that give insights to both application and communication middleware devel-

opers. From microbenchmark results, we seethat there are three levels of commu-

nication in a multi-core cluster with di�erent performances:intra-CMP, inter-CMP,

and inter-node communication. Intra-CMP has the best performancebecausedata

33

can be sharedthrough L2 cache. Large messageperformanceof inter-CMP is not

as good as inter-node becauseof memory copy cost. With respect to applications,

the �rst observation is that counter-intuitiv ely, much more intra-node communica-

tion takesplacein applications than that in even distribution, which indicates that

optimizing intra-nodecommunication is asimportant asoptimizing inter-node com-

munication in a multi-core cluster. Another observation is that when all the cores

are activated for execution, cache and memory contention may prevent the multi-

core systemfrom achieving best performance,becausetwo coreson the samechip

sharethe sameL2 cache and memorycontroller. This indicatesthat communication

middleware and applicationsshouldbe written in a multi-core aware manner to get

optimal performance.We have demonstratedan exampleon application optimiza-

tion technique which improves benchmark performanceby up to 70%. Compared

with single-corecluster, multi-core cluster doesnot scalewell for applications that

show cache/memory contention. However, for other applications multi-core cluster

has the samescalability assingle-corecluster.

34

CHAPTER 3

SHARED MEMOR Y BASED DESIGN

As mentioned in Section1.2, there exist several mechanismsfor MPI intra-node

communication, including NIC-based loopback, kernel-assisted memory mapping,

and user space memory copy.

The user spacememory copy schemehas several advantages. It provides much

higher performancecomparedto NIC-based loopback. In addition, it is portable

acrossdi�erent operating systemsand versions. Due to theseadvantages, in this

chapter we present our sharedmemory baseddesigns.

The rest of the chapter is organizedas follows: In Section 3.1 we describe the

basicdesignof our sharedmemorybasedapproach. We present the advanceddesign

in Section3.2 which improvesboth performanceand memory usageover the basic

design. The evaluation results and analysisare presented in Section3.3. Finally we

summarizethe results and impact of this work in Section3.4.

3.1 Basic Shared Memory Based Design

In this sectionwe describe the basicsharedmemory baseddesignand optimiza-

tions for MVAPICH.

35

Process 0

Process 3Process 1

Process 2

RB20

RB10

RB30

RB12

RB02

RB32

RB21

RB01

RB31

RB13

RB03

RB23

1
2

3

4

Figure 3.1: Basic SharedMemory BasedDesign

3.1.1 Design

The sharedmemoryareais essentially a temporary �le createdby the �rst process

on a node. The �le name consistsof the host name, the processid, and the user

id, so that multiple jobs submitted by di�erent userscan run simultaneously on a

node. Then all the processesmap the sharedmemory area to their own memory

spaceby calling mmap() system call. The shared memory area is then used for

communication amonglocal processes.

The sharedmemory areais essentially usedasa FIFO queue.The senderwrites

data to the queue and the receiver reads data from the queue. There are two

volatile variablesthat indicate how many bytes have beenwritten to the queueand

how many have beenreadout of the queue.The senderand the receiver changethe

valuesof thesetwo variablesrespectively. The receiver polls on thesetwo variables

from time to time to detect incoming messages.If they do not match it indicates

36

there are new data written to the queueand it can pull the data out. Message

matching is performedbasedon source rank, tag, and context id which identi�es the

communicator. Messageordering is ensuredby the memory consistencymodel and

useof memory barrier if the underlying memory model is not consistent.

To avoid locking, each pair of processeson the samenode allocate two shared

memorybu�ers betweenthem for exchangingmessagesto each other. If P processes

are present on the samenode, the total sizeof the sharedmemory regionthat needs

to be allocated will be P*(P-1)*BufSize, where BufSize is the sizeof each shared

bu�er. As an example,Figure 3.1 illustrates the scenariofor four processeson the

samenode. Each processmaintains three sharedbu�ers represented with RBxy,

which refers to a Receive Bu�er of processy that holds messagesparticularly sent

by processx.

Eager proto col: Small messagesare sent eagerly. Figure 3.1 illustrates an ex-

ample where processes0 and 2 exchangemessagesto each other in parallel. The

sendingprocesswrites the data from its sourcebu�er into the sharedbu�er cor-

responding to the designatedprocess(Steps 1 and 3). After the sender �nishes

copying the data, then the receivingprocesscopiesthe data from the sharedbu�er

into its destination local bu�er (Steps2 and 4).

Rendezv ous proto col: Sincethere is a limit on the sharedbu�er size,messages

larger than the total sharedbu�er sizecannot be sent eagerly. We usea rendezvous

protocol for large messages,explainedbelow:

� Step 1: Sendersendsa requestto send message.

� Step 2: Upon receivingthe requestto sendmessage,thereceiver acknowledges

by sendingback an ok to send message.

37

� Step 3: Upon receiving the ok to send message,the sendersendsthe actual

data chunk by chunk. If the sharedbu�er is usedup beforethe messagecom-

pletes,the senderwill insert a requestto sendmessageagain to indicate there

is more data to come,and the receiver will acknowledgewith an ok to send

messagewhen there is freedspacein the sharedbu�er.

3.1.2 Optimization for NUMA systems

As mentioned in Section1.1, accessinga processor'slocal memory is much more

e�cien t than accessingremotememory on NUMA systems.Sincethe sharedmem-

ory area is frequently usedthroughout the application run, it is wise to allocate it

in either the senderor the receiver's memory. We chooseto allocate it in sender's

memory becauseif we allocate it in the receiver's memory, then the senderalways

needsto go through the long latency and put the data into a remotememory. Since

the senderusually just sendsout a messageand proceedswith its work, this will

always delay the sender.Whereasif we allocate it in the sender'smemory, there are

casesthat it takessometime for the receiver to cometo the receive point after the

sendersendsout the message(processskew), and in thesecasesthe delay causedby

accessingthe remote memory is usually negligiblecomparedto the processskew.

Most recent operating systemsareNUMA aware and allocatebu�ers in the local

memory of the processwhich �rst touchesthem. Therefore,we let all the processes

touch their send bu�ers in the MPI initialization phaseto make sure the shared

bu�ers are allocated in the sender'smemory. By touching the bu�ers in advance,

we also save the time to allocate physical memory during application's run time,

38

becausethe operating systemsusually allocatephysical memorywhenprocessesare

really touching the bu�ers.

3.1.3 Exploiting Pro cessor A�nit y

Although we try to allocate bu�ers in the sender'slocal memory, the operating

systemmay migrate a processto someother processorat a later stagedue to the

reasonof load balancing, thus make the processaway from its data. To prevent

processmigration, we want to bind a processto a speci�c processor.Under Linux

2.6 kernel, this can be accomplishedby using the sched seta�nity systemcall [37].

We apply this approach to our designto keepthe data locality. Processora�nit y is

alsogood for multi-core processorsystems,becauseit prevents a processmigrating

away from the cache which contains its data.

3.2 Adv anced Shared Memory Based Design

In this section,we provide a detailed illustration of our advancedsharedmemory

baseddesignand the results.

Our designgoal is to develop a sharedmemory communication model that is

e�cien t and scalable with respect to both performanceand memory usage. In

the following subsections,we start with the overall designarchitecture, followed by

a description on how the algorithm of intra-node communication works. Design

analysisand several optimization strategiesare presented in the end of this section.

3.2.1 Overall Arc hitecture

Throughout this section,we usea notation P to symbolize the number of pro-

cessesrunning in the samenode. Each processhasP � 1 small-sizedReceiveBu�ers

39

Process 0

Process 3Process 1

RB20

RB30

RB10

RB21

RB31

RB01

RB13

RB23

RB03

SQ10

SQ20

N
U

L
L

N
U

L
L

N
U

L
L

SQ30

SQ01

SQ21

N
U

L
L

N
U

L
L

N
U

L
L

SQ31

SQ03

SQ13

N
U

L
L

N
U

L
L

N
U

L
L

SQ23

SBP1 SBP3

SBP0

Process 2

RB12

RB32

RB02
SQ02

SQ12

N
U

L
L

N
U

L
L

N
U

L
L

SQ32

SBP2

Figure 3.2: Overall Architecture of the ProposedDesign

(RB) , oneSendBu�er Pool (SBP), and a collectionof P � 1 SendQueues(SQ). Fig-

ure 3.2 illustrates the overall architecture, wherefour processesare involved in the

intra-node communication. In this illustration, we usenotations x and y to denote

a processlocal ID. The sharedmemory spacedenotedas RBxy refersto a Receive

Bu�er of processy, which retains messagesspeci�cally sent by processx. A Send

Bu�er Pool that belongsto a processwith local ID x is represented with SBPx. A

bu�er in the pool is called a cell. Every processowns an array of pointers, where

each pointer points to the headof a queuerepresented with SQxy, which refersto

a SendQueueof processy that holds data directed to processx.

The sizesof the receive bu�er and the bu�er cell as well as the number of cells

in the pool are tunable parametersthat can be determined empirically to achieve

optimal performance.Basedon our experiments, we chooseto set the sizeof receive

bu�er to be 32 KB, the sizeof the bu�er cell to be 8 KB, and the total number of

cells in each sendbu�er pool to be 128.

40

3.2.2 Message Transfer Schemes

From our past experience,transferring small messagesusually occursmore fre-

quently than largemessages.Therefore,sendingsmallmessagesshouldbeprioritized

and handled e�cien tly with the purposeof improving the overall performance. In

our design, small messagesare exchangedthrough copying directly into receiving

process'receive bu�er. This approach is sosimplethat extra overheadis minimized.

On the other hand, asthe messagesizegrows, the memorysizerequiredfor the data

transfer increasesas well, which may lead to performancedegradation if it is not

handled properly. Therefore,we suggestdi�erent ways of handling small and large

messages.

The work
o ws of sendingand receivingsmall and large messagesare presented

in the following.

Small Message Transfer Pro cedure

Figure 3.3depictshow a smallmessageis transferredby oneprocessand retrieved

by another. In this example,process0 is the sender,while process1 is the receiver.

The �gure doesnot show the processes2 and 3 sincethey do not participate in the

data transfer. The send/receive mechanism for small messagesis straightforward as

explainedbelow.

1. The sendingprocessdirectly accessesthe receiving process'receive bu�er to

write the actual data to be sent, which is obtained from the sourcebu�er.

2. The receivingprocesscopiesthe data from its receive bu�er into its �nal spot

in the destination bu�er.

41

Process 0

SQ10

SQ20

N
U

L
L

N
U

L
L

N
U

L
L

SQ30

SBP0

Process 1

SQ01

SQ21

N
U

L
L

N
U

L
L

N
U

L
L

SQ31

SBP1

RB01

RB21

RB31

RB10

RB20

RB30

1 2

Figure 3.3: Send/Receive Mechanism for a Small Message

Process 0

SQ10

SQ20

N
U

L
L

N
U

L
L

N
U

L
L

SQ30

SBP0

RB10

RB20

RB30

Process 1

SQ01

SQ21

N
U

L
L

N
U

L
L

N
U

L
L

SQ31

SBP1

RB01

RB21

RB31

1

2

3 4

5

6

Figure 3.4: Send/Receive Mechanism for a Large Message

This proceduralsimplicity minimizesunnecessarysetup overheadfor every message

exchange.

Large Message Transfer Pro cedure

Figure 3.4demonstratesa send/receive progressionbetweentwo processes,where

process0 sendsa messageto process1. For compactness,processes2 and 3 are not

shown in the �gure sincethey are not involved in the communication process.

A sendingprocedurecomprisesof the following three steps:

42

1. The sendingprocessfetches a free cell from its send bu�er pool, copiesthe

messagefrom its sourcebu�er into the freecell, and then marks the cell busy.

2. The processenqueuesthe loadedcell into the corresponding sendqueue.

3. The processsendsa control message,which contains the addresslocation

information of the loadedcell, and writes it into the receivingprocess'receive

bu�er.

A receivingprocedureconsistsof the following three steps:

4. The receivingprocessreadsthe received control messagefrom its receive bu�er

to get the addresslocation of the cell containing the data being transferred.

5. Using the addressinformation obtained from the previous step, the process

directly accessesthe cell containing the transferred data, which is stored in

the sendingprocess'sendqueue.

6. The processcopiesthe actual data from the referencedcell into its own desti-

nation bu�er, and subsequently marks the cell free.

In this design,whenthe messageto be transferredis larger than the cell size,it is

packetized into smaller packets, each transferred independently. The packetization

contributes to a better throughput becauseof the pipelining e�ect, wherethe receiver

can start copying the data out beforethe entire messageis completely copiedin.

In Steps 1 and 6, a cell is marked busy and free, respectively. A busy cell

indicates that the cell has beenloadedwith the data and should not be disturbed

until the corresponding receiver �nishes reading the data in the cell; whereasa free

cell simply indicates that the cell can be usedfor transferring a new message.After

43

the receivingprocessmarks a cell free, the free cell remainsresiding in the sending

process'sendqueue,until reclaimedby the sender.The cell reclamation processis

doneby the senderat the time it initiates a new data transfer (Step 1). We call this

cell reclamation schememark-and-sweep.

Transferring large messagesutilizes indirection, which meansthe senderputs a

control messageto the receiver's receive bu�er to instruct the receiver to get the

actual data. There are two reasonsto useindirection instead of letting the receiver

poll both its receive bu�er and the sendqueuecorresponding to it at the senderside.

First, polling morebu�ers addsunnecessaryoverhead;andsecond,the receiver needs

to explicitly handle messageordering if messagescomefrom di�erent channels.

3.2.3 Analysis of the Design

In this sectionwe analyzeour proposeddesignbasedon the important issuesin

designingan e�cien t and scalablesharedmemory model.

Lo ck Av oidance

A locking mechanism is required to maintain consistencywhen two or more

processesattempt to accessa shared resource. A locking operation carries a fair

amount of overheadandmay delay memoryactivit y from other processes.Therefore,

it is desirableto designa lock-free model.

In our design, locking is avoided by imposing a rule that only one reader and

one writer exist for each resource.It is obvious that there are only one readerand

onewriter for each sendqueueand receive bu�er, hencethey are free from locking

mechanism. However, enforcingone-reader-one-writerrule on the sendbu�er pools

can be tricky. After a receiving process�nishes copying data from a cell, the cell

44

needsto be placed back into the sender'ssendbu�er pool for future reuse. Intu-

itiv ely, the receiving processshould be the one that returns the cell back into the

sendbu�er pool, however, this may lead to multiple processesreturning freecellsto

onesendingprocessat the sametime and causeconsistencyissue. In order to main-

tain both consistencyand good performance,we use a mark-and-sweep technique

to imposethe one-reader-one-writerrule on the sendbu�er pools, as explained in

Section3.2.2.

E�ectiv e Cache Utilization

In this section we analyze the cache utilization for small and large messages

respectively. In our design,small messagesare transferred through receive bu�ers

directly. Sincethe receive bu�ers are solely designedfor small messages,the bu�er

sizecan be really small that it cancompletely �t in the cache. Therefore,successive

accessesinto the samereceive bu�er will result in more cache hits and lead to a

better performance.

In the communication designfor large messages,after the receiver �nishes copy-

ing data out from the loaded cell, the cell will be marked free and reclaimed by

the senderfor future reuse.Sincethe sendercan reusecells that it usedpreviously,

there is a chancethat the cells are still resident in the cache, therefore, the sender

gets the bene�t that it doesnot needto accessthe memory for every send. If the

receiver also has the samecell in its cache, then the receiver also doesnot needto

accessthe memory, becauseonly cache-to-cache transfer is needed.

45

E�cien t Memory Usage

We �rst illustrate the scalability issuein the current MVAPICH intra-node com-

munication support. As we mentioned in Section 3.1, the basic shared memory

baseddesignallocatesa sharedmemory regionof sizeP � (P � 1) � Buf Size, where

BufSize is the sizeof each receive bu�er (1 MB by default). This implies that the

sharedmemory consumptionbecomeshuge for large valuesof P.

 0

 200

 400

 600

 800

 1000

 2 4 8 16 32

M
em

or
y

U
sa

ge
 (

M
eg

aB
yt

es
)

Number of Processes

Original Design
New Design

Figure 3.5: Memory Usageof the ProposedNew DesignWithin a Node

In contrast, the proposeddesignprovides a better scalability as it only necessi-

tates onesendbu�er pool per process,regardlessof how many processesparticipate

in the intra-nodecommunication. The newdesignusesthe samemethod asthe orig-

inal MVAPICH designfor small messagecommunication, which requiresP � (P � 1)

number of receive bu�ers. Despite such polynomial complexity, the total memory

spacepre-allocated for receive bu�ers is still low due to the small size design of

receive bu�ers. It is to be noted that simply reducing the receive bu�er sizein the

basic designis not practical becauselarge messageswill su�er from lack of shared

46

memory space.Simply having a sendbu�er pool without the receive bu�ers might

be alsonot e�cien t becausesmall messagesmay wastea largeportion of the bu�er.

We calculated the total sharedmemory usageof both MVAPICH (the original

design)and the new design. In Figure 3.5, we can observe that the sharedmemory

consumptionof the new designis substantially lower than the original designwhen

the number processesthat are involved in the intra-nodecommunication getslarger.

3.2.4 Optimization Strategies

We discussseveral optimization strategiesto our designin order to further im-

prove performance.

Reducing Polling Overhead

Each processneedsto poll its receive bu�ers to detect incoming new messages.

Two variablesare maintained for bu�er polling: total-in and total-out, which keep

track of how many bytes of data haveentered and exited the bu�er. When total-in is

equalto total-out, it meansthere is no newmessagesresidingin the polled bu�er. If

total-in is greater than total-out, it meansthe polled bu�er contains a newmessage.

total-in can never be lessthan total-out.

In our design,every processhas P � 1 receive bu�ers that it needsto poll. To

alleviate this polling overhead,we arrangethe two variables(i.e. total-in and total-

out) associated with the P � 1 bu�ers in a contiguous array. Such arrangement will

signi�cantly reducethe polling time by exploiting cache spatial locality, where the

variablescan be accesseddirectly from the cache.

47

Reducing Indirection Overhead

Utilizing the indirection technique, which is explainedin Section3.2.2,results in

additional overheadbecause,to retrieve a message,the receiving processneedsto

perform two memory accesses:to read the control messageand to read the actual

data packet. Our solution to alleviate this overheadis to associate only onecontrol

messagewith multiple data packets. But it is to be noted that if we sendtoo many

data packets beforesendingany control message,the receiver might not be able to

detect incoming messagestimely. Thus the optimal value of the number of control

messagesshould be determinedexperimentally.

3.3 Performance Evaluation

In this section, we present the performanceevaluation of the advancedshared

memory based intra-node communication design, and compare it with the basic

sharedmemorybaseddesign.The latency and bandwidth experiments werecarried

out on both NUMA and dual coreNUMA clusters. We alsopresent the application

performanceon Intel Clovertown systemsat the end of this section.

Exp erimen tal Setup: The NUMA cluster is composedof two nodes. Each

node is equipped with quad AMD Opteron Processor(single core) running at 2.0

GHz. Each processorhas a 1024KB L2 cache. The two nodes are connectedby

In�niBand. We refer to this cluster as cluster A in the following sections. The

dual coreNUMA cluster, referred to as cluster B, alsohas two nodesconnectedby

In�niBand. Each node is equipped with four Dual Core AMD Opteron Processor

(two coreson the samechip and two chips in total). The processorspeed is 2.0

48

GHz, and the L2 cache sizeis 1024KB per core. The operating systemon the two

clustersis Linux 2.6.16. The MVAPICH versionusedis 0.9.7.

We comparethe performanceof our designto the designin MVAPICH. In the

following sections,we refer to the basicsharedmemorybaseddesignasthe Original

Design, and the advanceddesignasthe NewDesign. Latency is measuredin unit of

micro second (us), and bandwidth is measuredin mil lion bytesper second (MB/sec).

3.3.1 Latency and Bandwidth on NUMA Cluster

In this sectionwe evaluate the basicping pong latency and uni-directional band-

width on one node in cluster A. From Figure 3.6 we can seethat the new design

improves the latency of small and medium messagesby up to 15%, and improves

the large messagelatency by up to 35%. The bandwidth is improved by up to 50%

as shown in Figure 3.7. The peak bandwidth is raised from 1200MB/sec to 1650

MB/sec.

 0

 0.5

 1

 1.5

 2

L
a
te

n
cy

 (
u
s)

Original Design
New Design

 0
 5

 10
 15
 20

1 2 4 8 16 32 64 128Im
p
ro

ve
m

e
n
t
%

Message Size (Bytes)

Latency Improvement

(a) Small Messages

 0

 2

 4

 6

 8

 10

L
a
te

n
cy

 (
u
s)

Original Design
New Design

 0
 5

 10
 15
 20

256 512 1K 2K 4K 8KIm
p
ro

ve
m

e
n
t
%

Message Size (Bytes)

Latency Improvement

(b) Medium Messages

 0

 200

 400

 600

 800

 1000

 1200

L
a
te

n
cy

 (
u
s)

Original Design
New Design

 0
 10
 20
 30
 40
 50

16K 32K 64K 128K 256K 512K 1MIm
p
ro

ve
m

e
n
t
%

Message Size (Bytes)

Latency Improvement

(c) Large Messages

Figure 3.6: Latency on NUMA Cluster

49

3.3.2 L2 Cache Miss Rate

To further analyzethe reasonof the performancegain presented in Section3.3.1,

wemeasuredthe L2 cachemissrate while running the latency and bandwidth bench-

marks. The tool usedto measurethe cache missrate is Valgrind [2], and the bench-

marks are the sameas usedin Section3.3.1. The results are shown in Figure 3.8.

The results indicate that a large portion of the performancegain comesfrom the

e�cien t useof the L2 cache by the newdesign.This conformswell to our theoretical

analysisof the new designdiscussedin Section3.2.3.

3.3.3 Impact on MPI Collectiv e Functions

MPI collective functions are frequently usedin MPI applications, and their per-

formance is critical to many of the applications. Since MPI collective functions

can be implemented on top of point-to-p oint basedalgorithms, in this section we

study the impact of the new designon MPI collective calls. The experiments were

conductedon cluster A.

Figure 3.9 shows the performanceof MPI Barrier , which is oneof the most fre-

quently used MPI collective functions. We can seefrom the �gure that the new

designimproves MPI Barrier performanceby 17% and 19% on 2 and 4 processes

respectively, and the improvement is 8% on 8 processes.The drop of performance

improvement on 8 processesis causedby the mixture of intra- and inter-node com-

munication that takesplacewithin the two separatenodesin cluster A. Therefore,

only a fraction of the overall performancecan be enhancedby the intra-node com-

munication.

50

Figure 6.9(a) presents the performanceof another important collective call

MPI Alltoall on one node with 4 processeson cluster A. In MPI Alltoall every

processdoesa personalizedsendto every other process.This �gure shows that the

performancecan be improved by up to 10% for small and medium messagesand

25%for large messages.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

B
an

dw
id

th
 (

M
B

/s
)

Original Design
New Design

 0
 10
 20
 30
 40
 50
 60

1 4 16 64 256 1K 4K 16K 64K 256K 1MIm
pr

ov
em

en
t %

Message Size (Bytes)

Bandwidth Improvement

Figure 3.7: Bandwidth on NUMA Cluster

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Latency
Small

Latency
Medium

Latency
Large

Bandwidth

Benchmarks

Mi
ss

 Ra
te

Original Sender Original Receiver
New Sender New Receiver

Figure 3.8: L2 Cache Miss Rate

 0

 5

 10

 15

 20

 25

La
te

nc
y

(u
s)

Original Design
New Design

 0
 10
 20
 30
 40
 50

2 4 8Im
pr

ov
em

en
t %

Number of Processes

Latency Improvement

Figure 3.9: MPI Barrier Performance

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

La
te

nc
y

(u
s)

Original Design
New Design

 0
 5

 10
 15
 20
 25
 30

1 4 16 64 256 1K 4K 16K 64K 256K 1MIm
pr

ov
em

en
t %

Message Size (Bytes)

Latency Improvement

Figure 3.10: MPI Alltoall Performance

51

 0

 0.5

 1

 1.5

 2

 1 2 4 8 16 32 64 128

L
a
te

n
cy

 (
u
s)

Message Size (Bytes)

CMP Original Design
CMP New Design

SMP Original Design
SMP New Design

(a) Small Messages

 0

 2

 4

 6

 8

 10

 12

 256 512 1K 2K 4K 8K

L
a
te

n
cy

 (
u
s)

Message Size (Bytes)

CMP Original Design
CMP New Design

SMP Original Design
SMP New Design

(b) Medium Messages

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

16K 32K 64K 128K 256K 512K 1M

L
a
te

n
cy

 (
u
s)

Message Size (Bytes)

CMP Original Design
CMP New Design

SMP Original Design
SMP New Design

(c) Large Messages

Figure 3.11: Latency on Dual Core NUMA Cluster

3.3.4 Latency and Bandwidth on Dual Core NUMA Cluster

Multi-core processoris an emergingnew processorarchitecture that few study

has been done with respect to how it interacts with MPI implementations. Our

initial research on such topic is presented next, and we plan to do more in-depth

analysisin the future. The experiments were carried out on cluster B.

Figure 3.11 demonstratesthe latency of small, medium, and large messagesre-

spectively. CMP stands for Chip-level MultiPr ocessing, which we use to represent

the communication between two processors(cores) on the samechip. We refer to

communication betweentwo processorson di�erent chips asSMP (Symmetric Mul-

tiPr ocessing). From Figure 3.11 we notice that CMP has a lower latency for small

and medium messagesthan SMP. This is becausewhenthe messageis small enough

to be resident in the cache, the processorsdo not need to accessthe main mem-

ory, thus only cache-to-cache transfer is needed. Cache-to-cache transfer is much

faster if two processorsare on the samechip. However, when the messageis large

52

and the processorsneed to accessthe main memory to get the data, CMP has a

higher latency becausethe two processorson the samechip will have contention for

memory. Figure 3.11alsoshows that the new designimprovesthe SMP latency for

all messagesizes. It also improves CMP latency for small and medium messages,

but not for large messages.Further investigation is neededto fully understand the

reason.

The bandwidth results, shown in Figure 3.12, indicate the sametrend. Again,

the newdesignimprovesSMP bandwidth for all messagesizes,and CMP bandwidth

for small and medium messages.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 4 16 64 256 1K 4K 16K 64K 256K 1M

B
an

dw
id

th
 (

M
B

/s
)

Message Size (Bytes)

CMP Original Design
CMP New Design

SMP Original Design
SMP New Design

Figure 3.12: Bandwidth on Dual Core NUMA Cluster

3.3.5 Application Performance on In tel Clo verto wn Cluster

In this sectionwe show the application level performanceof the advancedshared

memory baseddesign.

Exp erimen tal Setup: Weuseda four-nodecluster, each node is equippedwith

dual Intel Clovertown (quad-core)processor,that is 8 coresper node. The processor

53

speedis 2.33GHz.A Clovertown chip is madeof two Woodcrestchips, which means

two coressharea 4MB L2 cache.

The benchmarksweusedincludeIS from NAS parallel benchmarksandPSTSWM

which is a shallow water modeling application. The resultsareshown in Figure 3.13,

from which we can seethat the advanced shared memory baseddesign improves

application performanceby up to 5%. This is mainly due to the e�cien t cache

utilization of the new design.

Application Performance

0

0.2

0.4

0.6

0.8

1

1.2

IS-A-4 IS-B-8 PSTSWM-
small-5

PSTSWM-
small-6

PSTSWM-
small-7

PSTSWM-
small-8

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Original Design New Design

Figure 3.13: Application PerformanceComparison

3.4 Summary

In this chapter, wehavedesignedand implemented sharedmemorybasedschemes

for MPI intra-node communication. We start with designinga basicapproach and

its optimizations. Then we proposean advancedapproach which usesthe system

cache e�cien tly, requiresno locking mechanisms,and has low memory usage.The

advancedapproach shows both high performanceand good scalability. Our experi-

mental results show that the advanceddesigncan improve MPI intra-node latency

54

by up to 35%comparedto the basicdesignon singlecoreNUMA systems,and im-

prove bandwidth by up to 50%. The improvement in point-to-p oint communication

also reducesMPI collective call latency - up to 19% for MPI Barrier and 25% for

MPI Alltoall. We have done study on the interaction between multi-core systems

and MPI. From the experimental results we seethat the advanceddesigncan also

improve intra-node communication performancefor multi-core systems. For MPI

applications, the advancedapproach improvesperformanceby up to 5%.

55

CHAPTER 4

CPU BASED KERNEL ASSISTED DIRECT COPY

The sharedmemoryapproach described in Chapter 3 provideshigh performance,

but the performanceis not optimal mainly due to several messagecopiesinvolved.

Every processhas its own virtual addressspaceand cannot directly accessanother

process'smessagebu�er. One approach to avoid extra messagecopies is to use

operating systemkernel to provide a direct copy.

In this chapter, we propose,designand implement a portable approach to intra-

node messagepassingat the kernel level. To achieve this goal, we designand im-

plement a Linux kernel module that providesMPI friendly interfaces.This module

is independent of any communication library or interconnection network. It also

o�ers portabilit y acrossthe Linux kernels. We call this kernel module as LiMIC

(Li nux kernel module for M PI I ntra-node Communication). We have implemented

two versionsof LiMIC. The secondgenerationis referred to as LiMIC2. The main

di�erence betweenLiMIC and LiMIC2 is the interfaceexposedto the MPI libraries.

The rest of the section is organizedas the follows: In Section 4.1 we describe

the existing kernel basedapproach, its limitations, and our approach. We present

the detailed designand implementation issuesin Section4.2. The evaluation results

56

and analysis are presented in Section 4.3. Finally we summarizethe results and

impact of this work in Section4.4.

4.1 Limitations of the Existing Approac h and Overall De-
sign of LiMIC

In this section,we describe the existing kernelbasedsolution and its limitations.

We then proposeour approach: LiMIC.

4.1.1 Kernel-Based Memory Mapping

Kernel-basedmemory mapping approach takeshelp from the operating system

kernel to copy messagesdirectly from one user processto another without any

additional copy operation. The senderor the receiver processposts the message

requestdescriptor in a messagequeueindicating its virtual address,tag, etc. This

memory is mapped into the kernel addressspacewhen the other processarrivesat

the messageexchangepoint. Then the kernelperformsa direct copy from the sender

bu�er to the receiver application bu�er. Thus this approach involvesonly onecopy.

Figure 1.2(c) demonstratesthe memory transactions neededfor copying from

the senderbu�er directly to the receiver bu�er. In step 1, the receiving process

needsto bring the sendingprocess'bu�er into cache. Then in step 3, the receiving

processcan write this bu�er into its own receive bu�er. This may generatestep 2

basedon whether the bu�er was in cache already or not. Then, depending on the

cache replacement policy, step 4 might be generatedimplicitly .

It is to benoted that the number of possiblememorytransactionsfor the Kernel-

basedmemorymappingis always lessthan the number in User-spacesharedmemory

approach. Wealsonote that dueto the reducednumber of copiesto and from various

57

bu�ers, we can maximize the cache utilization. However, there are other overheads.

The overheadsinclude time to trap into the kernel,memorymapping overhead,and

TLB
ush time. In addition, still the CPU resourceis required to perform a copy

operation.

Thereareseveral previousworks that adopt this approach, which include[43,72].

However, their designslack portabilit y acrossdi�erent networks and deny
exibilit y

to the MPI library developer. To the best of our knowledge, no other current

generationopen sourceMPI implementations provide such a kernel support. SGI

MPT (MessagePassingToolkit) provides a singlecopy support, but it dependson

XPMEM which is an SGI proprietary driver [69].

4.1.2 Our Approac h: LiMIC

It is to be noted that the kernel-basedapproach has the potential to provide ef-

�cient MPI intra-node communication. In this chapter we are taking this approach,

providing unique featuressuch as portabilit y acrossvarious interconnectsand dif-

ferent communication libraries. This sectionsharply distinguishesour approach and

designphilosophy from earlier research in this direction. Our designprinciples and

details of this approach are described in Section4.2.

Traditionally, researchershave exploredkernelbasedapproachesasan extension

to the featuresavailable in user-level protocols. A high level descriptionof theseear-

lier methodologiesis shown in Figure 4.1(a). As a result, mostof thesemethodologies

have beennon-portable to other user-level protocolsor other MPI implementations.

In addition, theseearlier designsdo not take into account MPI messagematching

58

semantics and messagequeues.Further, the MPI library blindly calls routines pro-

vided by the user-level communication library. Sincesomeof the communication

libraries are proprietary, this mechanism deniesany sort of optimization-spacefor

the MPI library developer.

Specific
Network

User-Level

MPI Library

Support
Kernel

Specific
Network

Any
Network

MPI Library

Protocol
Level LiMIC

Protocol

User

(a) Earlier Design
Approach

(b) LiMIC Design
Approach

Figure 4.1: Approachesfor Kernel-BasedDesign

In order to avoid the limitations of the past approaches we look towards gen-

eralizing the kernel-accessinterface and making it MPI friendly. Our implemen-

tation of this interface is called LiMIC (Li nux kernel module for M PI I ntra-node

Communication). Its high level diagram is shown in Figure 4.1(b). We note that

such a design is readily portable acrossdi�erent interconnectsbecauseits inter-

face and data structures are not required to be dependent on a speci�c user-level

protocol or interconnect. Also, this designgives the
exibilit y to the MPI library

developer to optimize various schemesto make appropriate use of the one copy

kernel mechanism. For instance,LiMIC provides
exibilit y to the MPI library de-

veloper to easily choosethresholds for the hybrid approach with other intra-node

59

communication mechanismsand tune the library for speci�c applications. Such
ex-

ibilit y is discussedin [31]. As a result, LiMIC can provide portabilit y on di�erent

interconnectsand
exibilit y for MPI performanceoptimization.

4.2 Design and Implemen tation Issues

In this section,we discussthe detailed designissuesof LiMIC and its integration

with MPI.

4.2.1 Portable and MPI Friendly In terface

In order to achieve portabilit y acrossvarious Linux systems,we designLiMIC

to be a runtime loadablemodule. This meansthat no modi�cations to the kernel

code is necessary. Kernel modules are usually portable acrossmajor versionsof

mainstreamLinux. The LiMIC kernelmodule canbe either an independent module

with device driver of interconnection network or a part of the device driver. In

addition, the interface is designedto avoid using communication library speci�c or

MPI implementation speci�c information.

In order to utilize the interface functions, very little modi�cation to the MPI

layer are needed. Theseare required just to place the hooks of the send, receive

and completion of messages.The LiMIC interface traps into the kernel internally

by using the ioctl() systemcall. We brie
y describe the major interfacefunctions

provided by LiMIC.

- LiMIC Isend(int dest, int tag, int context id, void* buf, int len,

MPIRequest* req) : This call issuesa non blocking sendto a speci�ed desti-

nation with appropriate messagetags.

60

- LiMIC Irecv(int src, int tag, int context id, void* buf, int len,

MPIRequest* req) : This call issuesa non-blocking receive. It is to be noted

that blocking sendand receive can be easily implemented over non-blocking

and wait primitiv es.

- LiMIC Wait(int src/dest, MPIRequest* req) : This call just polls the

LiMIC completion queueoncefor incoming sends/receives.

As described in Section 4.1.2, we can observe that the interface provided by

LiMIC does not include any speci�c information on a user-level protocol or inter-

connect. The interface only de�nes the MPI related information and has an MPI

standard similar format.

4.2.2 Memory Mapping Mec hanism

To achieve one-copy intra-node messagepassing,a processshould be able to

accessthe other processes'virtual addressspaceso that the processcan copy the

messageto/from the other's addressspacedirectly. This canbeachievedby memory

mapping mechanism that mapsa part of the other processes'addressspaceinto its

own addressspace.After the memory mapping the processcan accessmapped area

as its own.

For memorymapping, we usekiobuf provided by the Linux kernel. The kiobuf

structure supports the abstraction that hidesthe complexity of the virtual memory

systemfrom devicedrivers. The kiobuf structure consistsof several �elds that store

user bu�er information such as pagedescriptorscorresponding to the user bu�er,

o�set to valid data inside the �rst page,and total length of the bu�er. The Linux

kernelexposesfunctions to allocatekiobuf structuresand make a mappingbetween

61

kiobuf andpagedescriptorsof userbu�er. In addition, sincekiobuf internally takes

careof pinning down the memory area,we can easilyguarantee that the userbu�er

is present in the physicalmemorywhenanotherprocesstries to accessit. Therefore,

we can take advantage of kiobuf asa simpleand safeway of memory mapping and

pagelocking.

Although the kiobuf provides many features, there are several issueswe must

addressin our implementation. The kiobuf functionsprovide a way to map between

kiobuf and pagedescriptorsof target user bu�er only. Therefore,we still needto

map the physical memory into the addressspaceof the process,which wants to

accessthe target bu�er. To do so, we use the kmap() kernel function. Another

issueis a large allocation overheadof kiobuf structures. We performed tests on

kiobuf allocation time on our cluster (Cluster A in Section4.3) and found that it

takesaround 60� s to allocateonekiobuf . To remove this overheadfrom the critical

path, LiMIC kernel module preallocatessomeamount of kiobuf structures during

the module loading phaseand managesthis kiobuf pool.

User BufferUser Buffer

...

kiobuf Kernel Memory

User

1. Request (ioctl) 4. Request (ioctl)

2. Map to kiobuf
(map_user_kiobuf)

6. Map to Kernel Memory (kmap)

7. Copy
(copy_from_user or
copy_to_user)

Kernel

3. Post Request

5. Search

Linked List of Posted Requests

Process A Process B

Figure 4.2: Memory Mapping Mechanism

62

Figure 4.2 shows the internal memory mapping operation performedby LiMIC.

When either of the messageexchangingprocessesarrives,it issuesa requestthrough

ioctl() (Step 1). If there is no postedrequestthat can be matched with the issued

request,the kernel module simply savesinformation of pagedescriptorsfor the user

bu�er and pins down it by calling mapuser kiobuf() (Step 2). Then, the kernel

module puts this requestinto the requestqueue(Step 3). After that whenthe other

messagepartner issuesa request(Step 4), the kernelmodule �nds the postedrequest

(Step 5) and mapsthe userbu�er to the kernel memoryby calling kmap() (Step 6).

Finally, if the processis the receiver, the kernel module copiesthe data from kernel

memory to user bu�er using copy to user() , otherwise the data is copied from

user bu�er to kernel memory by copy from user() (Step 7). The data structures

in the kernel module are sharedbetweendi�erent instancesof the kernel executing

on the sendingand receivingprocesses.To guarantee consistency, LiMIC takescare

of locking the shareddata structures.

4.2.3 Copy Mec hanism

Since the copy needsCPU resourcesand needsto accesspinned memory, we

have to carefully decidethe timing of the messagecopy. The messagecopy could

be donein either of the three ways: copy on function calls of receiver, copy on wait

function call, and copy on sendand receive calls.

We suggestthe designwhere the copy operation is performed by sendand re-

ceive functions (i.e., LiMIC Isend and LiMIC Irecv) so that we can provide better

progressand lessresourceusage. In addition, this approach is not prone to skew

between processes.The actual copy operation is performed by the processwhich

63

arriveslater at the communication call. So, regardlessof the senderor receiver, the

operation canbe completedassoon asboth the processeshave arrived. In addition,

only the �rst processis required to pin down the userbu�er.

4.2.4 MPI Message Matc hing

There are separatemessagequeuesfor messagessent or received through the

kernel module. This is doneto allow portabilit y to various other MPI like message

queues.So,in generalthe LiMIC doesnot assumeany speci�c messagequeuestruc-

ture. MPI messagesare matched basedon Source, Tag and Context ID . Message

matching canalsobe doneby usingwild cardslike MPIANYSOURCEor MPIANYTAG.

LiMIC implements MPI messagematching in the following manner:

� Source in the same node: In this case,the receive requestis directly posted

into the queuemaintained by LiMIC. On the arrival of the message,the kernel

instanceat the receiver sidematchesthe messagebasedon the source,tag and

context id information and then it passesthe bu�er into userspace.

� Source in a di�eren t node: In this case,LiMIC is no longer responsiblefor

matching the message.The interface hooks provided in the MPI should take

careof not posting the receive requestinto the kernel messagequeue.

� Source in the same node and MPIANYTAG: As in the �rst case,the receive

requestis not postedin the genericMPI messagequeue,but directly into the

LiMIC messagequeue. Now, the matching is done only by the sourceand

context id.

64

� MPIANYSOURCEand MPIANYTAG: In this case, the sourceof the message

might be on the samephysical node but alsoit can be someother node which

is communicating via the network. So the receive request is posted in the

MPI queue.Then the MPI internal function that sensesan arrival of message

checks the sendqueuein the kernel module as well by using a LiMIC inter-

face,LiMIC Iprobe , and performsmessagematching with requestsin the MPI

queue.If the function �nds a messagewhich matchesthe request,the function

performsthe receive operation by calling the LiMIC receive interface.

SomespecializedMPI implementations o�oad several MPI functions into the

NIC. For example,QuadricsperformsMPI messagematching at the NIC-level [64].

The LiMIC might needan extendedinterface for such MPI implementations while

most of MPI implementations can easily employ LiMIC.

4.3 Performance Evaluation

In this section we evaluate various performancecharacteristics of LiMIC and

LiMIC2 ondi�erent platforms. Wealsopresent the performanceimpact on MPI+Op enMP

model.

4.3.1 Performance Evaluation of LiMIC on a Single-core
Cluster

As described in section 1.2, there are various designalternatives to implement

e�cien t intra-node messagepassing.MVAPICH [15] version0.9.4implements a hy-

brid mechanismof User-spacesharedmemoryand NIC-level loopback. The message

sizethresholdusedby MVAPICH-0.9.4 to switch from User-spacesharedmemoryto

NIC-level loopback is 256KB. In this section,we usea hybrid approach for LiMIC,

65

in which User-spacesharedmemoryis usedfor short messages(up to 4KB) and then

Kernel-basedmemory mapping is usedto perform an one copy transfer for larger

messages.The choiceof this threshold is explainedbelow in section4.3.1. However,

each application can set a di�erent threshold. Hereon, all referencesto MVAPICH-

0.9.4and LiMIC refer to the hybrid designsmentioned above. In addition, we also

provide performanceresults for each of the individual designalternatives, namely,

User-spacesharedmemory, NIC loopback, and Kernel module.

We conductedexperiments on two 8-node clusterswith the following con�gura-

tions:

� Cluster A: SuperMicro SUPER X5DL8-GG nodeswith dual Intel Xeon 3.0

GHz processors,512KB L2 cache, PCI-X 64-bit 133MHz bus

� Cluster B: SuperMicro SUPER P4DL6 nodeswith dual Intel Xeon 2.4 GHz

processors,512KB L2 cache, PCI-X 64-bit 133MHz bus

The Linux kernel versionusedwas2.4.22smpfrom kernel.org. All the nodesare

equipped with Mellanox In�niHost MT23108HCAs. The nodesareconnectedusing

Mellanox MTS 240024-port switch. Testcon�gurations arenamed(2x1), (2x2), etc.

to denotetwo processeson onenode, four processeson two nodes,and so on.

First, we evaluate our designsat microbenchmarks level. Second,we present

experimental results on messagetransfer and descriptor post breakdown. Then we

evaluate the scalability of performanceo�ered by LiMIC for larger clusters. Finally,

we evaluate the impact of LiMIC on NAS Integer Sort application kernel.

66

Microb enchmarks

In this section,we describe our tests for microbenchmarks such aspoint-to-p oint

latency and bandwidth. The tests were conductedon Cluster A.

The latency test is carried out in a standard ping-pong fashion. The latency

microbenchmark is available from [15]. The results for one-way latency is shown

in Figures 4.3(a) and 4.3(b). We observe an improvement of 71% for latency as

compared to MVAPICH-0.9.4 for 64KB messagesize. The results clearly show

that on this experimental platform, it is most expensive to useNIC-level loopback

for large messages. The User-spaceshared memory implementation is good for

small messages.This avoids extra overheadsof polling the network or trapping

into the kernel. However, as the messagesize increases,the application bu�ers

and the intermediate shared memory bu�er no longer �t into the cache and the

copy overhead increases. The Kernel module on the other hand can reduce one

copy, hencemaximizing the cache e�ect. As can be noted from the latency �gure,

after the messagesizeof 4KB, it becomesmore bene�cial to usethe Kernel module

than User-spacesharedmemory. Therefore, LiMIC hybrid usesUser-spaceshared

memory for messagessmaller than 4KB and the Kernel module for larger messages.

For measuringthe point-to-p oint bandwidth, a simplewindow basedcommunica-

tion approach wasused. The bandwidth microbenchmark is available from [15]. The

bandwidth graphsare shown in Figures4.3(c) and 4.3(d). We observe an improve-

ment of 405%for bandwidth for 64KB messagesizeascomparedto MVAPICH-0.9.4.

We alsoobserve that the bandwidth o�ered by LiMIC dropsat 256KB messagesize.

This is due to the fact that the cache size on the nodes in Cluster A is 512KB.

Both senderand receiver bu�ers and someadditional data cannot �t into the cache

67

beyond this messagesize. However, the bandwidth o�ered by LiMIC is still greater

than MVAPICH-0.9.4.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32 64 128 256 5121k 2k 4k 8k16k32k64k

La
te

nc
y

(u
s)

Message Size (Bytes)

User Space Shared Memory
NIC Loopback
Kernel Module

MVAPICH-0.9.4
LiMIC

(a) Small MessageLatency

0

2000

4000

6000

8000

10000

12000

64k 128k 256k 512k 1M 2M 4M

La
te

nc
y

(u
s)

Message Size (Bytes)

User Space Shared Memory
NIC Loopback
Kernel Module

MVAPICH-0.9.4
LiMIC

(b) Large MessageLatency

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 4 8 16 32 64 128 256 5121k 2k 4k 8k16k32k64k

B
an

dw
id

th
 (

M
ill

io
nB

yt
es

/s
ec

)

Message Size (Bytes)

User Space Shared Memory
NIC Loopback
Kernel Module

MVAPICH-0.9.4
LiMIC

(c) Small MessageBandwidth

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

64k 128k 256k 512k 1M 2M 4M

B
an

dw
id

th
 (

M
ill

io
nB

yt
es

/s
ec

)

Message Size (Bytes)

User Space Shared Memory
NIC Loopback
Kernel Module

MVAPICH-0.9.4
LiMIC

(d) Large MessageBandwidth

Figure 4.3: MPI Level Latency and Bandwidth

LiMIC Cost Breakdo wn

In order to evaluate the cost of various operations which LiMIC has to perform

for messagetransfer, wepro�led the time spent by LiMIC during a ping-ponglatency

68

0%

20%

40%

60%

80%

100%

4k 32k 1M

Message Size (Bytes)

Pe
rce

nta
ge

 of
 O

ve
ral

l O
ve

rhe
ad

copy kmap trap rest

(a) MessageTransfer Breakdown

0%

20%

40%

60%

80%

100%

4k 32k 1M

Message Size (Bytes)

Pe
rce

nta
ge

 of
 O

ve
ral

l O
ve

rhe
ad

kiobuf map trap rest

(b) Descriptor Post Breakdown

Figure 4.4: LiMIC Cost Breakdown (Percentage of Overall Overhead)

test. In this section,we present results on the various relative cost breakdowns on

Cluster A.

The overheadbreakdown for messagetransfer in percentages is shown in Fig-

ure4.4(a). Weobservethat the messagecopy time dominatesthe overall send/receive

operation asthe messagesizeincreases.For shorter messages,we seethat a consid-

erableamount of time is spent in the kernel trap (around 3� s) and around 0.5� s in

queueingand locking overheads(indicated as \rest"), which are shown as55%and

12%of the overall messagetransfer overheadfor 4KB messagein Figure 4.4(a). We

alsoobserve that the time to map the userbu�er to the kernel addressspace(using

kmap()) increasesas the number of pagesin the userbu�er increases.

The overheadbreakdown for descriptor posting in percentagesis shown in Fig-

ure 4.4(b). Weobserve that the time to map the kiobuf with the pagedescriptorsof

the userbu�er forms a large portion of the time to post a descriptor. It is because

69

the kiobuf mapping overhead increasesin proportional to the number of pages.

This step also involves the pinning of the user bu�er into physical memory. The

column labeled \rest" indicatesagain the queuingand locking overheads.

HPCC E�ectiv e Bandwidth

To evaluate the impact of the improvement of intra-node bandwidth on a larger

cluster of dual SMP systems,we conducted e�ective bandwidth test on Clusters

A and B. For measuringthe e�ective bandwidth of the clusters,we usedb e� [66]

benchmark. This benchmark measuresthe accumulated bandwidth of the com-

munication network of parallel and distributed computing systems. This bench-

mark is featured in the High PerformanceComputing Challengebenchmark suite

(HPCC) [47].

Table 4.1 shows the performanceresults of LiMIC comparedwith MVAPICH-

0.9.4. It is observed that when both processesare on the samephysical node (2x1),

LiMIC improvese�ective bandwidth by 61%on Cluster A. It is also observed that

even for a 16 processexperiment (2x8) the cluster can achieve 12%improved band-

width.

The table also shows the performanceresults on Cluster B. The results follow

the sametrend as that of Cluster A. It is to be noted that the messagelatency on

User-spacesharedmemory and Kernel module dependson the speedof CPU while

the NIC-level loopback messagelatency depends on the speed of I/O bus. Since

the I/O bus speedremainsthe samebetweenClusters A and B, and only the CPU

speedreduces,the improvement o�ered by LiMIC reducesin Cluster B.

In our next experiment, we increasedthe number of processesasto includenodes

in both ClustersA and B. The motivation wasto seethe scalingof the improvement

70

in e�ective bandwidth asthe number of processesis increased.It is to be noted that

the improvement percentage remains constant (5%) as the number of processesis

increased.

Table 4.1: b e� ResultsComparisons(MB/s)

Cluster Con�g. MVAPICH LiMIC Improv.
A 2x1 152 244 61%

2x2 317 378 19%
2x4 619 694 12%
2x8 1222 1373 12%

B 2x1 139 183 31%
2x2 282 308 9%
2x4 545 572 5%
2x8 1052 1108 5%

A & B 2x16 2114 2223 5%

�

���

���

���

���

�

���

���

���

���

��� ��� ��� ���

	
��
���������
��
�

���
���

��
�	

�
��

��������	
�
�

����

0

1

2

3

4

5

6

7

2x1 2x2 2x4 2x8
Number of Processes

Ti
m

e (
se

co
nd

s)

MVAPICH-0.9.4
LiMIC

0

2

4

6

8

10

12

14

16

2x2 2x4 2x8

Number of Processes

Ti
m

e (
se

co
nd

s)

MVAPICH-0.9.4
LiMIC

Figure 4.5: IS Total Execution Time Comparisons: (a) ClassA, (b) ClassB, and
(c) ClassC

71

NAS In teger Sort

We conductedperformanceevaluation of LiMIC on IS in NAS Parallel Bench-

mark suite [38] on Cluster A. IS is an integersort benchmark kernel that stressesthe

communication aspect of the network. We conductedexperiments with classesA,

B and C on con�gurations (2x1), (2x2), (2x4), and (2x8). The results are shown in

Figure 4.5. Sincethe classC is a large problem size,we could run it on the system

sizeslarger than (2x2). We can observe that LiMIC can achieve 10%,8%, and 5%

improvement of execution time running classesA, B, and C respectively, on (2x8)

con�guration. The improvements are shown in Figure 4.6.

To understand the insights behind the performanceimprovement, we pro�led

the number of intra-node messageslarger than 1KB and their sizesbeing usedby

IS within a node. The results with classA are shown in Table 4.2. We can see

that as the system size increases,the size of the messagesreduces. The trend is

the sameon classesB and C while the messagesizebecomeslarger than classA.

SinceLiMIC performs better for medium and larger messagesizes,we seeoverall

less impact of LiMIC on IS performanceas the system size increases. Also, it is

to be noted that since the messagesize reducesas the system size increases,the

messagesizeeventually �ts in the cache sizeon (2x8) con�guration. This results in

maximizing the bene�t of LiMIC and raising the improvement at the (2x8) system

sizeas shown in Figure 4.6.

72

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

0%

2%

4%

6%

8%

10%

12%

14%

16%

2x1 2x2 2x4 2x8
Number of Processes

Im
pr

ov
em

en
t

CLASS A

CLASS B
� �

� CLASS C

Figure 4.6: IS PerformanceImprovement

Table 4.2: Intra-Node MessageSizeDistribution for IS ClassA
MessageSize(Bytes) 2x1 2x2 2x4 2x8

1K-8K 44 44 44 44
32K-256K 0 0 0 22
256K-1M 0 0 22 0
1M-4M 0 22 0 0
4M-16M 22 0 0 0

73

Figure 4.7: Application Performanceof LiMIC2 on an AMD BarcelonaSystem

4.3.2 Application Performance of LiMIC2 on an AMD
Barcelona System

In this section,we evaluate the performanceof LiMIC2 on an AMD Barcelona

systemusing IS classA in NAS, and comparewith the sharedmemory approach.

The results are shown in Figure 4.7. The systemhas four quad-coreOpteron chips

(16 coreson a node) running at 2GHz. Each core has a 512KB L2 cache. The

operating systemis Linux 2.6.18.From Figure 4.7we canseethat LiMIC2 improves

IS performanceby up to 18%.

4.3.3 Performance Impact on MPI+Op enMP Mo del

MPI+Op enMP [46]modelexplorestwo levelsof parallelism. It usesOpenMP [39]

for multipro cessingwithin a node and MPI for communication acrossnodes.

MPI+Op enMP wasproposedbecausethe communication overheadin MPI washigh

and it was more e�cien t to useOpenMP, essentially the threads and sharedmem-

ory model, within a node. Our work on MPI intra-node communication has largely

74

reducedthe communication overheadand it is interesting to re-examinethe relative

performanceof pureMPI versusMPI+Op enMP. In this section,weevaluate the per-

formanceof thesetwo modelsusingLU-MZ and SP-MZ [35], the multi-zone version

of LU and SP in NAS benchmarks, which are implemented with MPI+Op enMP.

The results are shown in Figure 4.8.

In this experiment, we use two Intel Clovertown systems. Each node has two

quad-coreIntel Clovertown processorsand two nodesare connectedby In�niBand.

Each socket has two chips and two coreson the samechip sharea 4MB L2 cache.

In the legend,2x8 meansthere are 2 processes,each running on one node with 8

OpenMP threads,which is the traditional MPI+Op enMP model. 16x1meansthere

are 16 MPI processesand each processonly hasonethread, which is essentially the

pure MPI model. Similarly, 4x4 means4 processeswith 4 threads per processand

8x2 means8 processeswith 2 threads per process. It is to be noted that in the

4x4 mode, each MPI processruns a socket, and in the 8x2 mode, each MPI process

runs on a chip. We have two observations from Figure 4.8. First, if we compare

the performanceof the traditional MPI+Op enMP with pure MPI, i.e. compare2x8

with 16x1,we canseethat they perform almost the same,actually pure MPI is even

slightly better. Second,we �nd that 4x4 and 8x2 perform better than both 2x8 and

16x1. Theseindicate that with e�cien t MPI intra-node communication, pure MPI

can perform as well as the traditional OpenMP+MPI model for someapplications

and OpenMP+MPI needsto changeto smaller granularit y for better performance.

When OpenMP+MPI usessocket or chip granularit y, the improvement on MPI

intra-node communication performancewill bene�t the OpenMP+MPI model. The

75

Figure 4.8: PerformanceImpact on MPI+Op enMP Model

relative performanceof MPI and MPI+Op enMP also dependson application pat-

terns and problem sizesand will needto be thoroughly studied in the future.

4.4 Summary

In this chapter we have designedand implemented a high performanceLinux

kernel module (called LiMIC) for MPI intra-node messagepassing. LiMIC is able

to provide MPI friendly interfaceand independencefrom proprietary communication

libraries and interconnects.

To measurethe performanceof LiMIC, we have integrated it with MVAPICH.

Through the benchmark results, we could observe that LiMIC improved the point-

to-point latency and bandwidth up to 71% and 405%, respectively. In addition,

we observed that employing LiMIC in an 8-node In�niBand cluster, increasedthe

HPCC e�ective bandwidth by 12%. Also, our experiments on a larger 16-node clus-

ter revealedthat the improvement in HPCC e�ective bandwidth remainsconstant

76

as the number of processesincreased.Further, LiMIC improved the NAS IS bench-

mark execution time by 10%, 8%, and 5% for classesA, B, and C respectively, on

an 8-node cluster. Similarly, we observe that LiMIC2 has improved IS performance

on an AMD Barcelonasystemby up to 18%. We have also conductedpreliminary

study on the MPI+Op enMP model and �nd that MPI+Op enMP can also bene�t

from our work.

77

CHAPTER 5

DMA BASED KERNEL ASSISTED DIRECT COPY

Direct Memory Access(DMA) has beentraditionally usedto transfer the data

directly from the host memory to any input/output devicewithout the host CPU

intervention. Networks such as In�niBand [6] provide a zero-copy data transfer

support. However, such solutions are mainly used for transferring data from one

node to another [54]. Researchers in the past have attempted to useDMA engines

to acceleratebulk data movement within a node[33]. Many of theseapproacheshave

not entirely succeededdueto hugeDMA startup costs,completionnoti�cation costs

and other performance-relatedissues.Recently, Intel's I/O AccelerationTechnology

(I/O AT) [44, 57, 68] introducedan asynchronousDMA copy enginewithin the chip

that has direct accessto main memory to improve performanceand reduce the

overheadsmentioned above. In this chapter, we present our DMA basedkernel

assisteddirect copy approach for MPI intra-node communication.

The restof the chapter is organizedasthe follows: Weintroducethreeschemeswe

have designedfor IPC in Section5.1 and describe the integration of theseschemein

MPI in Section5.2. We present the MPI level performanceevaluation in Section5.3

and �nally summarizein Section5.4.

78

5.1 Design of the DMA Based Schemes

We have designedthree schemes,namely SCI, MCI, and MCNI. In this section

we describe the detailed designof theseschemes.

5.1.1 SCI (Single-Core with I/O AT)

The SCI schemeo�o ads the memory copy operation to the I/O AT's hardware

copy engineand usesthe kernelmodule to exposethe featuresof the hardware copy

engineto user applications in order to perform asynchronousmemory copy opera-

tions. We have extendedthe support of asynchronousmemory copy operations for

both singleprocessasan o�o aded memcpyand IPC. User applications contact the

kernel module (referred to as memory copy module in Figure 5.1(b)) for o�oading

the copy operation. The kernelmodule takeshelp from the underlying DMA module

in initiating the memory copy operation acrosseach of the DMA channels. On a

completion noti�cation request, the kernel module checks the progressof memory

copy operation and informs the application accordingly. In addition, tasks such as

pinning the application bu�ers, posting the descriptors, releasingthe bu�ers are

also handled by the kernel module. The SCI scheme also supports page caching

mechanism to avoid pinning of application bu�ers while performing memory copy

operations. In this mechanism,the kernelmodule cachesthe virtual to physicalpage

mappings after locking the application bu�ers. Once the memory copy operation

�nishes, the kernel module doesnot unlock the application bu�ers in order to avoid

the pinning cost if the sameapplication bu�er is reusedfor another memory copy

operation.

79

For single processoperations, we provide memcpy like interfacesas shown in

Table 5.1. And for IPC, we provide socket like interfaceswhich are illustrated later

in Table 5.2 in Section5.2.

Table 5.1: Basic Interfacesfor Using I/O AT Copy Engine

Operation Description
ioat copy(src, dst, len) Blocking copy routine
ioat icopy(src, dst, len) Non-blocking copy routine
ioat check copy(cookie) (Non-blocking) check for

completion
ioat wait copy(cookie) (Blocking) wait for

completion

5.1.2 MCI (Multi-Core with I/O AT)

While the SCI schemehelpsuserapplicationsto o�o admemorycopy operations,

several critical operationsstill remain in the critical path, causingoverheadssuch as

copy engineinitiation overheads,pagelocking overheads,context switch overheads,

synchronization overheads,etc. In this section,wedescribe the MCI schemewhich is

designedto alleviate theseoverheadsto achieve maximum overlap betweenmemory

copy operation and computation.

The main idea of MCI schemeis to o�o ad the copy operation to the hardware

copy engineand onload the tasks that fall in the critical path to another core or

a processorso that applications can exploit completeoverlap of memory operation

with computation.

80

M
em

or
y

CacheCPUCopy on CPU

Copy on DMA
copy engine

Cache Pollution
Critical resource touched

Stalled on Mem
Register�based

CPU not stalled CPU critical
resources untouched Reduced pollution

DMA

Engine
Copy

Block granularity

Block granularity

compute overlap

Registers

(a) Copy Execution on CPU vs Copy En-
gines(Courtesy [74])

Kernel

User

Module

DMA

Module

dst page 1

dst page 2

dst page 0

ch 2

ch 1

ch 3

src page 0

src page 1

src page 2

src page 3

Memory

Memory Copy

Single�Threaded Applications

dst page 3

ch 0

ch 3ch 2ch 1ch 0

DMA

(b) SCI Scheme

Figure 5.1: Copy Engine Architecture and SCI Scheme

src page 0

src page 1

src page 2

src page 3

User

Application
User

ApplicationUser

Application

User

Application
User

ApplicationUser

Application

dst page 0

dst page 1

dst page 2

dst page 3

ch 0 ch 1 ch 2 ch 3

DMA

ch 0

ch 1

ch 2

ch 3

Memory

Module
DMA

Consume Consume

vmap vmap

Kernel�mapped
source buffer

Kernel�mapped
destination buffer

memcpy

Memory

source buffer destination buffer
User space User space

Produce

Consume
Produce

Queue
Response

Request
Queue

Consume
Produce

Queue
Request

Response
Queue

Kernel Worker
Thread

Posting

Completion

Progress

Kernel Worker
Thread

Posting

Completion

Progress

Pinning vmap

Produce

Figure 5.2: Asynchronous Memory Copy Operations: (a) MCI Scheme and (b)
MCNI Scheme

81

Figure 5.2ashowsthe variouscomponents of the proposedscheme.Sincethe copy

engineis accessibleonly in the kernel space,we dedicatea kernel thread to handle

all copy enginerelated tasks and allow user applications to communicate with the

kernel thread to perform the copy operation. The kernel thread alsomaintains a list

of incomplete requestsand attempts to make progressfor theseinitiated requests.

Apart from servicing multiple user applications, the dedicated kernel thread also

handles tasks such as locking the application bu�ers, posting the descriptors for

each userrequeston appropriatechannels,checking for devicecompletions,releasing

the locked bu�ers after completion events. Sincethe critical tasks are onloadedto

this kernel thread, the userapplication is free to executeother computation or even

executeother memory copy operations while the copy operation is still in progress

thus allowing almost total overlap of memory copy operation and computation.

5.1.3 MCNI (Multi-Core with No I/O AT)

In order to provide asynchronousmemory copy operations for systemswithout

the copy enginesupport, we have proposeda MCNI scheme (Multi-Core systems

with No I/O AT) that onloads the memory copy operation to another processoror

a core in the system. This schemeis similar to the MCI schemedescribed above.

In this scheme,we dedicatea kernel thread to handle all memory copy operations,

thus relieving the main application thread to perform computation.

82

5.2 In tegration with MV APICH

In this section,we describe our MPI intra-node communication implementation

to take advantage of the kernel module assistedmemory copy operations. Speci�-

cally we discusshow we integrate the kernel module that supports the SCI, MCI,

and MCNI approachesdescribed in Section1.2 and 1.2 in MVAPICH.

The kernelmodule exposesthe following userinterface,asshown in Table5.2, for

applicationsto exchangemessagesacrossdi�erent processes.ioat readand ioat write

operations read and write data onto another process. ioat iread and ioat iwrite

operations initiate the data transfer.

Table 5.2: Kernel Module Interfacesfor IPC

Operation Description
ioat iread(fd, addr, len) Non-blocking read routine
ioat iwrite(fd, addr, len) Non-blocking write routine
ioat read(fd, addr, len) Blocking read routine
ioat write(fd, addr, len) Blocking write routine
ioat check(cookie) (Non-blocking) check for

read/write completion
ioat wait(cookie) (Blocking) Wait for

read/write completion

Becauseof the initiation overhead,it is only bene�cial to useasynchronousmem-

ory copy operationsfor largemessages.In our design,small messagesarestill trans-

ferred eagerlythrough the user spacesharedmemory area. For large messages,we

use the shared memory area for handshake messages,and asynchronous memory

copy operations for transferring the data. The protocol is described asbelow:

83

� Step 1: The sendersendsa requestto send message.

� Step 2: The senderthen posts its send requestby initiating a non-blocking

IPC write request to the kernel for performing asynchronous memory copy

operations,and puts this requestinto a pending sendqueue.

� Step 3: Upon receiving the requestto send, the receiver posts its receive re-

quest by initiating a non-blocking IPC read request to the kernel for per-

forming asynchronousmemory copy operations, and puts this request into a

pending recv queue.

� Step 4: When the MPI program tries to make progress,the senderand the

receiver check the completion of the pending operations by initiating a non-

blocking IPC check requestto the kernel to check for completion and inform

the upper layer about the completion of the operations.

The threshold to switch from Eager protocol to Rendezvousprotocol is a run

time parameterwhich should be tuned basedon the systemperformance.

The potential bene�ts of using asynchronousmemory copy operations for MPI

intra-node communication comefrom several aspects. First, it reducesthe number

of memorycopies.Second,the SCI and MCI approachescanachieve communication

and computation overlap, sincethe memory copy is doneby the DMA engine.And

third, sincethe memorycopy in the SCI and MCI approachesdoesnot involve cache,

communication bu�ers will not disturb the cache content.

84

5.3 Performance Evaluation

In this sectionwe present the MPI level evaluation of kernel basedapproaches.

We �rst present microbenchmark performance,followed by application level perfor-

mance.

Figure 5.3 shows the MPI level intra-node latency and bandwidth. The Ren-

dezvousthreshold is 32KB, which meansmessagessmaller than 32K are transferred

through sharedmemory in all the schemes.Therefore,we only show results larger

than 32KB. From Figure 5.3(a) we can seethat all the kernel basedasynchronous

memory copy schemesare able to achieve better performancethan sharedmemory

scheme,e.g. the MCI schemeimproves latency by up to 72% comparedto shared

memoryscheme(SCNI). Among the three asynchronousmemorycopy schemes,the

MCI schemeperforms the best. The reasonsare: comparedwith the SCI scheme,

the MCI schemeonloadsthe operations in the critical path to another thread; and

comparedwith the MCNI scheme, the MCI scheme usesthe DMA enginewhich

copiesmemory more e�cien tly for large blocks. The bandwidth result shown in

Figure 5.3(b) reveals the sametrend. Comparedwith the sharedmemory (SCNI)

scheme,the MCI schemeimprovesbandwidth by up to 170%. It is to be noted that

the bandwidth of both the sharedmemory schemeand the MCNI schemedrops at

2MB. This is becauseboth of theseschemesinvolve cache for memory operations

and the L2 cache sizeis 2MB in our testbed. Therefore,when the messageis larger

than the cache size,there is an expectedbandwidth drop.

WeuseIS in NAS parallel benchmarks[38] and PSTSWM [20]for our application

level performanceevaluation. The normalizedexecutiontime is shown in Figure 5.4.

The results were taken on a single node. Since the MCI and the MCNI schemes

85

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

4M2M1M512K256K128K64k

La
te

nc
y

(M
ic

ro
se

co
nd

s)

Message Size (Bytes)

shared memory (CPU)
SCI (DMA)

MCI (DMA + core)
MCNI (core)

(a) Latency

 0

 1000

 2000

 3000

 4000

 5000

4M2M1M512K256K128K64k

B
an

dw
id

th
 (M

ill
io

nB
yt

es
/s

)

Message Size (Bytes)

shared memory (CPU)
SCI (DMA)

MCI (DMA + core)
MCNI (core)

(b) Bandwidth

Figure 5.3: MPI-level Latency and Bandwidth

needan additional thread to handlesomeof the operations, it is not appropriate to

useall the processorsfor MPI tasks, that is why we only show the performanceof

sharedmemory (SCNI) and SCI schemesfor 4 processes.From Figure 5.4 we can

seethat the improvement in microbenchmarkshave beentranslated into application

performance.The asynchronousmemory copy operations have improved IS perfor-

manceby up to 12%,and PSTSWM performanceby up to 7%. The improvement is

expectedbecauseboth IS and PSTSWM usea lot of large messages.The message

sizedistribution is shown in Table 5.3, which is pro�led in terms of number of mes-

sages.Further, we observe that although largemessagesdominate in PSTSWM, the

improvement seenis not signi�cant. This is becausePSTSWM is a computation

intensive benchmark, e.g. when running the medium problem sizeon 4 processes,

only 6.6%of the total time is spent in MPI. From Figure 5.4 and Table 5.3 we can

seethat the asynchronous memory operations proposedin this paper will bene�t

MPI applications which have bulk data transfer.

86

0

0.2

0.4

0.6

0.8

1

1.2

IS-A IS-B IS-C PSTSWM-
small

PSTSWM-
medium

Benchmarks

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

shared memory SCI (DMA) MCI (DMA+core) MCNI(core)

(a) 2 Processes

0

0.2

0.4

0.6

0.8

1

1.2

IS-A IS-B IS-C PSTSWM-
small

PSTSWM-
medium

Benchmarks

N
o

rm
a

li
ze

d
 E

x
e

c
u

ti
o

n
 T

im
e

shared memory SCI (DMA)

(b) 4 Processes

Figure 5.4: MPI Application Performance

Table 5.3: MessageSizeDistribution of MPI benchmarks
MessageSize 0 - 32KB 32KB - 1MB 1MB - 64MB
IS.A.2 68.1% 0 31.9%
IS.A.4 70.6% 0 29.4%
IS.B.2 68.1% 0 31.9%
IS.B.4 70.6% 0 29.4%
IS.C.2 68.1% 0 31.9%
IS.C.4 70.6% 0 29.4%
PSTSWM.small.2 4.0% 0.4% 95.6%
PSTSWM.small.4 3.6% 96.4% 0
PSTSWM.medium.2 4.0% 0 96.0%
PSTSWM.medium.4 3.0% 0.5% 96.5%

87

5.4 Summary

In this chapter, we have proposed three schemesto provide overlap of mem-

ory copy operation with computation. In the �rst scheme, SCI (Single-Corewith

I/O AT), we o�o ad the memory copy operations to the Intel on-chip DMA engines.

In the secondscheme,MCI (Multi-Core with I/O AT), we not only o�oad the mem-

ory copy operation, but alsoonload the startup overheadsassociated with the copy

engineto a dedicatedcore. For systemswithout any hardware copy enginesupport,

we have proposeda third scheme,MCNI (Multi-Core with No I/O AT) that onloads

the memory copy operation to a dedicate core. We have integrated the schemes

with MPI library, and done MPI level performanceevaluation. Our results show

that MPI latency and bandwidth canbe improvedsigni�cantly and the performance

of applicationssuch asNAS and PSTSWM can be improved by up to 12%and 7%,

respectively, comparedto the traditional implementations.

88

CHAPTER 6

EFFICIENT KERNEL-LEVEL AND USER-LEVEL
HYBRID APPR OA CH

Traditionally there have beenthree approachesfor MPI intra-node communica-

tion: network loopback, user-level sharedmemory, and kernel assisteddirect copy,

asdescribed in Section1.2. In order to obtain optimized MPI intra-node communi-

cation performance,it is important to have a comprehensive understandingof the

approachesand improve upon them. Sincenetwork loopback is not commonlyused

in modern MPI implementations due to its higher latency, in this chapter we only

considerthe sharedmemoryand kernel-assistedapproaches. To achieve high perfor-

mance,in this chapter we designand develop a set of experiments and optimization

schemes,and aim to answer the following questions:

� What are the performance characteristics of thesetwo approaches?

� What are the advantagesand limitations of thesetwo approaches?

� Can we designa hybrid schemethat takesadvantagesof both approaches?

� Can applications bene�t from the hybrid scheme?

We have carried out this study on an Intel quad-core(Clovertown) cluster and

usea three-stepmethodology. The rest of the chapter is organizedas the follows:

89

In Section6.1 we introduce LiMIC2, the kernel basedapproach usedin the study.

Wepresent the initial performancestudy usingmicro-benchmarks in Section6.2and

proposean e�cien t hybrid approach in Section6.3. Weevaluate the hybrid approach

using collective operationsand applications in Section6.4 and �nally summarizein

Section6.5.

6.1 In tro duction of LiMIC2

As described in Chapter 4, LiMIC is a Linux kernel module that directly copies

messagesfrom the user bu�er of one processto another. It improvesperformance

by eliminating the intermediate copy to sharedmemorybu�er. The �rst generation

of LiMIC [49] is a stand-alone library that provides MPI-lik e interfaces, such as

LiMIC sendand LiMIC recv. The secondgeneration,LiMIC2 [50], providesa set of

lightweight primitiv esthat enablesMPI libraries to do memory mapping and direct

copy, and relieson the MPI library for messagematching and queueing.Therefore,

comparedwith LiMIC, LiMIC2 provides lower overheadand implementation com-

plexity. In this chapter, we use MVAPICH-LiMIC2, which integrates MVAPICH

with LiMIC2 for intra-node communication.

MVAPICH-LiMIC2 usesa rendezvous protocol for communication. The sender

�rst sendsa requestto send messageto the receiver together with the sendbu�er

information. Upon receiving the request, the receiver maps the sendbu�er to the

kernel spaceand copy the messageto its receive bu�er. When the copy �nishes, the

receiver sendsa completemessageto the sender.

90

Inter�socketShared cache Intra�socket

core core core core core core core core

L2 Cache L2 CacheL2 CacheL2 Cache

Memory

Figure 6.1: Illustration of Intel Clovertown Processor

6.2 Initial Performance Evaluation and Analysis: Micro-
Benchmarks

In this section we study the performanceof shared-memory(MVAPICH) and

LiMIC2 (MVAPICH-LiMIC2) approachesusing micro-benchmarks.

Testb ed: We usean Intel Clovertown cluster. Each node is equipped with dual

quad-coreXeon processor,i.e. 8 coresper node, running at 2.0GHz. Each node

has 4GB main memory. The nodesare connectedby In�niBand DDR cards. The

nodesrun Linux 2.6.18. We conduct the micro-benchmark experiments on a single

node. As shown in Figure 6.1, there are three casesof intra-node communication:

shared-cache, intra-socket, and inter-socket.

6.2.1 Impact of Pro cessor Topology

As described above, there are three casesof intra-node communication on our

system: shared cache, intra-socket, and inter-socket. In this section we examine

the bandwidth of MVAPICH and MVAPICH-LiMIC2 in thesethree cases.We use

multi-pair benchmarks [15] instead of single-pair becauseusually all the coresare

activated whenapplicationsare running. On our systemthere are 8 coresper node,

91

 0

 2000

 4000

 6000

 8000

 10000

 12000

2M256K32K4K 512 64 8 1

B
a
n
d
w

id
th

 (
M

B
/s

)

Message size (bytes)

MVAPICH
MVAPICH-LiMIC2

(a) SharedCache

 0

 500

 1000

 1500

 2000

 2500

2M256K32K4K 512 64 8 1

B
a
n
d
w

id
th

 (
M

B
/s

)

Message size (bytes)

MVAPICH
MVAPICH-LiMIC2

(b) Intra-socket

 0

 500

 1000

 1500

 2000

 2500

2M256K32K4K 512 64 8 1

B
a
n
d
w

id
th

 (
M

B
/s

)

Message size (bytes)

MVAPICH
MVAPICH-LiMIC2

(c) Inter-socket

Figure 6.2: Multi-pair Bandwidth

sowe create4 pairs of communication. The benchmark reports the total bandwidth

for the 4 pairs.

The multi-pair bandwidth results are shown in Figure 6.2. In this benchmark,

each sender sends64 messagesto the receiver. Each messageis sent from and

received to a di�erent bu�er. The sendbu�ers are written at the beginning of the

benchmark. When the receiver getsall the messages,it sendsan acknowledgement.

We measurethe bandwidth achieved in this process.

From Figure 6.2(a), we seethat MVAPICH performs better than MVAPICH-

LiMIC2 up to 32KB for the sharedcache case. In this case,becausethe two cores

sharethe L2 cache, memory copiesonly involve intra-cache transactionsas long as

the data can �t in the cache. Therefore,although there is onemorecopy involved in

MVAPICH, the costof the extra copy is sosmall that it hardly impactsperformance.

On the other hand, MVAPICH-LiMIC2 usesoperations such as trapping to the

kerneland mappingmemory. This overheadis su�cien tly largeto negatethe bene�t

of having only one copy. Therefore,only for large messagesthat cannot totally �t

92

in the cache we can seethe bene�t with MVAPICH-LiMIC2. We note that the L2

cache on our systemis 4MB and sharedbetweentwo cores;essentially each corehas

about 2MB cache space.Sincein this experiment the window sizeis 64, for 32KB

messagesthe total bu�er is already larger than the available cache space(32KB x

64 = 2MB).

In comparison,if the coresdo not sharecache, then MVAPICH-LiMIC2 shows

bene�ts for a much larger range of messagesizes, starting from 2KB for intra-

socket and 1KB for inter-socket (seeFigures 6.2(b) and 6.2(c)). This is because

in thesetwo casesmemory copiesinvolve either cache-to-cache transaction or main

memory access,which is relatively expensive. Therefore,saving a copy can improve

performancesigni�cantly. We observe that with MVAPICH-LiMIC2, bandwidth is

improved by up to 70%and 98%for intra-socket and inter-socket, respectively.

6.2.2 Impact of Bu�er Reuse

Figure 6.2clearly shows that communication is moree�cien t if the bu�ers are in

the cache. Bu�er reuseis oneof the most commonlyusedstrategiesto improvecache

utilization. In this sectionwe examinethe impact of bu�er reuseon MVAPICH and

MVAPICH-LiMIC2. There is no bu�er reusein the benchmark usedin Section6.2.1

sinceeach messageis sent from and received to a di�erent bu�er. To simulate the

bu�er reusee�ect in applications, we modify the benchmark to run for multiple

iterations so that starting from the seconditeration the bu�ers are reused. In the

beginningof each iteration we rewrite the sendbu�ers with new content.

93

The intra-socket results are shown in Figure 6.3. The sharedcache and inter-

socket results follow the sametrend. From Figure 6.3 we can seethat the perfor-

manceof both MVAPICH and MVAPICH-LiMIC2 improveswith bu�er reuse.This

is mainly due to cache e�ect: starting from the seconditeration, the bu�ers may

already residein the cache. For messageslarger than 32KB, bu�er reusedoesnot

a�ect the performanceof either MVAPICH or MVAPICH-LiMIC2 becausethe total

bu�er sizeis already larger than the cache size(32KB x 64 = 2MB).

Comparing the performanceof MVAPICH and MVAPICH-LiMIC2 in the bu�er

reusesituation, we seethat the bene�t of using MVAPICH-LiMIC2 is larger than

that in the no bu�er-reusecasefor mediummessages.The reasonis that MVAPICH-

LiMIC2 doesnot usethe intermediate bu�er for data transfer, and thus has better

cache utilization. We analyzecache utilization in detail in Section6.2.3. From the

results shown in this section we concludethat applications that have more bu�er

reusepotentially bene�t more from MVAPICH-LiMIC2.

A similar trend can be observed with multi-pair latency test too. The results

are not shown hereto avoid redundancy.

6.2.3 L2 Cache Utilization

In this section,we analyzethe cache e�ect in the bu�er reuseexperiment.

We usethe samebenchmark as in Section6.2.2,and useOPro�le [19] to pro�le

the L2 cache missesduring the experiment. We show the number of L2 cache misses

as well as the improvement in cache utilization achieved by MVAPICH-LiMIC2

over MVAPICH in Figure 6.4. We start from 1KB sinceMVAPICH-LiMIC2 shows

better performancestarting from 1KB in Figure 6.3. As expected,we seethat cache

94

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

2M256K32K4K 512 64 8 1

B
an

dw
id

th
 (

M
B

/s
)

Message size (bytes)

MVAPICH (no buffer reuse)
MVAPICH (with buffer reuse)

MVAPICH-LiMIC2 (no buffer reuse)
MVAPICH-LiMIC2 (with buffer reuse)

Figure 6.3: Impact of Bu�er Reuse(Intra-socket)

missesincreasewith increasein messagesize. For the whole rangeof messagesizes,

MVAPICH-LiMIC2 has fewer cache missesthan MVAPICH, showing a constant

improvement of about 7% when the messageis larger than 16KB. This is because

MVAPICH-LiMIC2 doesnot involvean intermediatebu�er likeMVAPICH. Another

interestingobservation is that the improvement percentagepresents almost the same

trend asthe performancecomparisonin Figure6.3. This further explainsthe bene�ts

obtained by MVAPICH-LiMIC2 and demonstratesour conclusionin Section6.2.2.

6.2.4 Impact of Pro cess Skew

Processskew can potentially degradeapplication performance. In this section,

we want to examinethe abilit y of MVAPICH and MVAPICH-LiMIC2 to overcome

processskew e�ect.

As described in Section 6.1, MVAPICH-LiMIC2 copiesmessagesdirectly from

the sender'suserbu�er to the receiver's userbu�er with the help of the OS kernel.

Therefore,a sendoperation cannot completeuntil the matching receive completes.

95

 0

 10000

 20000

 30000

 40000

 50000

 60000

1K 4K 16K 64K 256K 1M 4M
-10

-5

 0

 5

 10

 15

 20

N
um

be
r

of
 L

2
C

ac
he

 M
is

se
s

Im
pr

ov
em

en
t (

%
)

Message Size (Byte)

MVAPICH
MVAPICH-LIMIC2

Improvement

Figure 6.4: L2 Cache Misses

This meansthat the MVAPICH-LiMIC2 performancemight potentially be in
u-

encedby processskew. On the other hand, MVAPICH usesan intermediate bu�er

and eagerprotocol for small and medium messages.This meansthat for small and

medium messages,a sendoperation simply involves copying messageto the inter-

mediate bu�er without interaction with the receive process.Therefore,MVAPICH

is potentially more skew-tolerant.

We have designeda benchmark that simulates the processskew e�ect. Fig-

ure 6.5 illustrates the algorithm. There are two processesinvolved, a producer and

a consumer.The producer computesfor c1 amount of time, and then sendsthe in-

termediateresult to the consumerusingthe non-blocking MPI Isend. The consumer

receives this messageusing the blocking MPI Recv, and doesfurther processingon

it for c2 amount of time. This processrepeats for window size iterations, and then

the producer calls MPI Waital l to make sure all the MPI Isend's have beencom-

pleted. This kind of scenariois commonlyusedin many applications. We set c2 to

be much larger than c1 sothat the two MPI processesare skewed. We measurethe

96

c2

MPI_Recv

window_size

window_size

MPI_Waitall

Producer Consumer

c1

comp

comp

MPI_Isend
c3

times

times

Figure 6.5: ProcessSkew Benchmark

total amount of time that the producer needsto complete this process,shown as

c3 in Figure 6.5. This is essentially the latency on the producer side before it can

continue with other computation work.

Basedon the characteristicsof MVAPICH and MVAPICH-LiMIC2, theoretically

we expect them to perform as follows:

c3(MVAPICH) = (c1 + t(MPI Isend)) * window size+ t(MPI Waital l)

c3(MVAPICH-LiMIC2) = (t(MPI Recv) + c2) * window size+ t(MPI Waital l)

Sincec2 is much larger than c1, we can expect c3(MVAPICH-LiMIC2) to be

much larger than c3(MVAPICH) .

We show the experimental results in Figure 6.6. In this experiment, we set the

messagesize as 16KB, c1=1us and window size=64, and record the producer la-

tency (c3) with di�erent consumercomputation time (c2). From Figure 6.6, we

can seethat the experimental result conforms to the theoretical expectation that

c3(MVAPICH) is much lower than c3(MVAPICH-LiMIC2) . Further, c3(MVAPICH)

does not increaseas c2 increases,indicating that MVAPICH is more resilient to

97

 0

 2

 4

 6

 8

 10

 12

 14

 16

 340 310 280 250 220 190 160 130 100

P
ro

du
ce

r
T

ot
al

 L
at

en
cy

 c
3

(m
s)

Consumer Computation Time c2 (us)

MVAPICH
MVAPICH-LiMIC2

Figure 6.6: Impact of ProcessSkew

processskew. On the other hand, c3(MVAPICH-LiMIC2) grows linearly as c2

increases,which could be a potential limitation of MVAPICH-LiMIC2. We will de-

scribe optimizations to best combine sharedmemory and LiMIC2 in Section6.3.2

to alleviate processskew e�ect.

6.3 Designing the Hybrid Approac h

From the micro-benchmark results and analysis,we have seenthat MVAPICH

and MVAPICH-LiMIC2 both have advantagesand limitations in di�erent situations

and for di�erent messagesizes.In this section,weproposetwo optimization schemes,

topology-aware thresholdsand skew-aware thresholds, that e�cien tly combine the

sharedmemory approach in MVAPICH with LiMIC2.

6.3.1 Topology Aw are Thresholds

We need to carefully decide the threshold to switch from shared memory to

LiMIC2 in order to e�cien tly combine these two approaches. From the results

98

shown in Section6.2.1,we know that the performancecharacteristicsof MVAPICH

and MVAPICH-LiMIC2 are di�erent for di�erent intra-node communication cases

(shared cache, intra-socket, and inter-socket). Therefore, a single threshold may

not su�ce for all the cases.In this section,we illustrate our designof the topology

aware thresholds.

The latest Linux kernels have the abilit y to detect the topology of multi-core

processors.The information is exported in \sysfs" �le system[70]. The following

�elds exported under /sys/devices/system/cpu/cpuX/topology/ provide the topol-

ogy information that we need(X in cpuX is the CPU number):

� physical packageid: Physical socket id of the logical CPU

� core id: Core id of the logical CPU on the socket

By parsingthis information, every processhasthe knowledgeabout the topology.

If the cachearchitecture is alsoknown (Figure 6.1), for a givenconnection,a process

knows which caseit belongsto - sharedcache, intra-socket, or inter-socket. It is

thus able to usedi�erent thresholdsfor di�erent cases.Of course,to make surethat

the processdoesnot migrate to other processors,we use the CPU a�nity feature

provided by MVAPICH [15].

Basedon the results in Figure 6.2, we use32KB as the threshold for the shared

cache case,2KB for intra-socket, and 1KB for inter-socket. After we apply these

thresholds,we have the optimized results for all the cases.The resultsare presented

in Figure 6.7.

99

The topology detection method discussedin this section can be usedon other

Linux basedplatforms too, such asAMD multi-core systems.Also, di�erent kinds of

optimizations can be applied basedon topology information and platform features.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

2M256K32K4K 512 64 8 1

B
a
n
d
w

id
th

 (
M

B
/s

)

Message size (bytes)

MVAPICH
MVAPICH-LiMIC2

(a) SharedCache

 0

 2000

 4000

 6000

 8000

 10000

 12000

2M256K32K4K 512 64 8 1

B
a
n
d
w

id
th

 (
M

B
/s

)

Message size (bytes)

MVAPICH
MVAPICH-LiMIC2

(b) Intra-socket

 0

 2000

 4000

 6000

 8000

 10000

 12000

2M256K32K4K 512 64 8 1

B
a
n
d
w

id
th

 (
M

B
/s

)

Message size (bytes)

MVAPICH
MVAPICH-LiMIC2

(c) Inter-socket

Figure 6.7: Multi-pair Bandwidth with Topology Aware Thresholds

6.3.2 Skew Aw are Thresholds

We have seenfrom Section 6.2.4 that the shared memory approach used in

MVAPICH is more resilient to processskew for medium messages.On the other

hand, MVAPICH-LiMIC2 provides higher performancefor medium messages.To

take advantagesof both methods, we have designedan adaptive schemethat uses

sharedmemory when there is processskew, and LiMIC2 otherwise.

We detect processskew by keepingtrack of the length of the unexpected queueat

the receiver side. Messagesthat are received beforethe matching receive operations

have beenposted are called unexpected messages. Such requestsare queuedin an

unexpectedqueue.When the matching receive is posted,the corresponding request

100

 0

 2

 4

 6

 8

 10

 12

 14

 16

 340 310 280 250 220 190 160 130 100

P
ro

du
ce

r
T

ot
al

 L
at

en
cy

 c
3

(m
s)

Consumer Computaton Time c2 (us)

MVAPICH
MVAPICH-LiMIC2

MVAPICH-LiMIC2 (skew-aware)

Figure 6.8: Impact of Skew Aware Thresholds

is removed from the unexpected queue. Therefore, the length of the unexpected

queuere
ects the extent of processskew. If the length is larger than the threshold

for a long period of time, then the receiver determinesthat processskew has oc-

curred, and sendsa control messageto the senderto indicate the situation. Upon

receiving this message,the senderincreasesthe threshold to switch to LiMIC2 for

this connectionso that medium messageswill go through sharedmemory to allevi-

ate the processskew e�ect. Later if the receiver detects processskew has gone, it

can sendanother control messageso that the senderwill changeback the threshold

to useLiMIC2 for higher performance.

We show the results of the skew-aware thresholds in Figure 6.8. We used the

samebenchmark with the sameset of parametersasdescribed in Section6.2.4. We

seethat the sendingprocesscanquickly notice the processskew situation and adapt

the threshold to it. As a result, the skew-aware MVAPICH-LiMIC2 achievesmuch

lower producer latency, closeto that of MVAPICH.

101

6.4 Performance Evaluation with Collectiv es and Applica-
tions

In this sectionwe study the impact of the hybrid approach on MPI collective op-

erations and applications. We refer to the hybrid approach as MVAPICH-LiMIC2-

opt becauseit is essentially an optimized version of MVAPICH-LiMIC2. We use

Intel MPI Benchmark (IMB) [8] for collectives, and NAS [38], PSTSWM [20] and

HPL from HPCC benchmark suite [47] for applications. To better understand the

application behaviors and relationship with MPI implementations wehave alsodone

pro�ling to the applications.

6.4.1 Impact on Collectiv es

We show the results of three typical collective operations,MPI Alltoall,

MPI Allgather, and MPI Allreduce, in Figure 6.9. MPI collective operations can

be implemented either on top of point-to-p oint communication or directly in the

messagepassinglayer using optimized algorithms. Currently MVAPICH-LiMIC2-

opt usespoint-to-p oint basedcollectivesand MVAPICH usesoptimized algorithms

for MPI Allreduce for messagesup to 32KB [58]. From the �gures we seethat

MPI collective operationscanbene�t from usingMVAPICH-LiMIC2-opt, especially

for large messages.The performanceimproves by up to 60%, 28%, and 21% for

MPI Alltoall, MPI Allgather, and MPI Allreduce, respectively. We note that for

messagesbetween 1KB and 8KB, MVAPICH performs better for MPI Allreduce

due to the use of the optimized algorithms. This indicates that the performance

of LiMIC2 basedcollectives can be further optimized by using specially designed

algorithms.

102

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

4M512K64K8K1K
-50

-25

 0

 25

 50

 75

 100

L
a
te

n
cy

 (
m

ic
ro

se
c)

Im
p
ro

ve
m

e
n
t
(%

)

Message size (bytes)

MVAPICH
MVAPICH-LiMIC2-opt

Improvement

(a) MPI Alltoall

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

4M512K64K8K1K
-50

-25

 0

 25

 50

 75

 100

L
a
te

n
cy

 (
m

ic
ro

se
c)

Im
p
ro

ve
m

e
n
t
(%

)

Message size (bytes)

MVAPICH
MVAPICH-LiMIC2-opt

Improvement

(b) MPI Allgather

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

4M512K64K8K1K
-50

-25

 0

 25

 50

 75

 100

L
a
te

n
cy

 (
m

ic
ro

se
c)

Im
p
ro

ve
m

e
n
t
(%

)

Message size (bytes)

MVAPICH
MVAPICH-LiMIC2-opt

Improvement

(c) MPI Allreduce

Figure 6.9: Collective Results (Single Node 1x8)

6.4.2 Impact on Applications

In this section we evaluate the impact of the hybrid approach on application

performance. The single-node results are shown in Figures 6.10 and 6.11 (Class

B for NAS and small problem sizefor PSTSWM). The corresponding messagesize

distribution is shown in Table6.1. The cluster-moderesultsareshown in Figure 6.12

(ClassC for NAS and medium problem sizefor PSTSWM), in which we use8 nodes

and 8 processesper node (8x8).

From Figure 6.10(a) we seethat MVAPICH-LiMIC2-opt can improve the per-

formanceof FT, PSTSWM, and IS signi�cantly. The improvement is 8% for FT,

14% for PSTSWM, and 17% for IS, respectively. If we look at Figure 6.11(a) we

�nd that MVAPICH-LiMIC2-opt hasbetter cache utilization for thesebenchmarks.

Most messagesusedin thesebenchmarksarelargeasshown in Table6.1. This means

that applications that uselarge messageswill potentially bene�t from MVAPICH-

LiMIC2-opt.

103

 0

 20

 40

 60

 80

 100

ISPSTSWMFTMGCG
 0

 5

 10

 15

 20

 25

E
xe

cu
tio

n
 t
im

e
 (

se
c)

Im
p
ro

ve
m

e
n
t
(%

)

Benchmark

MVAPICH
MVAPICH-LiMIC2-opt

Improvement

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

SPBTHPLLU
 0

 0.5

 1

 1.5

 2

E
xe

cu
tio

n
 t
im

e
 (

se
c)

Im
p
ro

ve
m

e
n
t
(%

)

Benchmark

MVAPICH
MVAPICH-LiMIC2-opt

Improvement

(b)

Figure 6.10: Application Performance(Single Node 1x8)

The improvement is under5%for other benchmarksmostly becausethesebench-

marks do not usemany large messages.For BT and SP, although most messages

are large, sincethe fraction of time spent on communication is not signi�cant we do

not observe large performanceimprovement.

From Figure 6.12we seethat in cluster mode wherethere is a mix of intra-node

and inter-node communication, applicationscanstill bene�t from usingMVAPICH-

LiMIC2-opt, e.g. PSTSWM performance improves by 6%, which suggeststhat

MVAPICH-LiMIC2-opt is a promising approach for cluster computing.

6.5 Summary

In this chapter, we use a three-stepmethodology to designa hybrid approach

for MPI intra-node communication using two popular approaches,sharedmemory

(MVAPICH) and OS kernel assisteddirect copy (MVAPICH-LiMIC2). The study

104

 0

 100000

 200000

 300000

 400000

 500000

 600000

CG MG FT PSTSWM IS
 0

 2

 4

 6

 8

 10

N
u
m

b
e
r

o
f
L
2
 C

a
ch

e
 M

is
se

s

Im
p
ro

ve
m

e
n
t
(%

)

Benchmark

MVAPICH
MVAPICH-LIMIC2-opt

Improvement

(a)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

LU HPL BT SP
 0

 2

 4

 6

 8

 10

N
u
m

b
e
r

o
f
L
2
 C

a
ch

e
 M

is
se

s

Im
p
ro

ve
m

e
n
t
(%

)

Benchmark

MVAPICH
MVAPICH-LIMIC2-opt

Improvement

(b)

Figure 6.11: L2 Cache Missesin Applications (Single Node 1x8)

has beendone on an Intel quad-core(Clovertown) cluster. We have evaluated the

impacts of processortopology, communication bu�er reuse,and processskew e�ects

on these two approaches, and pro�led the L2 cache utilization. From the results

we �nd that MVAPICH-LiMIC2 in generalprovidesbetter performancethan MVA-

PICH for medium and large messagesdue to fewer number of copiesand e�cien t

cache utilization, but the relative performancevariesin di�erent situations. For ex-

ample, depending on the physical topology of the sendingand receivingprocesses,

the thresholdsto switch from sharedmemory to LiMIC2 can be di�erent. In addi-

tion, if the application has higher bu�er reuserate, it can potentially bene�t more

from MVAPICH-LiMIC2. We alsoobserve that MVAPICH-LiMIC2 hasa potential

limitation that it is not as skew-tolerant as MVAPICH. Basedon the results and

the analysis,we have proposedtopology-aware and skew-aware thresholdsto build

an e�cien t hybrid approach. We have evaluated the hybrid approach using MPI

105

Table 6.1: MessageSizeDistribution (Single Node 1x8)

Apps < 1K 1K-32K 32K-1M > 1M
CG 62% 0 38% 0
MG 52% 28% 20% 0
FT 17% 0 0 83%

PSTSWM 2% 1% 97% 0
IS 44% 15% 0 41%
LU 30% 69% 1% 0

HPL 58% 37% 3% 2%
BT 1% 0% 99% 0
SP 1% 0% 99% 0

collective and application level benchmarks. We observe that the hybrid approach

can improve the performanceof MPI Alltoall, MPI Allgather, and MPI Allreduce

by up to 60%,28%,and 21%,respectively. And for applications, it can improve the

performanceof FT, PSTSWM, and IS by 8%, 14%,and 17%,respectively.

106

 0

 20

 40

 60

 80

 100

 120

 140

ISPSTSWMFTMGCG
 0

 2

 4

 6

 8

 10

Ex
ec

ut
io

n
tim

e
(s

ec
)

Im
pr

ov
em

en
t (

%
)

Benchmark

MVAPICH
MVAPICH-LiMIC2-opt

Improvement

Figure 6.12: Application Performanceon 8 nodes(8x8)

107

CHAPTER 7

ANAL YSIS OF DESIGN CONSIDERA TIONS FOR
MUL TI-CHANNEL MPI

To optimize communication performance,many MPI implementations such as

MVAPICH [15] provide multiple communication channels. Thesechannelsmay be

usedeither for intra- or inter-nodecommunication. E�cien t polling of thesecommu-

nication channelsfor discovering new messagesis often consideredto be oneof the

key designissuesin implementing MPI over any network layer. In addition, basedon

characteristicsof each channel, we can utilize several channelsfor intra-node com-

munication. In order to e�cien tly designand implement thesechannel interfaces,

we needa centralized policy. Sincecommunication patterns as well as the needfor

overlap of communication and computation vary widely over di�erent applications,

it becomeshard to designa generalpurposepolicy. We needto carefully consider

the overheadsand bene�ts o�ered by each channel.

In this chapter, we try to bring forward important factors that shouldbe consid-

eredto e�cien tly utilize several MPI channelsthrough in-depth measurements and

analysis. The rest of this chapter is organizedasthe follows: In Section7.1,westudy

the polling schemesamongmultiple channelsand their overheads.Then, we explore

methodologiesto decide the thresholds between multiple channels in Section 7.2.

108

We considerlatency, bandwidth, and CPU resourcerequirement of each channel to

decidethe thresholds. We present our performanceevaluation in Section 7.3 and

�nally summarizein Section7.4.

7.1 Channel polling

In this sectionwe discussabout channel polling overheadand schemes.

7.1.1 Channel polling overheads

Di�eren t channelshave di�erent polling overheads. In this section we analyze

the polling overheadfor each channel.

Net work Channel Overhead: The network channel consistsof RDMA and

Send/Receive channels. SinceRDMA is used for the RDMA channel, there is no

software involvement at the receiver side. Therefore, the only way to check for in-

coming messagesis by polling memory locations. The overheadinvolved in polling

memory locations is around 0.03� s per connection. The overall polling overhead

increasesas the number of RDMA connectionsincreases.The other network com-

munication channelusesIn�niBand send/receive primitiv es,which generatemessage

completion events. The receiver polls the completion queueto check new incoming

messages.The overheadassociated with polling the completion queueis constant

regardlessof the number of processesbecausethe samecompletion queueis shared

amongall connections.However, it takesaround 0.3� s to poll an empty completion

queue,which is relatively high. In this section, we considerthe polling overheads

for RDMA and send/receive channelsas the network channel polling overhead.

109

Shared Memory Channel Overhead: The sharedmemory channel usesa

FIFO queuefor each sharedmemory connection. In addition, the channel main-

tains a counter which indicateswhether a new messageis available for this connec-

tion. The polling overheadof this channel is around 0.06� s and increasesas the

number of processesrunning on the samenode increases. It is to be noted that

sincemost SMP nodesin clustersare 2-way to 16-way, this polling overheadis not

signi�cant. To comparesharedmemory channel polling overheadwith the network

channeloverhead,we measuredthem on varioussystemsizesasshown in Figure 7.1.

We can observe that network channel polling overheadincreasesfaster than shared

memorychannelasthe systemsizeincreases.It is becausethe number of inter-node

connectionsper processincreasesin proportion to (P � N), whereP is the number

of processorson one node and N is the number of nodes. On the other hand, the

number of connectionsfor intra-nodecommunication increasesin proportion to only

P. It is to be noted that most of clustershave a much larger N value than P.

���������	
��

�

�

���

���

���

���

���

���������	
� ���������	
� ���������	
� ���������	
�

��������
����

�
��

���
��

�
	

��

��
��

��
��

�

��

��
��

�
��������
��
� ��
�
���
��� ���
��
�

Figure 7.1: Polling overheadof network channel and sharedmemory channel

110

Kernel Mo dule Channel Overhead: The kernel module channel [48] copies

messagesdirectly from the senderbu�er to the receiver bu�er. However, polling of

the kernel module channel is expensive asit requiresa context-switch to the kernel-

space,which takesaround 3� s. We can considerfollowing two ways to poll on the

kernel module channel:

� Busy polling of the kernel module in the blocking MPI send,receive, or wait

functions. In this case,we poll the kernelmodule channelexplicitly only when

a messageis expected to arrive from that channel.

� The kernel module can provide somesignaling bit to indicate the arrival of

newmessagesto the MPI layer. Although it canreducethe number of context

switches,still we needto trap into the kernel to match MPI headers. In the

worst case,if someunexpectedmessagearrivesin the kernel, the MPI layer still

needsto poll that messagebecausethe signal bit doesnot have information

about the MPI header.

In order to avoid multiple context switchesand overheadto poll the kernel module,

we placethe polling of the kernelmodule outsidethe main MPI progressengine.So,

if any messagesare not expectedfrom the kernelmodule channel, then that channel

is not polled at all. All unexpected messagesarriving through the kernel module

channel are kept queuedby the kernel module. The messagesare copiedwhen the

receiver posts the matching receive.

7.1.2 Channel polling schemes

As described in section 7.1.1 there are di�erent costs associated with polling

of each channel. In this section we designdi�erent polling schemesto reducethe

111

overheadassociated with polling network and sharedmemory channelsand enable

faster messagediscovery. As we have described in section7.1.1,polling of the kernel

module is placed outside the main progressengine. So the kernel module is not

polled if no messagesare expected from it. Therefore, we exclude kernel module

from the study of thesepolling schemes.

Static channel polling scheme: Static polling scheme decidesthe polling

policy at the start of the MPI application. This schemecanassigndi�erent priorities

(or weights) to di�erent channels.The intuitiv e ideabehind this schemeis that some

channelsmay be usedmore frequently or faster than others. To decidethe priorit y,

we needto considerthe following factors:

� Polling Overhead: If a channel has a signi�cantly lesspolling overheadthan

others, we can considerto poll this channel more frequently. In this way we

can reducethe messagediscovery time for the channelwithout adding a large

overheadto poll other channels.

� MessageLatency: If a channel has lower messagepassinglatency and higher

bandwidth than others, it may receive relatively more messagesin a short

period of time. Accordingly, we can assignhigher priorit y to this channel.

In this section,we considerboth factors. As we have discussedin section7.1.1, the

overheadof polling the sharedmemorychannel is the least. Also we notice that this

channel has the lower latency than the network channel as shown in Section7.3.2.

Therefore,we give most priorit y to the sharedmemory channel. In this scheme,we

decidethe frequencyof polling betweenchannelsbasedon the priorit y ratio assigned

statically at the application startup phase.

112

Dynamic channel polling scheme: Dynamic polling schemescan change

polling priorit y over the courseof the executionof the MPI application. There are

various factors to be consideredwhile designingsuch a dynamic scheme:

� UpdateRate: This factor determineshow often the priorit y ratios areupdated.

A very high update rate would imply increasedoverheadsfor short messages,

whereasa low update rate would miss smaller bursts of messagesfrom other

channels.

� MessageHistory: This factor determines the number of messagesrecorded

for computing the new priorit y ratio. The more messagesare considered,

the slower the priorit y ratio will change. This might miss smaller bursts of

messages,whereaswhen lower number of messagesare considereda lot of

uctuation may occur even with small bursts of messagesfrom a channel.

In this section,we usethe following schemeto compute priorit y ratio: Supposein

the last h messagesreceived, m of which are from sharedmemory channel, and n

of which are from network channel, then prior ity r atio = m=n + 1: Whenever h

messagesare received, we update the priorit y ratio, and reset h to zero. So the

messagehistory length here is the samewith update rate. Also, for the reasons

we stated in static polling scheme section, the polling priorit y of sharedmemory

channel is always higher than or equal to that of network channel.

7.2 Channel thresholds

Network, sharedmemory, and kernelmodule can all be usedfor intra-node com-

munication. Thesechannelshave di�erent performancecharacteristics. Somechan-

nelshave low startup latency and somechannelshave high bandwidth. In addition,

113

somechannelsdo not require the involvement of host CPU. In this section,we study

on selectingappropriate thresholdsfor e�cien t intra-node messagepassing.

7.2.1 Comm unication startup and message transmission
overheads

In the network channel, messagesfor intra-node communication are DMAed

into the network interface card and looped back to the host memory. Therefore,

there exist two DMA operations. Although I/O busesare getting faster, the DMA

overhead is still high. Further, the DMA startup overhead is as high as several

microseconds.

We note that the sharedmemory channel involves the minimal setup overhead

(lessthan 1.2� s) for every messageexchange. However, there are at least two copies

involved in the messageexchange. This approach might tie down the CPU with

memory copy time. In addition, as the messagesizegrows, the performanceof the

copy operation becomeseven worsebecausevigorouscopy-in and copy-out destroy

the cache contents.

The kernel module channel involvesonly one copy and is able to maximize the

cachee�ect. However, thereareother overheadssuch astrap, memorymapping,and

locking of data structures. The trap and locking overheadsare involved for every

messagepassingand larger than 3� s. The memory mapping overheadincreasesas

the number of pagesfor the userbu�er increases,which takesaround0.7� sper page.

In addition, although the number of copy operations is reduced,the CPU resource

is still required to perform the copy operation.

114

7.2.2 Threshold decision metho dology

To decidethe thresholds,we considerseveral important factors, such as latency,

bandwidth, and CPU utilization, which can largely a�ect application performance.

However, di�erent thresholds might be required by di�erent applications because

each of them hasdi�erent communication characteristicsand programmingassump-

tions. In this section,we discusstwo di�erent approachesfor choosingappropriate

thresholds.

Microb enchmark based decision: In general, it is very di�cult to decide

the threshold of communication channel for all applications. However, it is widely

acceptedthat such decisionscanbe basedon latency and bandwidth measurements.

Thereforewecanlook at MPI microbenchmarksto seethe basicperformanceof each

channel.

CPU utilization based decision: In this approach we measurethe over-

lapping of computation and communication. Although somechannelsmight have

higher messagelatency, they may e�ectively overlap computation and communica-

tion. This is bene�cial for applications that are e�cien tly programmedto overlap

them. Sincemany MPI implementations usethe rendezvousprotocol for large mes-

sagesand make a communication progresswithin MPI calls,applicationsareusually

required to call an MPI function such as MPI Iprobe to make an e�cien t overlap

between computation and communication. However, this is quite application de-

pendent. For applications which mostly use blocking operations, simply selecting

the channel with lowest latency would be enough.

115

7.3 Performance Evaluation

In this sectionwe present our results on designconsiderationsfor multi-channel

MPI, speci�cally results on polling schemesand threshold determination.

7.3.1 Evaluation of Polling Schemes

Weconductedexperiments on an 8-nodeclusterwith the following con�guration:

Super Micro SUPER X5DL8-GG nodeswith dual Intel Xeon 3.0 GHz processors,

512 KB L2 cache, 2 GB memory, PCI-X 64-bit 133 MHz bus. The Linux kernel

versionusedwas 2.4.22smpfrom kernel.org. All nodesare equipped with Mellanox

In�niHost MT23108 HCAs and installed the Mellanox In�niBand stack [60]. The

versionof VAPI was3.2and �rm ware version3.2. The nodesare connectedthrough

Mellanox MTS 240024-port switch.

One crucial factor to determine for static polling schemeis \how much priority

shouldbe given to the shared memory channel?" Obviously, if we give morepriorit y

to sharedmemorychannel, then the sharedmemory latency will reduce.But at the

sametime the latency of messagescoming over the network will also increase.

To �nd out the optimal priorit y ratio, we conducted the standard ping-pong

latency test with di�erent priorit y ratios. Figure 2 shows variation of ping-pong

latency with various priorit y ratios for 4B and 2KB messagesizes.We can observe

from these �gures that if we give shared memory channel a priorit y ratio of 50,

then we can get a reasonablybalancedimprovement of intra-node latency - 12%

improvement for 4B messageand 9% improvement for 2KB message- without hurt-

ing network latency. For 4B message,our experiments indicate that we can achieve

up to 37%improvement in intra-node latency using the static polling priorit y 1000;

116

but it hurts the network channel latency signi�cantly. As messagesize increases,

the bene�t of polling scheme reducesbecausethe messagetransmission overhead

becomeslarger than the polling overhead.

���������	
����
��������
���	���

�
���

�
���

�
���

�
���

� �
�

� �
�

� �
�

� �
� �

� �
� �

� �
� �

�
� �

� �
�

� �
� �

� �

��	
��
����
�
�
��
���
�	���

��
�

��
��

��
�	

�
�	

��

�����	
�	����	 ���
�	����	

����������	
�����
���
��	�������

�

�

��

��

��

��

���

� �

�

� �

�

�

���

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

������	������	��
��
��	���
�

��
�

��
��

��
�	

�
�	

��

������	������� �� 	�������

Figure 7.2: Latency of static polling scheme

In order to evaluate the dynamic polling schemewe needto devisea new MPI

microbenchmark that appropriately capturesthe messagediscovery time at the MPI

layer. There are three processesin the benchmark. Two processesare on the same

node, whereasone processis on a separatenode. This processsendsmessages

over the network, whereasthe processon the samenode sendsmessagesexclusively

through sharedmemorychannel. On the receipt of each messagethe \r oot" process

replies with an ACK. The processsendingthe \burst" number of messagesto the

117

Shared Memory PeerRoot

T

Network Peer

Node B Node A

Burst
Size

Figure 7.3: Messagediscovery microbenchmark

root is alternately selectedbetweenthe network peerand the sharedmemory peer.

This test capturesthe messagediscovery time by the root processbeforeit can send

an ACK to the peer process.Figure 7.3 illustrates this microbenchmark wherewe

are trying to measuretime T.

����������	
��	��
����
����	�������������

�
���
���
���
���

�
���
���

� � � � � � � � � � � � �
�

� �
�

� �
�

� �
� �

�
 ��������

�
��

��
��

��
�	

�
�	

�
�

�!��� �"����# $��%��&

����������	
��
��
����
����
�������������

�

���

�

���

�

� � � � � � � � � � � � �
�

� �
�

� �
�

� �
� �

���	
��
	
�

�
��

��
��

��
�	

�
�	

�
�

������������� ������

Figure 7.4: Messagediscovery time of dynamic polling scheme

Figure 4 shows the performanceresults of this microbenchmark with the burst

sizesof 100 and 200 for 4B message.We observe that with the increaseof update

rate, the messagediscovery time actually decreases.The update rate of 8 or 10 is

118

enoughnot to introduce too much overheadand also sustain fairly small burst of

messages.Our experiments indicate that we can achieve up to 45% improvement

rate of messagediscovery time with burst sizeof 200. However, when the update

rate becomeshigher, the overheadcausesthe discovery time to rise. We alsoobserve

that when the burst size is equal to the update rate, the discovery time increases

signi�cantly due to continuouswrong predictions.

7.3.2 Evaluation of Thresholds

In this section,we run the above mentioned decisionapproacheson the cluster

described in section7.3.1. We usethe standard ping-pong latency and bandwidth

to evaluate the threshold points for the three channels.

Figure 5 shows the experimental results of the latency and bandwidth tests.

We �nd that for messagessmaller than 4KB, it is bene�cial to usesharedmemory

channel. This is becauseshared memory channel avoids a high communication

startup time such askernel trap and DMA initialization. For messagesgreater than

4KB, it is useful to have the kernel module channel. This is mainly becausethe

number of copieshasbeenreducedto one. Also, we canobserve that the bandwidth

for the kernel module channel drops signi�cantly from 256KB messagesize. It is

becausethe cache size on the node used is 512KB. Both the senderand receiver

bu�ers and someadditional data structures cannot �t into the cache beyond this

messagesize. However, the bandwidth o�ered by the kernel module channel is still

greater than others.

To analyzedi�erent channels' capability of overlapping computation and com-

munication, we conducted experiments as follows: Two processesrunning on the

119

samenode call MPI Isend and MPI Irecv. Then they executea computation loop

for a given computation time (i.e., values in x-axis of Figure 7.6). Within the

computation loop, processescall MPI Iprobe to make a communication progress

for every 100� s. After the computation time, they call MPI Waitall and calculate

(Total Time=Computation Time), where Total Time includes both computation

and communication time. A value closer to 1 meansmore overlapping between

computation and communication.

Figure 7.6 shows experimental results for 4B and 128KB messages,respectively.

For small messages,the communication startup time is the dominant overheadwhile

messagetransmissiontime is very small. Sincethe sharedmemory channel has the

lowestcommunication startup time, this channelshowscloservaluesto 1 than others

with small computation time. It is to be noted that the network channel shows

better overlapping than the kernel module channel for small messages.Although

the network channel has a larger startup time than the kernel module, the DMA

initialization time, which is the dominant startup overheadfor the network channel,

does not require CPU resourceat all. Thus most of startup time of the network

channelcanbeoverlappedwith computation, which resultsin the better overlapping

than the kernel module channel. Sincecommunication overheadbecomesrelatively

smalleras the computation time grows, there is no di�erence amongthree channels

with large computation time values.

For large messages,we observe that the network channel can make the compu-

tation and communication fully overlap. It is becausethe network channeldoesnot

needany CPU resourceto move intra-node messages.However, the sharedmem-

ory and kernel module channelsrequire the CPU to copy messages.Therefore, it

120

is di�cult to expect them to achieve a good overlapping. Sincethe kernel module

channelneedsonly onecopy, this channel shows better overlapping than the shared

memory channel. As the computation time increases,all three channelsagain show

the sameoverlapping capability. It is becausethe computation time is too large

comparing with communication time. Overall, to maximize the computation and

communication overlapping, the sharedmemoryand network channelsarebene�cial

for small and large messages,respectively.

 0

 5

 10

 15

 20

 25

 30

 4 8 16 32 64 128 256 512 1K 2K 4K 8K

L
a
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

Message Size

Latency -- Small Messages

Shared Memory
Network

Kernel Module

 0

 500

 1000

 1500

 2000

 2500

8K 16K 32K 64K 128K 256K 512K 1M

L
a
te

n
cy

 (
m

ic
ro

se
co

n
d
s)

Message Size

Latency -- Large Messages

Shared Memory
Network

Kernel Module

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 4 8 16 32 64 128 256 512 1K 2K

B
a
n
d
w

id
th

 (
M

ill
io

n
B

yt
e
s/

se
c)

Message Size

Bandwidth -- Small Messages

Shared Memory
Network

Kernel Module

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

B
a
n
d
w

id
th

 (
M

ill
io

n
B

yt
e
s/

se
c)

Message Size

Bandwidth -- Large Messages

Shared Memory
Network

Kernel Module

Figure 7.5: Latency and bandwidth comparisons

121

����������	
�����	������	�
������
��������������

���
�

���
���
���
���

�
���
���

� � ��� � � ��� ���

� �

�

� �

�

� �

�

� �

�

� �

�

� �

�

�

����������	������ ���������	!�"

�
�

��
��

�
��

	

�
�

�
�

��

��
�

�
��

��
	

#$���!������� %��&��' (��	�����!���

����������	
�����	������	�
������
�������������

���
���

�
���
���
���
���
���
��

 !

!

! "

!

!

! #

!

!

! $

!

!

! %

!

!

!

 !

!

!

!

"

!

!

!

!

#

!

!

!

!

$

!

!

!

!

%

!

!

!

!

 !

!

!

!

!

����������	�!����"���������	#�$

�
�

��
��

�
��

	

�
�

�
�

��

��
�

�
��

��
	

%&���#������' (��)��* ���	�����#���

Figure 7.6: Computation/communication overlap

7.4 Summary

In this chapter, we have studied important factors to optimize multi-channel

MPI. We have proposedseveral di�erent schemesfor polling communication chan-

nelsand decidingthresholdsfor the hybrid of them in MVAPICH. To comeup with

an e�cien t static polling scheme,we have taken into account polling overheadand

messagelatency. In addition, we have suggesteda dynamic polling scheme,which

updates the priorit y ratio basedon update rate and messagehistory. The exper-

imental results show that the factors we have considereda�ect sensitively on the

messagediscovery time. We note that the static polling schemecan reduceintra-

node latency by 12% without hurting inter-node latency. By using the adaptive

polling schemewe can reducethe messagediscovery overheadby 45%.

In addition, we have evaluated thresholds for each channel both basedon raw

MPI latenciesand bandwidthsand alsoCPU utilization. Wehaveobserved that ker-

nel module channel can achieve a very low latency and high bandwidth for medium

and large messages.On the other hand, for this messagerange, network channel

122

can overlap computation and communication very well although this channel hasa

high latency and low bandwidth. For small messages,the sharedmemory channel

shows better performancethan others.

123

CHAPTER 8

OPEN SOUR CE SOFTW ARE RELEASE AND ITS
IMP A CT

The work described in this dissertation has been incorporated into our MVA-

PICH/MV APICH2 software packageand is distributed in an open-sourcemanner.

The duration of this work has spannedseveral releaseversions of this package,

including the latest versionsMVAPICH-1.1 and MVAPICH2-1.4. The results pre-

sented in this dissertation have reducedintra-node memory usagesigni�cantly and

enabledMVAPICH/MV APICH2 to run e�cien tly on large multi-core systems.

MVAPICH/MV APICH2 supports many software interfaces,including OpenFab-

rics [18], uDAPL [34], and In�niP ath-PSM interface from QLogic [22]. The work

presented in this dissertationis available in all theseinterfaces,and is portable across

a wide variety of target architectures, like IA32, EM64T, X86 64 and IA64.

Sinceits releasein 2002,more than 855computing sitesand organizationshave

downloaded this software. More than 27000downloads have taken place. In ad-

dition, nearly every In�niBand vendor and the Open SourceOpenFabrics stack

includesthis software in their packages.Our software hasbeenusedon someof the

most powerful computers,as ranked by Top500[24]. Examplesfrom the November

2008 rankings include 6th, 62976-coreSun Blade System (Ranger) with Opteron

124

Quad Core 2.0 GHz at TexasAdvanced Computing Center (TACC), 58th, 5848-

coreDell PowerEdgeIntel EM64T 2.66GHz cluster at TexasAdvancedComputing

Center/Univ. of Texas,and 73rd, 9216-coreAppro Quad Opteron dual Core 2.4

GHz at LawrenceLivermoreNational Laboratory.

125

CHAPTER 9

CONCLUSIONS AND FUTURE RESEAR CH
DIRECTIONS

The research in this dissertationhasdemonstratedthe feasibility of running MPI

applications e�cien tly on large multi-core systemswith the aid of employing high

performanceand scalableintra-node communication techniques inside the MPI li-

brary. Wehavedescribedhow wecantakeadvantageof sharedmemory, kernelmod-

ules,and on-chip DMAs to designe�cien t MPI intra-node communication schemes.

We have also investigated multi-core aware and multi-channel MPI optimizations.

In addition, our work has analyzed application characteristics on multi-core sys-

tems, potential bottlenecks, how next-generationMPI applications can be modi�ed

to obtain optimal performance,and scalability of multi-core clusters.

9.1 Summary of Research Con tributions

The work proposedin this thesisaims towards designinghigh-performanceand

scalableMPI intra-node communication middleware, especially for contemporary

multi-core systems. The advanced shared memory based approach described in

this proposalhasalready beenintegrated into MVAPICH software package. MVA-

PICH is very widely used,including the 6th fastest supercomputer in the world: a

126

62976-coreSun Blade System(Ranger) with Opteron Quad Core 2.0 GHz at Texas

AdvancedComputing Center (TACC). The designenablesapplications to execute

within a node in a high-performanceand scalablemanner. The kernelmodule based

approach LiMIC2 hasalsobeenintegrated into MVAPICH2 distribution.

We note that the ideasproposedand developed in this thesisare independent of

any networks and portable acrossdi�erent operating systems.They can essentially

be integrated into any MPI library. Thus, we foreseethat the contribution of this

thesiswill be signi�cant for the HPC community, especially as multi-core becomes

main stream. Following is a more detailed summary of the research presented in

this dissertation.

9.1.1 High Performance and Scalable MPI In tra-no de Com-
munication Designs

In Chapters 3, 4, and 5, we have presented several designsfor MPI intra-node

communication. The sharedmemory baseddesignhas the minimum startup time

and administrative requirement, and is portable acrossdi�erent operating systems

and platforms. It hasshown very good latency and bandwidth. The kernel assisted

direct copy approach takes help from the operating systemand eliminates the in-

termediate copiesand further improves performance. The I/O AT basedapproach

doesnot only remove the extra copiesbut alsohasbetter communication and com-

putation overlap. From our experimental results, we have observed that with these

advanceddesignsMPI applications can run e�cien tly on large multi-core systems.

127

9.1.2 Multi-core Aw are Optimizations

In Chapter 6, wehavepresented a hybrid approach to get optimized performance

on multi-core systems. The approach e�cien tly combines the sharedmemory and

the kernel assisteddirect copy approachesin a topology-aware and skew-aware way.

Our performanceevaluation shows that the hybrid approach has optimized perfor-

mancefor all intra-node communication cases,namely shared-cache, intra-socket,

and inter-socket. It alsoimprovesthe performanceof MPI collective operationsand

applications.

9.1.3 Comprehensiv e Analysis of Considerations for Multi-
channel MPI

Sincemost MPI implementations usemultiple channelsfor communication, such

as sharedmemory channel, network channel, kernel module channel etc, it is im-

portant to understand and optimize on the factors that a�ect multi-channel MPI

performance. In Chapter 7, we have done this study. We have shown that chan-

nel polling and threshold selectionare two important factors and proposede�cien t

channel polling algorithms and threshold selectionmethods. Our experimental re-

sults show that our optimization can improve MPI performancesigni�cantly.

9.1.4 In-depth Understanding of Application Behaviors on
Multi-core Clusters

In Chapter 2, wehavedonea comprehensive performanceevaluation and analysis

on application behaviors on multi-core clusters. Through our study we have found

that MPI intra-node communication is very important for the overall performance.

We have alsoobserved that cache and memory contention is a potential bottleneck

128

in multi-core systems,and applications should use techniques such as data tiling

to avoid cache and memory contention as much as possible. Our scalability study

shows that the scalability of multi-core clusters depends on the applications. For

applicationsthat are not memory intensive, multi-core clustershave the samescala-

bilit y assingle-coreclusters. Our study givesinsights to parallel application writers

and MPI middleware developers and facilitates them to write code more e�cien tly

for multi-core clusters.

9.2 Future Research Directions

In this dissertation, we have shown the methods to optimize MPI intra-node

communication. However, there are several interesting research topics that are still

left to be explored.

� Topology Aw are Dynamic Pro cess Distribution - As described in Sec-

tion 6, there are multiple levels of communication existing in MPI intra-node

communication. For example,there are three levelsof communication in Intel

Clovertown systems. The �rst level includestwo coreson the samechip and

sharethe L2 cache. The secondlevel includestwo coreson the samechip but

do not sharethe L2 cache. And the third level includestwo coreson di�erent

chips. Thesedi�erent levels of communication have di�erent characteristics,

e.g. the latency of the �rst level communication is the lowestbecauseit just in-

volvescache transactions. Basedon the topology information and application

characteristics,we can explore the feasibility of dynamic processesmigration

among physical coreswithin a node. This may have the potential bene�t of

129

minimizing communication overhead. This may be especially important for

next-generationmany-core systems,such as Intel 80-coresystem.

� E�cien t MPI Collectiv e Op erations - MPI collective operations are fre-

quently used in many applications, and their performanceis critical to the

overall performance. This thesis mostly focuseson point-to-p oint operations

and in the future we would like to exploreon collective operations too. There

are di�erent collective algorithms and they should be chosenbasedon vari-

ous factors, such as messagesize,systemsize,platforms, etc. With our new

designsof point-to-p oint communication, such as kernel assisteddirect copy

and I/O AT baseddesign,we needto reconsiderthe collective algorithms and

�nd out the optimal solution. We might also needto proposenew collective

algorithms to e�cien tly utilize the intra-node point-to-p oint communication

schemes.

� E�cien t MPI One-sided Comm unication - MPI de�nes one-sidedcom-

munication operations that allow usersto directly read from or write to the

memory of a remote process[61]. One-sidedcommunication both is conve-

nient to useand has the potential to deliver higher performancethan regular

point-to-p oint (two-sided) communication. The semantic of one-sidedcom-

munication matches well with the kernel assisteddirect copy approach such

as LiMIC/LiMIC2 in the sensethat one processcan accessthe memory of

another process.In the future, we would like to exploree�cien t algorithms to

useLiMIC/LiMIC2 for MPI one-sidedcommunication operations.

130

� Comprehensiv e Analysis of In tra-no de Comm unication over AMD

Barcelona System - As mentioned in Section1.1,AMD Barcelonaprocessor

is an emerginginnovative quad-corearchitecture. A Barcelonachip includes

four coresthat have separateL2 cache but share the sameL3 cache. The

L3 cache is not a traditional inclusive cache, it is acting as a spill-over cache

for items evicted by the L2 cache. And when L1 cache loads data from L3

cache (L2 cache is always bypassed)the data can be removed or retained in

the L3 cache, dependingon whetherother coresare likely to accessthe data in

the future. All thesefeaturesmake Barcelonavery di�erent from the systems

we have studied on. We would like to carry out comprehensive and in-depth

performanceevaluation on AMD Barcelonasystems,and �nd ways to optimize

MPI intra-node communication performanceon such systems.

� Study and Optimizations on Future Multi-core Arc hitectures - Multi-

coretechnoogy is advancingrapidly. Both Intel and AMD areplanning to ship

6/8/12/16-core systemsin the nearfuture. In thesesystems,newarchitectures

are being prososedfor better performanceand scalability. We will need to

carefully study the intra-socket topology and communication characteristics

of thesenew processorsand optimize communication performanceon them.

131

BIBLIOGRAPHY

[1] http://lse.sourceforge.net/numa/faq/.

[2] http://v algrind.org/.

[3] AMD's dual-coreOpteron processors.http://tec hreport.com/articles.x/8236.

[4] Cluster (Computing). http://en.wikip edia.org/wiki/Computer cluster.

[5] HP Message Passing Interface library (HP-MPI).
http://h21007.www2.hp.com/p ortal/site/dspp/men uitem.
863c3e4cbcdc3f3515b49c108973a801/
?ciid=a308a8ea6ce02110a8ea6ce02110275d6e10RCRD.

[6] In�niBand Trade Association. http://www.in�nibandta.com.

[7] Intel Clovertown Quad Core Processor Review.
http://www.maxitmag.com/hardw are-reviews/processors/intel-clovertown-
quad-core-processor-review.html.

[8] Intel Cluster Toolkit 3.1. http://www.in tel.com/cd/software/products/asmo-
na/eng/cluster/clusterto olkit/219848.htm.

[9] Intel Dual-coreTechnology. http://www.in tel.com/technology/computing/dual-
core/index.htm.

[10] Intel MPI Library 3.2 for Linux or Win-
dows. http://www.in tel.com/cd/software/products/asmo-
na/eng/cluster/mpi/308295.htm.

[11] Intel Quad-core Technology. http://www.in tel.com/technology/quad-
core/index.htm.

[12] Intel's Woodcrestprocessorpreviewed.http://tec hreport.com/articles.x/10021/1.

[13] iWARP. http://en.wikip edia.org/wiki/IW ARP.

132

[14] MPI: A Message-Passing Interface Standard. http://www.mpi-
forum.org/docs/mpi-11-html/mpi-rep ort.html.

[15] MPI over In�niBand Project. http://no wlab.cse.ohio-state.edu/projects/mpi-
iba/.

[16] MPICH2. http://www.mcs.anl.gov/mpi/.

[17] Open MPI : Open SourceHigh PerformanceComputing. http://www.op en-
mpi.org.

[18] OpenFabrics Alliance. http://www.op enfabrics.org.

[19] OPro�le. http://opro�le.sourceforge.net.

[20] Parallel Spectral Transform Shallow Water Model.
http://www.csm.ornl.go v/chammp/pstswm/.

[21] Product Brief: Quad-CoreAMD Opteron Processor.http://www.amd.com/us-
en/Processors/ProductInformation/0,,30 118 879615223,00.html.

[22] QLogic. http://www.qlogic.com.

[23] The Cell project at IBM Research. www.research.ibm.com/cell/.

[24] Top 500SuperComputer Sites. http://www.top500.org/.

[25] UltraSPARC Processors.http://www.sun.com/pro cessors/.

[26] Olivier AumageandGuillaumeMercier. MPICH/MADI I I: a Cluster of Clusters
EnabledMPI Implementation. In 3rd IEEE/A CM International Symposiumon
Cluster Computing and the Grid (CCGrid2003), 2003.

[27] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-SecondLocal Area
Network. IEEE Micro, pages29{35, Feb 1995.

[28] Darius Buntinas, Guillaume Mercier, and William Gropp. The Design and
Evaluation of Nemesis,a ScalableLow-Latency Message-PassingCommunica-
tion Subsystem. In International Symposium on Cluster Computing and the
Grid, 2006.

[29] Thomas W. Burger. Intel Multi-Core Processors: Quick ReferenceGuide.
http://cac he-www.intel.com/cd/00/00/23/19/231912 231912.pdf.

[30] L. Chai, A. Hartono, and D. K. Panda. Designing High Performanceand
ScalableMPI Intra-node Communication Support for Clusters. In The IEEE
International Conference on Cluster Computing, 2006.

133

[31] L. Chai, S.Sur, H.-W. Jin, and D. K. Panda. Analysisof DesignConsiderations
for Optimizing Multi-Channel MPI over In�niBand. In CAC 2005, 2005.

[32] G. Ciaccio. Using a Self-connectedGigabit Ethernet Adapter as a memcpy()
Low-OverheadEngine for MPI. In EuroPVM/MPI , 2003.

[33] Giuseppe Ciaccio. Using a Self-connectedGigabit Ethernet Adapter asa mem-
cpy() Low-OverheadEngine for MPI. In Euro PVM/MPI , 2003.

[34] DAT Collaborative. uDAPL: UserDirect AccessProgrammingLibrary Version
1.2. http://www.datcollab orative.org/udapl.html, July 2004.

[35] Rob F. Van der Wijngaart and HaoqiangJin. NAS Parallel Benchmarks,Multi-
ZoneVersions.Technical report.

[36] Max Domeika and Lerie Kane. Optimization Techniques for In-
tel Multi-Core Processors. http://www3.in tel.com/cd/ids/dev eloper/asmo-
na/eng/261221.htm?page=1.

[37] Per Ekman and Philip Mucci. DesignConsiderationsfor SharedMemory MPI
Implementations on Linux NUMA Systems:An MPICH/MPICH2 CaseStudy.
http://www.cs.utk.edu/ mucci/latest/pubs/AMD-MPI-05.p df.

[38] D. H. Bailey et al. The NAS Parallel Benchmarks. volume5, pages63{73, Fall
1991.

[39] Matthew Curtis-Maury et al. An Evaluation of OpenMP on Current and
EmergingMultithreaded/Multicore Processors.In IWOMP , 2005.

[40] SadafR. Alam et al. Characterization of Scienti�c Workloadson Systemswith
Multi-Core Processors.In International Symposium on Workload Characteri-
zation, 2006.

[41] I. Foster and N. T. Karonis. A Grid-Enabled MPI: MessagePassingin Het-
erogenousDistributed Computing Systems.In Proceedingsof the Supercomput-
ing Conference (SC), 1998.

[42] Kittur Ganesh. Optimization Techniques for Optimiz-
ing Application Performance on Multi-Core Processors.
http://tree.celin uxforum.org/CelfPubWiki/ELC2006Present
ations?action=AttachFile&do=get&target=Ganesh-CELF.pdf.

[43] P. Geo�ray, C. Pham, and B. Tourancheau. A Software Suite for High-
Performance Communications on Clusters of SMPs. Cluster Computing,
5(4):353{363,October 2002.

134

[44] Andrew Gover and Christopher Leech. AcceleratingNetwork Receiver Process-
ing. http://lin ux.inet.hr/�les/ols2005/gro ver-reprint.pdf.

[45] W. Gropp, E. Lusk, N. Doss,and A. Skjellum. A High-Performance,Portable
Implementation of the MPI, MessagePassingInterface Standard. In Parallel
Computing, 2006.

[46] Yun He and Chris Ding. Hybrid OpenMP and MPI Programmingand Tuning.
www.nersc.gov/n users/services/training/classes/NUG/Jun04
/NUG2004 yhe hybrid.ppt.

[47] Innovative Computing Laboratory (ICL). HPC Challenge Benchmark.
http://icl.cs.utk.edu/hp cc/.

[48] H. W. Jin, S. Sur, L. Chai, and D. K. Panda. Designand PerformanceEvalu-
ation of LiMIC (Linux Kernel Module for MPI Intra-node Communication) on
In�niBand Cluster. In International Conference on Parallel Processing, 2005.

[49] H. W. Jin, S. Sur, L. Chai, and D. K. Panda. Limic: Support for high-
performancempi intra-node communication on linux cluster. In International
Conference on Parallel Processing, 2005.

[50] Hyun-Wook Jin, Sayantan Sur, Lei Chai, and Dhabaleswar K. Panda.
Lightweight Kernel-Level Primitiv es for High-performance MPI Intra-Node
Communication over Multi-Core Systems. In IEEE International Conference
on Cluster Computing (poster presentation), 2007.

[51] I. Kadayif and M. Kandemir. Data Space-oriented Tiling for EnhancingLocal-
it y. ACM Transactionson Embedded Computing Systems, 4(2):388{414,2005.

[52] N. Karonis, B. Toonen,and I. Foster. MPICH-G2: A Grid-Enabled Implemen-
tation of the MessagePassingInterface. Journal of Parallel and Distributed
Computing (JPDC) , 63(5):551{563,May 2003.

[53] M. Koop, W. Huang, A. Vishnu, and D. K. Panda. Memory Scalability Eval-
uation of the Next-GenerationIntel BensleyPlatform with In�niBand. In Hot
Interconnect, 2006.

[54] J. Liu, J. Wu, S. P. Kini, P. Wycko�, and D. K. Panda. High Performance
RDMA-Based MPI Implementation over In�niBand. In SC, June 2003.

[55] J. Liu, J. Wu, and D. K. Panda. High performanceRDMA-based MPI imple-
mentation over In�niBand. Int'l Journal of Parallel Programming, In Press,
2005.

135

[56] S. S. Lumetta, A. M. Mainwaring, and D. E. Culler. Multi-Proto col Active
Messageson a Cluster of SMP's. In SC '97, 1997.

[57] S. Makineni and R. Iyer. Architectural Characterization of TCP/IP Packet
Processingon the Pentium Microprocessor. In High Performance Computer
Architecture, HPCA-10, 2004.

[58] Amith R Mamidala, Rahul Kumar, Debraj De, and Dhabaleswar K Panda.
MPI Collectives on Modern Multicore Clusters: PerformanceOptimizations
and Communication Characteristics. In Proceedings of IEEE International
Sympsoiumon Cluster Computing and the Grid, 2008.

[59] Mellanox Technologies. Mellanox In�niBand In�niHost MT23108 Adapters.
http://www.mellano x.com, July 2002.

[60] Mellanox Technologies.Mellanox VAPI Interface,July 2002.

[61] MessagePassingInterfaceForum. MPI: A Message-PassingInterface Standard,
Mar 1994.

[62] MessagePassingInterface Forum. MPI-2: Extensionsto the Message-Passing
Interface, Jul 1997.

[63] Myricom Inc. Portable MPI Model Implementation over GM, March 2004.

[64] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan
Frachtenberg. The Quadrics Network: High Performance Clustering Tech-
nology. IEEE Micro, 22(1):46{57, January-February 2002. Available from
http://www.c3.lanl.gov/~fab riz io/p apers/ie emicro. pdf .

[65] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale. NAMD: Biomolecular
Simulation on Thousandsof Processors.In SuperComputing, 2002.

[66] R. Rabenseifner and A. E. Koniges. The Parallel Commu-
nication and I/O Bandwidth Benchmarks: be� and be�o.
http://www.hlrs.de/organization/par/services/mo dels/mpi/b e�/.

[67] R. Recio, P. Culley, D. Garcia, and J. Hillard. IETF Draft: RDMA Protocol
Speci�cation, November 2002.

[68] G. Regnier, S. Makineni, R. Illikk al, R. Iyer, D. Minturn, R. Huggahalli,
D. Newell, L. Cline, and A. Foong. TCP Onloading for Data Center Servers.
In IEEE Computer, Nov 2004.

[69] SGI. Messagepassingtoolkit (mpt) userguide.

136

[70] Suresh Siddha. Multi-core and Linux Kernel.
http://oss.in tel.com/pdf/mclin ux.pdf.

[71] Sun Microsystems Inc. Memory Placement Optimization (MPO).
www.opensolaris.org/os/community/p erformance/ mpo overview.pdf.

[72] Toshiyuki Takahashi, Shinji Sumimoto nd Atsushi Hori, Hiroshi Harada, and
Yutaka Ishikawa. PM2: High PerformanceCommunication Middleware for
HeterogeneousNetwork Environments. In SuperComputing (SC), 2000.

[73] Tian Tian and Chiu-Pi Shih. Software Techniques for Shared-
Cache Multi-Core Systems. http://www.in tel.com/cd/ids/dev eloper/asmo-
na/eng/recent/286311.htm?page=1.

[74] Li Zhao, Ravi Iyer, Srihari Makineni, Laxmi Bhuyan, and Don Newell. Hard-
ware Support for Bulk Data Movement in Server Platforms. In Proceedings of
International Conference on Computer Design, 2005.

137

