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ABSTRA CT

Cluster of workstations is one of the most popular architectures in high perfor-
mance computing, thanks to its cost-to-performancee ectiveness. As multi-core
technologiesare becomingmainstream, more and more clustersare deploying multi-
coreprocessorsasthe build unit. In the latest Top500supercomputerlist published
in Novenber 2008,about 85% of the sites usemulti-core processordrom Intel and
AMD. MessagePassingInterface (MPI) is one of the most popular programming
modelsfor cluster computing. With increaseddeploymert of multi-core systemsin
clusters, it is expected that considerablecommnunication will take place within a
node. This suggestghat MPI intra-node commnunication is goingto play a key role
in the overall application performance.

This dissertation presenis novel MPI intra-node communication designs,includ-
ing userlevel sharedmemory basedapproad, kernel assisteddirect copy approad,
and e cien t multi-core aware hybrid approad. The userlevel sharedmemorybased
approad is portable acrossoperating systemsand platforms. The processesopy
messagesnto and from a shared memory area for comnunication. The shared
bu ers are organizedin a way sud that it is e cient in cade utilization and mem-
ory usage. The kernel assisteddirect copy approad takeshelp from the operating

system kernel and directly copiesmessagdrom one processto another so that it



only needsone copy and improves performancefrom the sharedmemory basedap-
proach. In this approad, the memory copy can be either CPU basedor DMA
based. This dissertation exploresboth directions and for DMA basedmemaory copy,
we take advantage of novel medanismsud asl/O AT to achieve better performance
and computation and communication overlap. To optimize performanceon multi-
core systems,we e cien tly conbine the shared memory approad and the kernel
assisteddirect copy approad and proposea topology-avare and skew-avare hybrid
approad. The dissertationalsopresens comprehensie performanceevaluation and
analysisof the approadeson cortemporary multi-core systemssud asIntel Clover-
town cluster and AMD Barcelonacluster, both of which are quad-coreprocessors
basedsystems.

Software deweloped as a part of this dissertation is available in MVAPICH and
MVAPICH2, which are popular open-sourceimplemertations of MPI-1 and MPI-2
libraries over In niBand and other RDMA-enabled networks and are usedby se\eral

hundred top computing sitesall around the world.
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CHAPTER 1

INTR ODUCTION

The pacepeoplepursuing computing power hasnewer sloved down. Moore'sLaw
hasbeenprovento be true over the passagef time - the performanceof microchips
has beenincreasingat an exponertial rate, doubling every two years. \In 1978,a
commercial ight betweenNew York and Paris cost around $900 and took sewen
hours. If the principles of Moore's Law had beenapplied to the airline industry the
way they have to the semiconductorindustry since1978,that ight would now cost
about a penry and take lessthan one second."(a statemen from Intel) Howe\er,
it becomesmore di cult to speedupprocessorsnowadays by increasingfrequency
One major barrier is the overheat problem, which high-frequencyCPU must deal
with carefully. The other issueis power consumption. Theseconcernsmake it less
cost-to-performancee ective to increaseprocessorclock rate. Therefore,computer
architects have designedmulti-core processor,which meansto place two or more
processingcoreson the samechip [29]. Multi-core processorsspeedup application
performanceby dividing the workload to di erent cores. It is also referredto as
Chip Multipr ocessor (CMP).

On the other hand, clusters[4] have beenone of the most popular ervironmerts
in parallel computing for decades. The emergenceof multi-core architecture has

1



brought clustersinto a multi-core era. As a matter of fact, multi-core processordave
already beenwidely deployed in parallel computing. In the Top500supercomputer
list published in 2007, more than 77% processorsare multi-core processorsfrom
Intel and AMD [24]. This number becomes85%in the latest Top500list published
in Novenber, 2008.

MessagePassingInterface (MPI) [61] is one of the most popular programming
modelsfor cluster computing. With the rapid deployment of multi-core systemsin
clusters, more and more comnunication will take placeinside a node, which means
MPI intra-node commnunication will play a critical role to the overall application
performance.

MVAPICH [15]is an MPI library that delivershigh performance scalability and
fault tolerance for high-end computing systemsand seners using In niBand [6],
IWARP [13] and other RDMA-enabled [67] interconnect networking technologies.
MVAPICH2 is MPI-2 [62] compliart. MVAPICH and MVAPICH2 are being used
by morethan 8400rganizationsworld-wide to extract the potertial of theseemerging
networking technologiesfor modern systems.

In this dissertation we use MVAPICH as the framework and explore the alter-
natives of designing MPI intra-node commnunication, come up with optimization
strategiesfor multi-core clusters, and study on the factors that a ect MPI intra-
node communication performance. Further, we conduct in-depth evaluation and

analysison application characteristicson multi-core clusters.



The rest of the chapter is organizedas follows. First we provide an overview of
the architectures of multi-core processors.Then we introducethe basic MPI intra-
node commnunication sthemes.Following that we presen the problem statemen and

our researb approades. And nally we provide an overview of this dissertation.

1.1 Arc hitectures of Multi-core Clusters

Multi-core meansto integrate two or more completecomputational coreswithin
a singlechip [29. The motivation of the dewelopmen of multi-core processorss the
fact that scalingup processorspeedresultsin dramatic rise in power consumption
and heat generation. In addition, it becomesmore di cult to increaseprocessor
speednowadays that even a little increasein performancewill be costly. Realizing
thesefactors, computerarchitects have proposedmulti-core processorshat speedup
application performanceby dividing the workload among multiple processingcores
instead of using one \super fast" single processor. Multi-core processoris also re-
ferredto asChip Multipr ocessor(CMP). Sincea processingcorecanbe viewed asan
independen processor,n this proposal we use processor and core interchangeably

Most processorvendershave multi-core products, e.g. Intel Quad-core[11] and
Dual-core[9] Xeon, AMD Quad-core[21] and Dual-core Opteron [3], Sun Microsys-
tems UltraSPARC T1 (8 cores)[25], IBM Cell [23, etc. There are various alterna-
tivesin designingcade hierarchy organizationand memoryaccessnodel. Figure 1.1
illustrates two typical multi-core systemdesigns. The left box shavs a NUMA [1]
baseddual-core systemin which ead core hasits own L2 cade. Two coreson
the samechip sharethe memory cortroller and local memory Processorscan also

accesgemote memory, although local memory accesss much faster. The right box



shows a bus baseddual-coresystem,in which two coreson the samechip sharethe

samelL2 cade and memory cortroller, and all the coresaccesshe main memory
through a sharedbus. Intel Woodcrest processord12] belongto this architecture.

Intel Clovertown processorgquad-core)[7] are made of two Woodcrest processors.
There are more advancedsystemsemergingrecenly, e.g. AMD Barcelonaquad-core
processorsin which four coreson the samechip have their own L2 cacesbut share
the samelL3 cade. The L3 cade is not a traditional inclusive cade, when data

is loaded from the L3 cade to the L1 cade (L2 is always bypassed)the data can

be removed from L3 or remain there depending on whether other coresare likely to

accesghe data in the future. In addition, the L3 cade doesn't load data from the

memory; it acts like a spill-over cade for items evicted from the L2 cade.

NUMA is a computer memory designwhere the memory accessime depends
on the memory location relative to a processor.Under NUMA, memory is shared
between processorsput a processorcan accessts own local memory faster than
non-local memory Therefore, data locality is critical to the performanceof an
application. AMD systemsare mostly basedon NUMA architecture. Modern op-
erating systemsallocate memory in a NUMA-aware manner. Memory pagesare
always physically allocated local to processorsvherethey are rst touched, unless
the desiredmemory is not available. Solarishas beensupporting NUMA architec-
ture for a number of years[71]. Linux also started to be NUMA-aware from 2.6
kernel. In our work sofar we focuson Linux.

Dueto its greatercomputing power and cost-to-performancee ectivenessmulti-
core processorhas been deployed in cluster computing. In a multi-core cluster,

there are three levels of comnunication asshown in Figure 1.1. The comnunication
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Figure 1.1: lllustration of Multi-Core Cluster

betweentwo processor®on the samechip is referredto asintra-CMP communication
in this proposal. The communication acrosschips but within a node is referredto
asinter-CMP communiaation. And the comnunication betweentwo processorson
di erent nodesis referredto asinter-node communication.

Multi-core clusterimposesnewchallengesn software design,both on middleware
level and application level. How to designmulti-core aware parallel programsand
comnunication middleware to get optimal performanceis a hot topic. There have
beenstudieson multi-core systems.Koop, et al in [53] have evaluated the memory
subsystemof Bensley platform using microbendimarks. Alam, et al have done a
scienti ¢ workloadscharacterizationon AMD Opteron basedmulti-core systemg40].
Realizing the importance and popularity of multi-core architectures, researbers
start to proposetechniquesfor application optimization on multi-core systems.Some
of the techniques are discussedn [36], [42], and [73]. Discussionsof OpenMP on

multi-core processorscan be found in [39].



1.2 MPI Intra-no de Comm unication

MPI standsfor MessagePassinginterface [61]. It is the de facto standard used
for cluster computing. There are multiple MPI libraries in addition to MVAPICH,
suc as MPICH [45, MPICH2 [16], OpenMPI [17], HP MPI [5], Intel MPI [10],
etc. Most clustersare built with multi-pro cessorsystemswhich meansinter-node
and intra-node comnunication co-existsin cluster computing. In this section we

introduce the basicapproatesfor MPI intra-node communication.

NIC-Based Message Loopback

An intelligent NIC can provide a NIC-basedloopbadk. When a messagédransfer
isinitiated, the NIC candetectwhetherthe destinationis on the samephysical node
or not. By initiating alocal DMA from the NIC memory bad to the host memory
asshown in Figure 1.2(a), we can eliminate overheadson the network link because
the messagas not injected into the network. Howewer, there still exist two DMA
operations. Although 1/0 busesare getting faster, the DMA overheadis still high.
Further, the DMA operations cannot utilize the cade e ect.

In niHost [59]is a Mellanax's secondgenerationin niBand Host ChannelAdapter
(HCA). It providesinternal loopbadk for padkets transmitted betweentwo Queue
Pairs (connections)that are assignedto the sameHCA port. Most of other high-
speed interconnectionssud as Myrinet [27] and Quadrics [64] also provide NIC-
basedmessagdoopbadk. Ciaccio[32]alsoutilized NIC-level loopbadk to implemert

an e cient memcpy()
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User-Space Shared Memory

This design alternative involves eahh MPI processon a local node, attaching
itself to a shared memory region. This shared memory region can then be used
amongstthe local processego exdiange messagesnd other cortrol information.
The sendingprocesscopiesthe messagdo the sharedmemory area. The receiving
processcan then copy over the messagedo its own bu er. This approad involves
minimal setup overheadfor every messagextangeand shows better performance
for small and medium messagesizesthan NIC-level messagdoopbad.

Figure 1.2(b) shows the various memory transactions which happen during the
messagédransfer. In the rst memory transaction labeled as 1; the MPI process
needsto bring the sendbu er to the cade. The secondoperation is a write into
the sharedmemory bu er, labeled as 3. If the block of sharedmemory is not in
cade, another memory transaction, labeled as 2 will occur to bring the block in

cade. After this, the sharedmemory block will be accessedy the receiving MPI



process.The memory transactionswill depend on the policy of the cade coherency
implemertation and canresultin either operation 4aor 4b-1followed by 4b-2. Then

the receiving processneedsto write into the receiwe bu er, operation labeled as 6.

If the receive bu er is not in cade, then it will result in operation labeled as 5.

Finally, depending on the cade block replacemen stheme, step 7 might occur. It

is to be noted that there are at least two copiesinvolved in the messagesxdiange.
This approad might tie down the CPU with memory copy time. In addition, asthe

size of the messagegrows, the performancedeteriorates becausevigorous copy-in

and copy-out alsodestroys the cade cortents for the end MPI application.

This sharedmemory baseddesignhas beenusedin MPICH-GM [63] and other
MPI implemerations sud as MVAPICH [15. In addition, Lumetta et al. [56]
have dealt with e cient design of shared memory messagepassingprotocol and
multiproto col implemenation. MPICH-Madeleine [26] and MPICH-G2 [41,52] also
have suggestedmulti-proto col communication, which can provide a framework for

having di erent channelsfor inter and intra-node comnunication.

CPU Based Kernel Mo dules for Memory Mapping

Kernel-BasedMemory Mapping approad takeshelp from the operating system
kernel to copy messagedglirectly from one user processto another without any
additional copy operation. The senderor the receiver processposts the message
requestdescriptor in a messagejueueindicating its virtual address,tag, etc. This
memory is mapped into the kernel addressspacewhen the other processarrivesat
the messagextangepoint. Then the kernelperformsa direct copy from the sender

bu er to the receiwer application bu er. Thusthis approad involvesonly onecopy.



Figure 1.2(c) demonstrateshe memorytransactionsneededor copying from the
senderbu er directly to the receiver bu er. In step1, the receivingprocessneedsto
bring the sendingprocess'bu er into its cade block. Then in step 3, the receiving
processcan write this bu er into its own receive bu er. This may generatestep 2
basedon whether the block was in cade already or not. Then, depending on the
cade block replacemen policy, step 4 might be generatedimplicitly .

It isto be notedthat the number of possiblememorytransactionsfor the Kernel-
BasedMemory Mapping is always lessthan the number in User-Space&sharedMem-
ory approad. We alsonote that due to the reducednumber of copiesto and from
various bu ers, we can maximize the cade utilization. Howewer, there are other
overheads. The overheadsinclude time to trap into the kernel, memory mapping
overhead,and TLB ush time. In addition, still the CPU resourceis required to
perform a copy operation. There are se\eral previous works that adopt this ap-
proad, which include [43, 72]. We have exploredthe kernel basedapproades,and

implemerted a kernel module called LiMIC which will be descriked in Chapter 4.

/O AT Based Kernel Mo dules

As mertioned in Section1.2, DMA basedapproatesusually have high overhead.
Recerly, Intel's I/O Acceleration Tecnology (/O AT) [44, 57, 68] introduced an
asynaironous DMA copy engine within the chip that has direct accessto main
memory to improve performanceand reducethe overheadsmentioned above. 1/0
Acceleration Tedinology o oads the data copy operation from the CPU with the
addition of an asyndironous DMA copy engine. The copy engineis implemerted
as a PCl-enumerated device in the chipset and has multiple independert DMA
channelswith direct acces€o main memory When the processomrequestsa block
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memory copy operation from the engine,it can then asyndironously perform the
data transfer with no host processorintervertion. When the engine completesa
copy, it canoptionally generatean interrupt. As mertioned in [44], I/O AT supports
seweral interfacesin kernel spacefor copying data from a sourcepage/bu er to a
destination page/bu er. These interfaces are asyndironous and the copy is not
guararteed to be completedwhen the function returns. Theseinterfacesreturn a
non-negative cookie value on successwhich is usedto ched for completion of a
particular memory operation.

We have designedkernel modulesto utilize 1/O AT technology for memory copy.

The details are described in Chapter 5.

1.3 Problem Statemen't

The scope of this dissertationis shovn in Figure 1.3. In short, we aim to design
high performanceand scalableMPI intra-node comnunication schemesand study
their impacts on applicationsin-depth. We intend to understandthe characteristics
of multi-core clusters, and optimize MPI performanceon them. In Figure 1.3, the
white boxesstand for the existing componerts, the dark shadedboxesindicate the
componerts we have beenworking on, and the light shadedboxes are our future
work.

We presen the problem statemert of this dissertation in detail asfollows:

Can we have a signican tly better understanding on application
characteristics on multi-core clusters, especially with respect to com-
munication performance, message distribution, cache utilization, and

scalabilit y? - With the rapid emergenceof multi-core architecture, clusters
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have entered a multi-core era. In orderto get optimal performance,it is crucial
to have in-depth understandingon application behaviors and trends on multi-
core clusters. It is also very important to identify potential bottleneds in
multi-core clustersthrough ewaluation, and explore possiblesolutions. How-
ewer, since multi-core is a relatively new technology, few researb has been

donein the literature.

Can we design a shared memory based approach to allow MV A-
PICH to have better intra-no de communication performance? - The
original MVAPICH usedto useNIC baseloopbadk approad. While it eases
code design- we do not needto distinguish between intra- and inter-node
comnunication, the performanceis not optimal. Further, with the emergence

of multi-core systems,more and more corescan residewithin one node, and

11



the NIC basedloopbadk approad may not be scalablesinceall the intra-node
comnunication will go through the PCI bus and the PCI bus may becomea
bottlened. It is essetial to have a more e cient intra-node commnunication

sdheme.

Can we optimize the shared memory based approach to have lower
latency , better cache utilization, and reduced memory usage, thus
have impro ved performance especially on multi-core clusters? - There
are limitations in the current existing sharedmemory sthemes. Someare not
scalablewith respect to memory usage,and somerequire locking medanisms
amongprocesse$o maintain consistency Thusthe performanceis suboptimal
for alargenumber of processesMoreover, fewresearb hasbeendoneto study
the interaction betweenthe multi-core systemsand MPI implemertations. We
needto take on the challengesand optimize the current sharedmemory based

sthemesto improve MPI intra-node communication performance.

Can we design MV APICH intra-no de communication to utilize ker-
nel module based approach to reduce the number of copies and
potentially benet applications? - As mertioned in Section1.2, one ap-
proach to avoid extra messagecopiesis to use operating system kernel to
provide a direct copy from one processto another. Inside the kernel module,
it can either use CPU to do memory copy, or take advantage of any DMA en-
ginesthat are available for memory copy. Sincethis kind of approad requires

only one memory copy, it may improve MVAPICH intra-node comrmunication
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performance. And if we usethe DMA for memory copy, we can potertially

achieve better computation and comnunication overlap.

Can we design an ecien t hybrid approach that utilizes both the
kernel module based approach and the shared memory based ap-
proach to get optimal performance, especially on multi-core clus-
ters? - User-lewel shared memory and kernel assisteddirect copy are two
popular approades. Both of them have advantagesand disadwantages. How-
ewer, we do not know if one of these approadiesis su cient for multi-core
clusters. In order to obtain optimized performance,it is important to have
a comprehensie understanding of these two approades and combine them

e ectively.

What are the factors that aect MV APICH Intra-no de comm uni-

cation and how can we tune them to get the optimal performance?

- To optimize comnunication performance,many MPI implemertations sud
asMVAPICH provide multiple comnunication channels. Thesechannelsmay
be usedeither for intra- or inter-node comnunication. Two important factors
that a ect application performanceare channel polling and threshold selec-
tion. It is important to understand how the applications perform with these
factors and have e cient channel polling and threshold selectionalgorithms

to improve on performance.

1.4 Research Approac hes

In this sectionwe preser our generalapproadesto the above mertioned issues.
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1. Understanding the application characteristics on multi-core clusters
- We have designeda set of experimerts to study the impact of multi-core ar-
chitecture on cluster computing. The purposeis to give both application and
comnunication middleware dewelopersinsights on how to improve overall per-
formanceon multi-core clusters. The study includesMPI intra-node commu-
nication characteristics on multi-core clusters, messagelistribution in terms
of both communication channel and messagesize, cade utilization/p otertial

bottlened iderti cation, and initial scalability study.

2. Designing a basic user-lev el shared memory based approac h for MPI
intra-no de comm unication - We have designeda sharedmemory basedim-
plemeration for MVAPICH intra-node comnunication. A temporary le is
created and all the processesnap the temporary le to their own memory
spacesasa sharedmemory areaand usethis sharedmemory areafor commnu-

nication.

3. Designing an advanced user-lev el shared memory based approac h for
MPI intra-no de communication for optimized performance - We have
optimized the basic shared memory baseddesignto get better performance
and scalability. We want to adieve two goalsin our design: 1. To obtain
low latency and high bandwidth between processes,and 2. To have reducd
memory usagefor better salability. We adieve the rst goal by e cien tly
utilizing the L2 cade and avoiding the use of lock. We acdieve the second
goalby separatingthe bu er structuresfor smalland largemessagesand using

a sharedbu er pool for eat processto sendlarge messages.We have also
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exploredvarious optimization strategiesto further improve the performance,

sud asreducingthe polling overhead,etc.

. Designing kernel assisted direct copy approac hes to eliminate extra
copies and achieve better computation and comm unication overlap
- We have designediwo major kernelmodulesfor MPI intra-node commnunica-
tion. Oneis calledLIMIC/LIMIC2, which usesCPU basedmemorycopy. And
the other usesintel 1/0O AT which is an on-chip DMA to do memory copy. We

have alsomodi ed MVAPICH and MVAPICH?2 to utilize the kernel modules.

. Designing an ecien t user-level and kernel-lev el hybrid approach
for multi-core clusters - We have carefully consideredthe characteristicsof
the sharedmemory and kernel module basedapproades, esgecially how they
perform with multi-core processors.We have analyzedtheseapproahesand
comeup with a topology-avare and skew-avare approad that combinesthe

two approatese cien tly for multi-core clusters.

. Analyzing factors that aect multi-c hannel MPI performance and
designing optimization schemes - Channelpolling and threshold selection
are two important factors for multi-channel MPI implemertations. We have
designede cien t polling shemesamong multiple channels. We have also ex-
plored methodologiesto decidethe thresholdsbetweenmultiple channels. We
considerlatency, bandwidth, and CPU resourcerequiremen of ead channel

to decidethe thresholds.

15



1.5 Dissertation Overview

We presei our researt over the next seweral chapters. In Chapter 2, we presert
our study of application characteristicson multi-core clusters. We have donea com-
prehensie performanceewaluation, pro ling, and analysisusing both microbend-
marks and application level bendimarks. We have se\eral interesting obsenations
from the experimertal results, including the impact of procesortopology, the im-
portance of MPI intra-node comnunication, the potential bottleneds in multi-core
systems,and scalability of multi-core clusters.

In Chapter 3, we prese our sharedmemory baseddesignsfor MPI intra-node
comnunication. In the sharedmemory baseddesigns,all the processesnap a tem-
porary le to their own memory spacesand useit as a shared memory area for
comnunication. We start with a basic design,in which the bu ers are organized
sud that ewvery processhas a receive queuecorrespnding to every other process.
We then prese an advancedesignthat reorganizesthe comnunication bu ers in
a more e cient way sothat we can get lower latency, higher bandwidth, and less
memory usage.

In Chapters 4 and 5, we take on the challengesand designkernel assistedap-
proachesfor MPI intra-node commnunication. We have designedtwo major kernel
modules, one using CPU basedmemory copy and other using Intel 1/0 AT. Both
the kernel modules eliminate the extra copiesand achieve better performance,and
using I/O AT can also achieve better computation and comnunication overlap.

In Chapter 6, we use a three-step methodology to designa hybrid approat
for MPI intra-node communication using two popular approades, sharedmemory

(MVAPICH) and OS kernel assisteddirect copy (MVAPICH-LIMIC2). The study
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has beendone on an Intel quad-core(Clovertown) cluster. We have evaluated the
impacts of processorttopology, communication bu er reuse,and processskew e ects
on thesetwo approadies,and pro led the L2 cade utilization. And basedon the
results and analysis we have proposedtopology-avare and skew-avare thresholds
to build an e cient hybrid approat which shavs promising results on multi-core
clusters.

Sincemany MPI implemertations utilize multiple channelsfor commnunication,
in Chapter 7 we have studied important factorsto optimize multi-channelMPI. We
have proposedse\eral di erent sdhemesfor polling communication channels,includ-
ing static polling sheme and dynamic polling stheme. In addition, since multiple
channelscan be usedfor MPI intra-node comnunication, we have also evaluated
thresholdsfor ead channel both basedon raw MPI latenciesand bandwidths and
alsoCPU utilization. Theseoptimizations demonstratelarge performanceimprove-

mert.
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CHAPTER 2

UNDERST ANDING THE COMMUNICA TION
CHARA CTERISTICS ON MUL TI-CORE CLUSTERS

Clusters have beenone of the most popular environments in parallel computing
for decades. The emergenceof multi-core architecture is bringing clustersinto a
multi-core era. In order to get optimal performance,it is crucial to have in-depth
understanding on application behaviors and trends on multi-core clusters. It is
alsovery important to identify potertial bottleneds in multi-core clustersthrough
ewvaluation, and explore possiblesolutions. In this chapter, we designa set of ex-
perimerts to study the impact of multi-core architecture on cluster computing. We

aim to answer the following questions:

What are the application commnunication characteristics on multi-core clus-

ters?

What are the potential comnunication bottlenedks in multi-core clustersand

how to possibly avoid them?

Can multi-core clusters scalewell?
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The rest of the chapter is organizedas follows: In Section 2.1 we descrike the
methodology of our evaluation. The evaluation resultsand analysisare presered in

Section2.2. Finally we summarizethe resultsand impact of this work in Section2.3.

2.1 Design of Exp eriments for Evaluating Multi-core Clus-
ters

To answer the questionsmertioned in the beginning of this chapter, we descrike

the evaluation methodology and explain the designand rational of eat experimert.
2.1.1 Programming Mo del and Benchmarks

We chooseto useMPI [14] asthe programming model becausst is the de facto
standard usedin cluster computing. The MPI library usedis MVAPICH2 [15. In
MVAPICH2, intra-node comnunication, including both intra-CMP and inter-CMP,
is achieved by userlevel memory copy.

We ewaluate both microbendymarks and application level bendymarks to get
a comprehensie understanding on the system. Microbendmarks include latency
and bandwidth tests. And application level bendimarks include HPL from HPCC

bendimark suite [47], NAMD [65 apoaldata set,and NAS parallel bendhmarks[38].
2.1.2 Design of Exp eriments

We have designedo carry out four setsof experimerts for our study: latency and
bandwidth, messagaelistribution, potertial bottlened identi cation, and scalability

tests. We descrile them in detail below.
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Latency and Bandwidth: These are standard ping-pong latency and band-
width tests to characterize the three levels of comnunication in multi-core

cluster: intra-CMP, inter-CMP, and inter-node commnunication.

MessageDistribution: We de ne messagdistribution as a two dimensional
metric. One dimensionis with respect to the comnunication channel, i.e.
the perceriage of tra ¢ goingthrough intra-CMP, inter-CMP, and inter-node
respectively. The other dimensionis in terms of messagesize. This experi-
mert is very important becauseunderstandingmessagelistribution facilitates
comnunication middleware dewelopers, e.g. MPI implemertors, to optimize
critical comnunication channelsand messagesizerangefor applications. The
messagdlistribution is measuredin terms of both number of messagesand

data volume.

Potertial Bottlenedk Identi cation: In this experimert, we run application
level bendimarks on di erent con gurations, e.g. four processe®n the same
node, four processesn two di erent nodes,and four processesn four di erent
nodes. We want to discover the potential bottleneds in multi-core cluster if
any, and exploreapproadesto alleviate or eliminate the bottlenedks. This will
give insights to application writers how to optimize algorithms and/or data
distribution for multi-core cluster. We alsodesignan exampleto demonstrate

the e ect of multi-core aware algorithm.

Scalability Tests: This setof experimerts is carried out to study the scalability

of multi-core cluster.

20



2.1.3 Processor Anit vy

In all our experimerts, we useschel_a nity systemcall to ensurethe binding of
processwith processor.The e ect of processom nit y is two-fold. First, it easeour
analysis, becausewe know exactly the mapping of processeswith processors.And
second,it makes application performancemore stable, becauseprocessmigration

requirescade invalidation and may degradeperformance.

2.2 Performance Evaluation

In this sectionwe presei the experimertal resultsand the analysisof the results.
We usethe format pxq to represem a con guration. Herep is the number of nodes,
and g is the number of processorger node.

Evaluation Platforms: We use two multi-core clusters and one single-core
cluster for the experimerts. Their setupis speci ed below:

Cluster A: Cluster A consistsof 4 Intel Bensleysystemsconnectedby In niBand.
Ead node is equipped with two setsof dual-core2.6GHz Woodcrest processor.e.
4 processorgper node. Two processor®n the samechip sharea 4MB L2 cade. The
overall architecture is similar to that shawvn in the right box in Figure 1.1. Howe\er,
Bensley system has added more dedicated memory bandwidth per processorby
doubling up on memory buses,with one bus dedicatedto eat of Bensley'stwo
CPU chips. The InniBand HCA is Mellanax MT25208 DDR and the operating
systemis Linux 2.6.

Cluster B: Cluster B is an Intel Clovertown cluster with 72 nodes. Each node
is equipped with dual quad-coreXeon processor,i.e. 8 coresper node, running at

2.0GHz. Each node has4GB main memory The nodesare connectedby Mellanox
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In niBand DDR cards. The operating systemis Linux 2.6.18 We use 32 nodesin
Cluster B for our experimerts.

Cluster C: Cluster C is a single-corelntel cluster connectedby In niBand. Eadch
node is equipped with dual Intel Xeon 3.6GHz processorand eat processorhas a
2MB L2 cade. Cluster C is usedto comparethe scalability.

In the following sections,Cluster A is usedby default unlessspeci ed explicitly.
2.2.1 Latency and Bandwidth

Figure 2.1 shows the basiclatency and bandwidth of the three levels of commnu-
nication in a multi-core cluster. The numbersare taken at the MPI level. The small
messagdatency is 0.42us,0.89us,and 2.83usfor intra-CMP, inter-CMP, and inter-
node comrmunication respectively. The correspnding peakbandwidth is 6684MB/s,
1258MB/s, and 1532MB}/s.

From Figure 2.1we canseethat intra-CMP performanceis far better than inter-
CMP and inter-node performance,esgecially for small and medium messagesThis
is becausein Intel Bensleysystemtwo coreson the samechip sharethe samelL2
cade. Therefore,the commnunication just involvestwo cade operationsif the com-
munication bu ers are in the cade. From the gure we can also seethat for large
messagesinter-CMP performanceis not as good as inter-node performance, al-
though memory performanceis supposedto be better than network performance.
This is becausethe intra-node comnunication is achieved through a sharedbu er,
wheretwo memory copiesare involved. On the other hand, the inter-node commnu-

nication usesthe Remote Direct Memory Access(RDMA) operation provided by
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In niBand and rendezwus protocol [55], which forms a zero-coly and high perfor-
mancesdieme. This alsoexplainswhy for large message$when the bu ers are out
of cathe) intra-CMP and inter-node perform comparably

This set of results indicate that to optimize MPI intra-node communication
performance,oneway is to have better L2 cade utilization to keepcommunication
bu ers in the L2 cade as much as possible,and the other way is to reducethe
number of memory copies. We have proposeda preliminary enhancedMPI intra-

node comrmunication designin our previouswork [30].
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Figure 2.1: Latency and Bandwidth in Multi-core Cluster

2.2.2 Message Distribution

As mertioned in Section 2.1, this set of experimerts is designedto get more
insights with respect to the usagepattern of the commnunication channels,aswell as
the messagesizedistribution. In this section,we rst presen the results measured

on Cluster A and then presen the results on Cluster B.
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Message Distribution on Cluster A: Figures2.2 and 2.3 shaw the pro ling
results for NAMD and HPL respectively. The results for NAS bendmarks are
listed in Table 6.1. The experimerts are carried out on a 4x4 con guration and the
numbers are the averageof all the processes.

Figures 2.2 and 2.3 are interpreted as the following. Supposethere are n mes-
sagedransferred during the application run, in which m messagesare in the range
(a;b). Also supposein thesem messagesinl are transferred through intra-CMP,

m2 through inter-CMP, and m3 through inter-node. Then:

Bar Intra-CMP(a, b] = m1l/m
Bar Inter-CMP(a, b] = m2/m
Bar Inter-node(a, b] = m3/m

Point Overall(a, b] = m/n

From Figure 2.2 we have obsened that most of the messagesn NAMD are
of size 4KB to 64KB. Messagedn this range take more than 90% of the total
number of messagesand byte volume. Optimizing medium messageomnunication
is important to NAMD performance. In the 4KB to 64KB messagaange, about
10%messagearetransferredthrough intra-CMP, 30%aretransferredthrough inter-
CMP, and 60% are transferred through inter-node. This is interesting and kind of
surprising. Intuitiv ely, in a cluster environmert intra-node comnunication is much
lessthan inter-node comnunication, becausea processhas much more inter-node
peersthan intra-node peers. E.g. in our testbed, a processhas 1 intra-CMP peer,
2 inter-CMP peers,and 12 inter-node peers. If a processhasthe samechanceto
comnunicate with every other processthen theoretically:
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Intra-CMP 1/15 = 6.7%

Inter-CMP = 2/15 = 13.3%

Inter-node = 12/15 = 80%

If we call this distribution evendistribution, then we seethat intra-node com-
munication in NAMD is well above that in ewen distribution, for almost all the
messagesizes.Optimizing intra-node communication is asimportant asoptimizing
inter-node comnunication to NAMD.

From Figure 2.3 we obsene that most messagesre small messagesn HPL,
from 256 bytes to 4KB. Howewer, with respect to data volume messagedarger
than 256KB take more perceriage. We also nd that almost all the messagesre
transferred through intra-node in our experimert. Howewer, this is a special case.
In HPL, a processonly talks to processe®n the samerow or column with itself. In
our 4x4 con guration, a processand its row or column peersare always mapped to
the samenode, therefore, almost all the commnunication take place within a node.
We have alsoconductedthe sameexperimert on a 32x8con guration for HPL. The
results are shown later in this section.

Table 6.1 preserts the total messagalistribution in NAS bendimarks, in terms
of communication channel. Again, we seethat the amourt of intra-node (intra-CMP
and inter-CMP) comrmunication is much larger than that in even distribution for
most bendimarks. On an average,about 50% messagegoing through intra-node
comnunication. This trend is not random. It is becausemost applications have
certain communication patterns, e.g. row or column based communication, ring

basedcomnunication, etc. which increasethe intra-node comnunication chance.
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Therefore,even in a large multi-core cluster, optimizing intra-node comnunication

is critical to the overall application performance.

Table 2.1: MessageDistribution in NAS Bendimarks ClassB on 16 Cores

| metric | bend. | intra-cmp | inter-cmp | inter-node |

number IS 13% 18% 69%
of FT 9% 16% 75%
messages CG 45% 45% 10%
MG 32% 32% 36%

BT 1% 33% 66%

SP 1% 33% 66%

LU 1% 50% 49%

data IS 7% 13% 80%
volume FT 7% 13% 80%
CG 36% 37% 27%

MG 25% 25% 50%

BT 0 33% 67%

SP 0 33% 67%

LU 0 50% 50%

Message Distribution on Cluster B: Figure 2.4 showvs the messagelistribu-
tion of HPL on Cluster B with a 32x8con guration. In this con guration, the even

distribution is calculated as follows:

Intra-CMP = 1/255 = 0.4%

Inter-CMP = 7/255 = 2.7%

Inter-node = 248/255= 96.1%
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From the experimertal results we seethat the perceriage of intra-nodetrac is
much higherthan that in evendistribution. The overall messagelistribution during

HPL executionis summarizedas the follows:

Intra-CMP

15.4%(number of messages)3.5% (data volume)

Inter-CMP

42.6% (number of messages)19.9%(data volume)

Inter-node = 42.0%(number of messages)76.6% (data volume)

The NAS messagalistribution on Cluster B is shovn in Table 2.2 which shows
the sametrend that the intra-node tra c is much higher than that in even distri-
bution for many applications. From this set of experimerts we can concludethat

even in alarge cluster, intra-node comnunication plays a critical role.
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Table 2.2: MessageDistribution in NAS Bendimarks ClassC on 256 Cores
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number IS 1% 4% 95%
of FT 1% 3% 96%
messages CG 23% 47% 30%
MG 15% 32% 53%
BT 0% 29% 71%
SP 0% 29% 71%
LU 0% 47% 53%
data IS 1% 4% 95%
volume FT 1% 2% 97%
CG 20% 41% 39%
MG 20% 19% 61%
BT 0 29% 71%
SP 0 29% 71%
LU 0 47% 53%
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2.2.3 Potential Cache and Memory Contention

In this experimert, we run all the bendimarks on 1x4, 2x2, and 4x1 con gura-
tions respectively, to examinethe potential bottlened in the system. As mertioned
in the beginningof Section2.2, we usethe format pxq to represemh a con guration,
in which p is the number of nodes,and g is the number of processorger node. The
resultsare shavn in Figure 2.5(a). The executiontime is normalizedto that on 4x1
con guration.

One of the obsenations from Figure 2.5(a) is that 1x4 con guration does not
perform as well as 2x2 and 4x1 con gurations for many applications, e.g. IS, FT,
CG, SP, and HPL. This is becausan 1x4 con guration all the coresare activated for
execution. As descriked earlier, on our evaluation platform, two coreson the same
chip sharethe L2 cade and memory cortroller, thus cadie and memory cortention
is a potential bottlenedk. Memory cortention is not a problem for processorn dif-
ferent chips, becausdntel Bensleysystemhasdedicatedbusfor ead chip for higher

memory bandwidth. This is why 2x2 and 4x1 con gurations perform comparably
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The sametrend can be obsened from Figure 2.5(b). In this experimert, we run
2 processen 2 processorsfrom the samechip, 2 processorsacrosschips, and 2
processorsacrossnodes respectively. We seethat inter-CMP and inter-node per-
formanceare comparableand higher than intra-CMP. The only special caseis IS,
whoseinter-CMP performanceis noticeably lower than inter-node. This is because
IS usesmarny large messagesnd inter-node performs better than inter-CMP for
large messagess shavn in Figure 2.1.

This set of experimerts indicates that to fully take advantage of multi-core
architecture, both comnunication middleware and applications should be multi-
core aware to reduce cate and memory cortention. Communication middleware
shouldavoid cade pollution asmuch aspossible,e.g. increasecommunication bu er
reuse[3(], usecade bypassmemory copy [28], or eliminate intermediate bu er [49].
Applications should be optimized to increasedata locality. E.g. Data tiling [5]] is
a commontechnique to reduceunnecessarymemorytrac. If alargedata buer is
to be processednultiple times, then instead of goingthrough the whole bu er mul-
tiple times, we can divide the bu er into smallerchunks and processthe bu er in a
chunk granularity sothat the data chunks stay in the cade for multiple operations.
We showv a small examplein the next sectionto demonstratehow data tiling can

potertially improve application performanceon multi-core system.
2.2.4 Benets of Data Tiling

To study the bene ts of data tiling on multi-core cluster, we designa microbend-
mark, which does computation and comnunication in a ring-basedmanner. Each

processhas a piece of data (64MB) to be processedfor a number of iterations.
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During execution, eat processcomputeson its own data, sendsthem to its right
neighbor and receivesdata from its left neighoor, and then starts another iteration
of computation. In the original sheme,the data processedn the original chunk size
(64MB) while in the data tiling stheme,the data are divided in to smaller chunks
in the sizeof 256KB, which caneasily t in L2 cade.

Figure 2.6 shows the bene ts of data-tiling, from which we obsene that the
executiontime reducedsigni cantly. This is becausein the tiling case,sincethe
intra-node comnunication is using CPU-basedmemory copy, the data are actually
preloadedinto L2 cade during the commnunication. In addition, we obsene that
in the caseswhere 2 processesunning on 2 coreson the same chip, since most
comnunication happensin L2 cade in data tiling case,the improvemen is most
signi cant, around 70% percen. The improvemern in the casewhere 4 processes
running on 4 coreson the same node, 8 processesunning on 2 nodes, and 16
processesunning on 4 nodesis 60%,50%, and 50%respectively. The improvemerts
are not as large asthat in the 2 processcasebecausethe comnunication of inter-

CMP and inter-node is not ase cient asthe intra-CMP for 256KB messagesize.
2.2.5 Scalabilit y

In this sectionwe presei our initial results on multi-core cluster scalability. We
also comparethe scalability of multi-core cluster with that of single-corecluster.
The results are shovn in Figure 2.7. It is to be noted that the performanceis
normalizedto that on 2 processesso 8 is the ideal speedupfor the 16 processcase.

It can be seenfrom Figure 2.7(a) that some applications shov almost ideal

speedupon multi-core cluster, e.g. LU and MG. Comparedwith single-corecluster
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scalability, we nd that for applications that shav cade or memory contention
in Figure 2.5(a), sud as IS, FT, and CG, the scalability on single-corecluster is
better than that on multi-core cluster. For other applications sudh asMG, LU and
NAMD, multi-core cluster shows the samescalability as single-corecluster. As an

initial study we nd that multi-core cluster is promising in scalability.

2.3 Summary

In this chapter we have donea comprehensie performanceevaluation, pro ling,
and analysis on multi-core cluster, using both microbendimarks and application
level bendhmarks. We have se\eral interesting obsenations from the experimertal
resultsthat give insights to both application and commnunication middleware deel-
opers. From microbendmark results, we seethat there are three levels of comnu-
nication in a multi-core cluster with di erent performances:intra-CMP, inter-CMP,

and inter-node comrmunication. Intra-CMP hasthe best performancebecausedata
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can be sharedthrough L2 cade. Large messageerformanceof inter-CMP is not
as good as inter-node becauseof memory copy cost. With respect to applications,
the rst obsenation is that courter-intuitiv ely, much more intra-node comnunica-
tion takesplacein applicationsthan that in even distribution, which indicatesthat
optimizing intra-node comrmunication is asimportant asoptimizing inter-node com-
munication in a multi-core cluster. Another obsenation is that when all the cores
are activated for execution, cadie and memory cortention may prevent the multi-
core systemfrom achieving best performance,becausetwo coreson the samechip
sharethe samelL2 cadie and memory cortroller. This indicatesthat commnunication
middleware and applications should be written in a multi-core aware mannerto get
optimal performance. We have demonstratedan exampleon application optimiza-
tion technique which improves bendimark performanceby up to 70%. Compared
with single-corecluster, multi-core cluster doesnot scalewell for applications that
shov cadhe/memory cortention. However, for other applications multi-core cluster

hasthe samescalability assingle-corecluster.
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CHAPTER 3

SHARED MEMOR Y BASED DESIGN

As mertioned in Section1.2, there exist seeral metanismsfor MPI intra-node
comnunication, including NIC-basel looplack, kernel-assistd memory mapping,
and user space memory copy.

The user spacememory copy sdheme has se\eral advantages. It provides much
higher performancecomparedto NIC-basedloopbadk. In addition, it is portable
acrossdi erent operating systemsand versions. Due to these advantages, in this
chapter we presen our sharedmemory baseddesigns.

The rest of the chapter is organizedas follows: In Section 3.1 we descrike the
basicdesignof our sharedmemory basedapproad. We presen the advanceddesign
in Section3.2 which improvesboth performanceand memory usageover the basic
design. The evaluation results and analysisare presered in Section3.3. Finally we

summarizethe results and impact of this work in Section3.4.

3.1 Basic Shared Memory Based Design

In this sectionwe descrike the basicsharedmemory baseddesignand optimiza-

tions for MVAPICH.
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Figure 3.1: Basic SharedMemory BasedDesign

3.1.1 Design

The sharedmemoryareais essetially atemporary le createdby the rst process
on a node. The le name consistsof the host name, the processid, and the user
id, sothat multiple jobs submitted by di erent userscan run simultaneously on a
node. Then all the processesnap the sharedmemory areato their own memory
spaceby calling mmap() systemcall. The shared memory areais then used for
communication amonglocal processes.

The sharedmemory areais essetially usedasa FIFO queue. The senderwrites
data to the queue and the receier reads data from the queue. There are two
volatile variablesthat indicate how many bytes have beenwritten to the queueand
how many have beenread out of the queue. The senderand the receiver changethe
valuesof thesetwo variablesrespectively. The receiwer polls on thesetwo variables

from time to time to detect incoming messageslIf they do not match it indicates
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there are new data written to the queueand it can pull the data out. Message
matching is performedbasedon source rank, tag, and contextid which identi es the
comnunicator. Messageordering is ensuredby the memory consistencymodel and
useof memory barrier if the underlying memory model is not consister.

To avoid locking, ead pair of processe®n the samenode allocate two shared
memorybu ers betweenthem for exdhangingmessageto ead other. If P processes
are presem on the samenode, the total sizeof the sharedmemoryregionthat needs
to be allocated will be P*(P-1)*BufSize, where BufSize is the size of ead shared
bu er. As an example,Figure 3.1 illustrates the scenariofor four processe®n the
samenode. Eadh processmaintains three sharedbu ers represeted with RBxy,
which refersto a Receive Bu er of processy that holds messageparticularly sert
by processx.

Eager proto col: Small messagesre sert eagerly Figure 3.1 illustrates an ex-
ample where processed and 2 excdhange message$o eadt other in parallel. The
sending processwrites the data from its sourcebu er into the sharedbu er cor-
responding to the designatedprocess(Steps 1 and 3). After the sender nishes
copying the data, then the receiving processcopiesthe data from the sharedbu er
into its destination local bu er (Steps2 and 4).

Rendezv ous proto col: Sincethereis alimit onthe sharedbu er size,messages
larger than the total sharedbu er sizecannot be sert eagerly We usea rendezwus

protocol for large messagesexplainedbelow:

Step 1. Sendersendsa reguestto_send message.

Step 2: Upon receivingthe requestto_send message,theeceiver acknowledges

by sendingbad an ok to_send message.
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Step 3: Upon receiving the ok to_send messagethe sendersendsthe actual
data chunk by chunk. If the sharedbu er is usedup beforethe messageom-
pletes,the senderwill insert a requestto_send messageagainto indicate there
is more data to come, and the receiver will adknowledge with an ok to_send

messagavhen there is freed spacein the sharedbu er.
3.1.2 Optimization for NUMA systems

As merntioned in Sectionl.1, accessing processor'docal memoryis much more
e cien t than accessingemote memory on NUMA systems.Sincethe sharedmem-
ory areais frequerly usedthroughout the application run, it is wiseto allocate it
in either the senderor the receiver's memory We chooseto allocate it in sender's
memory becausef we allocate it in the receiver's memory, then the senderalways
needsto gothrough the long latency and put the data into a remote memory. Since
the senderusually just sendsout a messageand proceedswith its work, this will
always delay the sender.Whereasif we allocateit in the sender'smemory there are
caseghat it takessometime for the receiver to cometo the receiwe point after the
sendersendsout the messagéprocessskew), and in thesecaseghe delay causedby
accessinghe remote memory is usually negligible comparedto the processskew.

Most recen operating systemsare NUMA aware and allocate bu ers in the local
memory of the processwhich rst touchesthem. Therefore,we let all the processes
touch their sendbu ers in the MPI initialization phaseto make sure the shared
bu ers are allocated in the sender'smemory By touching the bu ers in advance,

we also save the time to allocate physical memory during application’s run time,
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becausehe operating systemsusually allocate physical memory when processesire

really touching the bu ers.
3.1.3 Exploiting Processor Anit vy

Although we try to allocate bu ers in the sender'slocal memory, the operating
systemmay migrate a processto someother processorat a later stagedue to the
reasonof load balancing, thus make the processaway from its data. To prevert
processmigration, we want to bind a processto a speci ¢ processor.Under Linux
2.6 kernel, this can be accomplishedby using the schel_seta nity systemcall [37].
We apply this approad to our designto keepthe data locality. Processora nit y is
alsogood for multi-core processorsystems,becausdat preverts a processmigrating

away from the cade which cortains its data.

3.2 Adv anced Shared Memory Based Design

In this section,we provide a detailedillustration of our advancedsharedmemory
baseddesignand the results.

Our designgoal is to dewlop a shared memory comnunication model that is
e cient and scalablewith respect to both performanceand memory usage. In
the following subsectionswe start with the overall designarchitecture, followed by
a description on how the algorithm of intra-node comnunication works. Design

analysisand se\eral optimization strategiesare presetted in the end of this section.

3.2.1 Overall Arc hitecture

Throughout this section, we usea notation P to symbolize the number of pro-

cessesunning in the samenode. Eadh processhasP 1 small-sizedReceive Bu ers
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Figure 3.2: Overall Architecture of the ProposedDesign

(RB), oneSendBu er Pool (SBP), andacollectionof P 1 SendQueues(SQ). Fig-
ure 3.2 illustrates the overall architecture, wherefour processesre involved in the
intra-node comrmunication. In this illustration, we usenotations x and y to denote
a processlocal ID. The sharedmemory spacedenotedas RBxy refersto a Receie
Bu er of processy, which retains messagespeci cally sert by processx. A Send
Bu er Pool that belongsto a processwith local ID x is represeted with SBPx. A
bu er in the pool is called a cell. Every processowns an array of pointers, where
ead pointer points to the head of a queuerepreseted with SQxy, which refersto
a SendQueueof processy that holds data directed to processx.

The sizesof the receive bu er and the bu er cell aswell asthe number of cells
in the pool are tunable parametersthat can be determined empirically to achieve
optimal performance.Basedon our experimerts, we chooseto setthe sizeof receiwe
bu er to be 32 KB, the sizeof the bu er cell to be 8 KB, and the total number of

cellsin ead sendbu er pool to be 128.
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3.2.2 Message Transfer Schemes

From our past experience,transferring small messagesisually occurs more fre-
guertly than largemessagesTherefore,sendingsmallmessageshouldbe prioritized
and handled e cien tly with the purposeof improving the overall performance. In
our design, small messagesre excdangedthrough copying directly into receiving
process'receie bu er. This approad is sosimplethat extra overheadis minimized.
On the other hand, asthe messageizegrows, the memory sizerequiredfor the data
transfer increasesas well, which may lead to performancedegradationif it is not
handled properly. Therefore,we suggestdi erent ways of handling small and large
messages.

The work o ws of sendingand receiving small and large messagesre preseied

in the following.

Small Message Transfer Pro cedure

Figure 3.3depictshow a small messagés transferredby oneprocessand retrieved
by another. In this example,process0 is the sender,while processl is the receier.
The gure doesnot showv the processe® and 3 sincethey do not participate in the
data transfer. The send/receixe medanismfor small messagess straightforward as

explainedbelow.

1. The sendingprocessdirectly accesseshe receiving process'receiwe bu er to

write the actual data to be sert, which is obtained from the sourcebu er.

2. The receivingprocesscopiesthe data from its receiwe bu er into its nal spot

in the destination bu er.
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Figure 3.3: Send/Receie Medanism for a Small Message

Figure 3.4: Send/Receie Medanism for a Large Message

This procedural simplicity minimizesunnecessarysetup overheadfor every message

excange.

Large Message Transfer Pro cedure

Figure 3.4demonstratesa send/receie progressiorbetweentwo processeswhere
process0 sendsa messagédo processl. For compactnessprocesse® and 3 are not
shown in the gure sincethey are not involved in the communication process.

A sendingprocedurecomprisesof the following three steps:
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1. The sending processfetches a free cell from its sendbu er pool, copiesthe

messagdrom its sourcebu er into the free cell, and then marks the cell busy

2. The processenqueuedhe loadedcell into the correspnding sendqueue.

3. The processsendsa cortrol message,which cortains the addresslocation
information of the loadedcell, and writes it into the receivingprocess'receie

bu er.
A receivingprocedureconsistsof the following three steps:

4. The receivingprocesgeadsthe received cortrol messagdrom its receiwe bu er

to get the addresslocation of the cell containing the data being transferred.

5. Using the addressinformation obtained from the previous step, the process
directly accesseshe cell containing the transferred data, which is stored in

the sendingprocess'sendqueue.

6. The processcopiesthe actual data from the referencedcell into its own desti-

nation bu er, and subsequetly marks the cell free.

In this design,whenthe messagé¢o betransferredis largerthan the cell size,it is
padetized into smaller padkets, eat transferred independerily. The padketization
cortributes to a better throughput becauseof the pipelining e ect, wherethe receiver
can start copying the data out beforethe ertire messages completely copiedin.

In Steps1 and 6, a cell is marked busy and free, respectively. A busy cell
indicates that the cell has beenloadedwith the data and should not be disturbed
until the correspnding receiwver nishes readingthe data in the cell; whereasa free
cell simply indicatesthat the cell can be usedfor transferring a new message After
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the receiving processmarks a cell free, the free cell remainsresidingin the sending
process'sendqueue,until reclaimedby the sender. The cell reclamation processis
doneby the senderat the time it initiates a new data transfer (Step 1). We call this
cell reclamation shememark-and-swep.

Transferring large messagesitilizes indir ection, which meansthe senderputs a
cortrol messageo the receiwer's receive bu er to instruct the receiver to get the
actual data. There are two reasonsto useindirection instead of letting the receiwer
poll both its receive bu er andthe sendqueuecorrespndingto it at the senderside.
First, polling morebu ers addsunnecessaryverhead;and secondthe receier needs

to explicitly handle messagerdering if messagesomefrom di erent channels.
3.2.3 Analysis of the Design

In this sectionwe analyzeour proposeddesignbasedon the important issuesin

designingan e cien t and scalablesharedmemory model.

Lock Av oidance

A locking medanism is required to maintain consistencywhen two or more
processesttempt to accessa sharedresource. A locking operation carries a fair
amourt of overheadand may delay memoryactivity from other processesTherefore,
it is desirableto designa lock-free model.

In our design,locking is avoided by imposing a rule that only one reader and
one writer exist for eat resource.lIt is obvious that there are only onereaderand
onewriter for ead sendqueueand receiwe bu er, hencethey are free from locking
medanism. Howeer, enforcingone-reader-one-writerule on the sendbu er pools

can be tricky. After a receiving process nishes copying data from a cell, the cell
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needsto be placed bad into the sender'ssendbu er pool for future reuse. Intu-
itiv ely, the receiving processshould be the one that returns the cell back into the
sendbu er pool, however, this may leadto multiple processeseturning free cellsto
onesendingprocessat the sametime and causeconsistencyissue. In orderto main-
tain both consistencyand good performance,we use a mark-and-swep technique
to imposethe one-reader-one-writerrule on the sendbu er pools, as explainedin

Section3.2.2.

E ectiv e Cache Utilization

In this section we analyze the cade utilization for small and large messages
respectively. In our design,small messagesire transferred through receiwe bu ers
directly. Sincethe receiwe bu ers are solely designedfor small messagesthe bu er
sizecanbereally small that it cancompletely t in the cade. Therefore,successi®
accesseito the samereceive bu er will result in more cade hits and lead to a
better performance.

In the commnunication designfor large messagesafter the receiver nishes copy-
ing data out from the loaded cell, the cell will be marked free and reclaimed by
the senderfor future reuse. Sincethe sendercan reusecellsthat it usedpreviously
there is a chancethat the cellsare still residen in the cate, therefore, the sender
getsthe benet that it doesnot needto accesshe memory for every send. If the
receiwer also hasthe samecell in its cade, then the receiwer also doesnot needto

accesghe memory, becauseonly cade-to-cate transfer is needed.

45



E cien t Memory Usage

We rst illustrate the scalability issuein the current MVAPICH intra-node com-
munication support. As we mertioned in Section 3.1, the basic shared memory
baseddesignallocatesa sharedmemoryregionof sizeP (P 1) Buf Size, where
BufSize is the size of ead receive bu er (1 MB by default). This implies that the

sharedmemory consumptionbecomeshuge for large valuesof P.
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Figure 3.5: Memory Usageof the ProposedNew DesignWithin a Node

In cortrast, the proposeddesignprovides a better scalability asit only necessi
tates onesendbu er pool per processregardlessof how many processegarticipate
in the intra-node comrmunication. The newdesignusesthe samemethod asthe orig-
inal MVAPICH designfor small messageomrunication, which requiresP (P 1)
number of receiwe bu ers. Despite sud polynomial complexity, the total memory
spacepre-allocated for receiwe bu ers is still low due to the small size design of
receie bu ers. It is to be noted that simply reducingthe receiwe bu er sizein the

basic designis not practical becausdarge messagesvill su er from lack of shared

46



memory space.Simply having a sendbu er pool without the receive bu ers might
be alsonot e cien t becausesmall messagesay waste a large portion of the bu er.
We calculated the total sharedmemory usageof both MVAPICH (the original
design)and the new design. In Figure 3.5, we can obsene that the sharedmemory
consumptionof the new designis substarially lower than the original designwhen

the number processeshat areinvolvedin the intra-node communication getslarger.
3.2.4 Optimization Strategies

We discussse\eral optimization strategiesto our designin order to further im-

prove performance.

Reducing Polling Overhead

Ead processneedsto poll its receiwe bu ers to detect incoming new messages.
Two variables are maintained for bu er polling: total-in and total-out, which keep
track of how many bytes of data have ertered and exited the bu er. Whentotal-in is
equalto total-out, it meansthere is no new messagesesidingin the polled bu er. If
total-in is greaterthan total-out, it meansthe polled bu er cortains a newmessage.
total-in can newer be lessthan total-out.

In our design,ewvery processhasP 1 receiwe bu ers that it needsto poll. To
alleviate this polling overhead,we arrangethe two variables(i.e. total-in and total-
out) assaiated with the P 1 bu ers in a cortiguous array. Sud arrangemen will
signi cantly reducethe polling time by exploiting cade spatial locality, where the

variablescan be accessedlirectly from the cade.
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Reducing Indirection Overhead

Utilizing the indirection technique, which is explainedin Section3.2.2,resultsin
additional overheadbecauseto retrieve a messagethe receiving processneedsto
perform two memory accessesto read the control messageand to read the actual
data padket. Our solution to alleviate this overheadis to assaiate only one cortrol
messageavith multiple data padkets. But it is to be noted that if we sendtoo many
data padkets before sendingany cortrol messagethe receiver might not be able to
detect incoming messagesimely. Thus the optimal value of the number of cortrol

messageshould be determined experimertally.

3.3 Performance Evaluation

In this section, we presen the performanceewaluation of the advanced shared
memory based intra-node comnunication design, and compareit with the basic
sharedmemory baseddesign. The latency and bandwidth experimerts were carried
out on both NUMA and dual core NUMA clusters. We alsopresen the application
performanceon Intel Clovertown systemsat the end of this section.

Exp erimen tal Setup: The NUMA cluster is composedof two nodes. Each
node is equipped with quad AMD Opteron Processor(single core) running at 2.0
GHz. Ead processorhasa 1024KB L2 cade. The two nodesare connectedby
In niBand. We refer to this cluster as cluster A in the following sections. The
dual core NUMA cluster, referredto ascluster B, also hastwo nodesconnectedby
In niBand. Ead node is equipped with four Dual Core AMD Opteron Processor

(two coreson the samechip and two chips in total). The processorspeedis 2.0
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GHz, and the L2 cade sizeis 1024KB per core. The operating systemon the two
clustersis Linux 2.6.16. The MVAPICH versionusedis 0.9.7.

We comparethe performanceof our designto the designin MVAPICH. In the
following sections,we refer to the basicsharedmemory baseddesignasthe Original
Design and the advanceddesignasthe New Design Latency is measuredn unit of

micro second (us), and bandwidth is measuredn million bytesper second (MB/sec).
3.3.1 Latency and Bandwidth on NUMA Cluster

In this sectionwe evaluate the basicping ponglatency and uni-directional band-
width on one node in cluster A. From Figure 3.6 we can seethat the new design
improves the latency of small and medium messagedy up to 15%, and improves
the large messagédatency by up to 35%. The bandwidth is improved by up to 50%

as shavn in Figure 3.7. The peak bandwidth is raised from 1200MB/sec to 1650
MB/sec.
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Figure 3.6: Latency on NUMA Cluster

49



3.3.2 L2 Cache Miss Rate

To further analyzethe reasonof the performancegain presetted in Section3.3.1,
we measuredhe L2 cade missrate while running the latency and bandwidth bend-
marks. The tool usedto measurethe cade missrate is Valgrind [2], and the bend-
marks are the sameas usedin Section3.3.1. The results are shavn in Figure 3.8.
The results indicate that a large portion of the performancegain comesfrom the
e cient useof the L2 cate by the newdesign. This conformswell to our theoretical

analysisof the new designdiscussedn Section3.2.3.
3.3.3 Impact on MPI Collectiv e Functions

MPI collective functions are frequentlly usedin MPI applications, and their per-
formance s critical to many of the applications. Since MPI collective functions
can be implemerted on top of point-to-p oint basedalgorithms, in this section we
study the impact of the new designon MPI collective calls. The experimers were
conductedon cluster A.

Figure 3.9 shows the performanceof MPI _Barrier, which is one of the most fre-
quertly used MPI collective functions. We can seefrom the gure that the new
designimproves MPI _Barrier performanceby 17% and 19% on 2 and 4 processes
respectively, and the improvemert is 8% on 8 processes.The drop of performance
improvemen on 8 processess causedby the mixture of intra- and inter-node com-
munication that takesplace within the two separatenodesin cluster A. Therefore,
only a fraction of the overall performancecan be enhancedby the intra-node com-

munication.
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Figure 6.9(a) preserts the performanceof another important collective call
MPI _Alltoall on one node with 4 processeson cluster A. In MPI _Alltoall ewery
processdoesa personalizedsendto every other process.This gure shaws that the
performancecan be improved by up to 10% for small and medium messagesnd

25%for large messages.

1800 T T T 14.00%
L Original Design —®— 5. o — 1
~. 1600 New Design &g = o 05 8a 12.009
@ 1400 |:L -
P /
\% 10.00% -
<
3 @  8.00% o
s E
© -
c £ 000 1
[
m
: l
Z 2.0096
[} L
£ 0.00%
g %0l . ;
s BT f P
g LT ; R -
1 4 16 %es.%gge gl{ke fé%/téng 64K 256K 1M

Figure 3.7: Bandwidth on NUMA Cluster Figure 3.8: L2 Cade Miss Rate

Original Design - Originél Design — .
20 | New Design & 7000 r New Design -8~

LN
=

Latency (us)
Latency (us)

40 Latency Improvemeht — 1
10 ’%\7

2

[ -
25 | Latency Improvement —+— 4
20 + 1
10 1
5 M l
ST T T

Number OAPTOCESSES 8 1 4 16 %ES%%@E nge MI%K 64K 256K 1M

Improvement %
N
o
Improvement %
[
(6]

Figure 3.9: MPI _Barrier Performance Figure 3.10: MPI _Alltoall Performance

51



CMP Original Design —+— 12 CMP Original Design —+— 1000 CMP Original Design —+—
CMP New Design - CMP New Design % /] 900 CMP New Design -
SMP Original Design - 10 SMP Original Design & SMP Original Design -
15 SMP New Design —4- SMP New Design —- ' 800 SMP New Design —-
700

600
500
400
300
200
100

Latency (us)
=
Latency (us)
Latency (us)

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

(a) Small Messages (b) Medium Messages (c) Large Messages

Figure 3.11: Latency on Dual Core NUMA Cluster

3.3.4 Latency and Bandwidth on Dual Core NUMA Cluster

Multi-core processoris an emergingnew processorarchitecture that few study
has been done with respect to how it interacts with MPI implemertations. Our
initial researt on sud topic is presertied next, and we plan to do more in-depth
analysisin the future. The experimerts were carried out on cluster B.

Figure 3.11 demonstratesthe latency of small, medium, and large messagese-
spectively. CMP standsfor Chip-level MultiPr ocessing which we useto represen
the comnunication betweentwo processorgcores)on the samechip. We refer to
commnunication betweentwo processorson di erent chips as SMP (Symmetric Mul-
tiProcessing) From Figure 3.11we notice that CMP has a lower latency for small
and medium messagethan SMP. This is becausevhenthe messages small enough
to be resident in the cade, the processorsdo not needto accessthe main mem-
ory, thus only cae-to-cate transfer is needed. Cadthe-to-cate transfer is much

faster if two processorsare on the samechip. Howewer, when the messagas large
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and the processorsneedto accesghe main memory to get the data, CMP has a
higher latency becausethe two processorson the samechip will have cortention for
memory Figure 3.11alsoshows that the new designimprovesthe SMP latency for
all messagesizes. It alsoimproves CMP latency for small and medium messages,
but not for large messagesFurther investigation is neededto fully understandthe
reason.

The bandwidth results, shavn in Figure 3.12, indicate the sametrend. Again,
the newdesignimprovesSMP bandwidth for all messageizes,and CMP bandwidth

for small and medium messages.
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Figure 3.12: Bandwidth on Dual Core NUMA Cluster

3.3.5 Application Performance on Intel Clovertown Cluster

In this sectionwe show the application level performanceof the advancedshared
memory baseddesign.
Exp erimen tal Setup: We useda four-node cluster, eat node is equipped with

dual Intel Clovertown (quad-core)processorthat is 8 coresper node. The processor
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speedis 2.33GHz. A Clovertown chip is madeof two Woodcrest chips, which means
two coressharea 4MB L2 cade.

The bendimarkswe usedinclude IS from NAS parallel bendimarksand PSTSWM
which is a shallov water modeling application. The resultsare shavn in Figure 3.13,
from which we can seethat the advanced shared memory baseddesignimproves
application performanceby up to 5%. This is mainly due to the e cient cade

utilization of the new design.
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3.4 Summary

In this chapter, we have designedand implemenied sharedmemorybasedsthemes
for MPI intra-node communication. We start with designinga basic approat and
its optimizations. Then we proposean advancedapproad which usesthe system
cade e ciently, requiresno locking medanisms,and haslow memory usage. The
advancedapproad shows both high performanceand good scalability. Our experi-

mertal results shav that the advanceddesigncan improve MPI intra-node latency
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by up to 35% comparedto the basicdesignon singlecore NUMA systems,and im-
prove bandwidth by up to 50%. The improvemern in point-to-p oint comnunication
alsoreducesMPI collective call latency - up to 19% for MPI _Barrier and 25% for
MPI _Alltoall. We have done study on the interaction between multi-core systems
and MPI. From the experimertal results we seethat the advanceddesigncan also
improve intra-node commnunication performancefor multi-core systems. For MPI

applications, the advancedapproad improves performanceby up to 5%.
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CHAPTER 4

CPU BASED KERNEL ASSISTED DIRECT COPY

The sharedmemoryapproad descritedin Chapter 3 provideshigh performance,
but the performanceis not optimal mainly due to seeral messagecopiesinvolved.
Every processhasits own virtual addressspaceand cannot directly accessanother
process'smessagebu er. One approad to avoid extra messagecopiesis to use
operating systemkernelto provide a direct copy.

In this chapter, we propose,designand implemert a portable approad to intra-
node messagegassingat the kernel level. To achieve this goal, we designand im-
plemert a Linux kernelmodule that provides MPI friendly interfaces. This module
is independen of any comnunication library or interconnection network. It also
o ers portability acrossthe Linux kernels. We call this kernel module as LIiMIC
(Li nux kernelmodule for M PI I ntra-node Communication). We have implemerted
two versionsof LIMIC. The secondgenerationis referredto asLiMIC2. The main
di erence betweenLiMIC and LiMIC2 is the interface exposedto the MPI libraries.

The rest of the sectionis organizedas the follows: In Section4.1 we descrike
the existing kernel basedapproad, its limitations, and our approad. We preser

the detailed designand implemenation issuesn Section4.2. The evaluation results
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and analysis are presened in Section4.3. Finally we summarizethe results and

impact of this work in Section4.4.

4.1 Limitations of the Existing Approac h and Overall De-
sign of LIMIC

In this section,we descrile the existing kernelbasedsolution and its limitations.

We then proposeour approad: LIMIC.
4.1.1 Kernel-Based Memory Mapping

Kernel-basedmemory mapping approad takes help from the operating system
kernel to copy messagedlirectly from one user processto another without any
additional copy operation. The senderor the receiver processposts the message
requestdescriptor in a messagejueueindicating its virtual address,tag, etc. This
memory is mapped into the kernel addressspacewhen the other processarrivesat
the messagextangepoint. Then the kernelperformsa direct copy from the sender
bu er to the receiwer application bu er. Thus this approad involvesonly onecopy.

Figure 1.2(c) demonstratesthe memory transactions neededfor copying from
the senderbu er directly to the receiver buer. In step 1, the receiving process
needsto bring the sendingprocess’bu er into cade. Then in step 3, the receiving
processcan write this bu er into its own receie bu er. This may generatestep 2
basedon whether the bu er wasin cade already or not. Then, depending on the
cade replacemen policy, step 4 might be generatedimplicitly .

It isto be notedthat the number of possiblememorytransactionsfor the Kernel-
basedmemorymappingis always lessthan the number in User-spacesharedmemory

approad. Wealsonotethat dueto the reducednumber of copiesto and from various
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bu ers, we can maximizethe cade utilization. Howe\er, there are other overheads.
The overheadsinclude time to trap into the kernel, memory mapping overhead,and
TLB ush time. In addition, still the CPU resourceis required to perform a copy
operation.

There are se\eral previousworksthat adopt this approad, which include[43,72].
Howe\er, their designslack portabilit y acrossdi erent networks and dery exibilit y
to the MPI library dewloper. To the best of our knowledge, no other current
generationopen sourceMPI implemertations provide sud a kernel support. SGI
MPT (MessagePassingToolkit) provides a single copy support, but it dependson

XPMEM which is an SGI proprietary driver [69].
4.1.2 Our Approac h: LIMIC

It is to be noted that the kernel-basedapproad hasthe potertial to provide ef-
cient MPI intra-node commnunication. In this chapter we are taking this approad,
providing unique featuressud as portability acrossvarious interconnectsand dif-
ferert communication libraries. This sectionsharply distinguishesour approad and
designphilosoply from earlier researt in this direction. Our designprinciples and
details of this approad are descriked in Section4.2.

Traditionally, researbershave exploredkernel basedapproadhiesasan extension
to the featuresavailable in user-lewel protocols. A high level descriptionof theseear-
lier methodologiesis shovn in Figure 4.1(a). As aresult, most of thesemethodologies
have beennon-portable to other user-lexel protocolsor other MPI implemertations.

In addition, theseearlier designsdo not take into accourt MPI messagematching
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semaiics and messagejueues.Further, the MPI library blindly calls routines pro-
vided by the user-level commnunication library. Since someof the communication
libraries are proprietary, this medanism deniesany sort of optimization-spacefor

the MPI library deweloper.

MPI Library ‘ ‘ MPI Library
User-Level
Protocol User )
Level LiMIC
Kernel Protocol
Support
Specific Specific| | Any
Network Network| | Network|

(a) Earlier Design (b) LiMIC Design
Approach Approach

Figure 4.1: Approachesfor Kernel-BasedDesign

In order to avoid the limitations of the past approadieswe look towards gen-
eralizing the kernel-accessnterface and making it MPI friendly. Our implemen-
tation of this interface is called LiIMIC (Linux kernel module for M PI I ntra-node
Communication). Its high level diagram is showvn in Figure 4.1(b). We note that
sud a designis readily portable acrossdi erent interconnects becauseits inter-
face and data structures are not required to be dependen on a speci ¢ user-lewel
protocol or interconnect. Also, this designgivesthe exibilit y to the MPI library
deweloper to optimize various sthhemesto make appropriate use of the one copy
kernel medtanism. For instance, LIMIC provides exibilit y to the MPI library de-

veloper to easily choosethresholdsfor the hybrid approad with other intra-node
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communication medanismsand tune the library for speci ¢ applications. Sud ex-
ibilit y is discussedn [31]. As a result, LIMIC can provide portability on di erent

interconnectsand exibilit y for MPI performanceoptimization.

4.2 Design and Implemen tation Issues

In this section,we discussthe detailed designissuesof LIMIC and its integration

with MPI.

4.2.1 Portable and MPI Friendly Interface

In order to achieve portability acrossvarious Linux systems,we designLiMIC
to be a runtime loadable module. This meansthat no modi cations to the kernel
code is necessary Kernel modules are usually portable acrossmajor versions of
mainstreamLinux. The LIMIC kernelmodule canbe either an independen module
with device driver of interconnection network or a part of the device driver. In
addition, the interfaceis designedto avoid using commnunication library specic or
MPI implemertation speci c information.

In order to utilize the interface functions, very little modi cation to the MPI
layer are needed. Theseare required just to place the hooks of the send, receiwe
and completion of messages.The LIMIC interface traps into the kernel internally
by usingthe ioctl() systemcall. We brie y descrike the major interfacefunctions

provided by LiMIC.

- LiMIC_Isend(int dest, int tag, int context _id, void* buf, int len,
MPLRequest* req) : This call issuesa non blocking sendto a speci ed desti-

nation with appropriate messagdags.
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- LiMIC Irecv(int  src, int tag, int context .id, void* buf, int len,
MPLRequest* req) : This call issuesa non-blocking receie. It is to be noted
that blocking sendand receive can be easily implemerted over non-blocking

and wait primitiv es.

- LIMIC_Wait(int src/dest, MPLRequest* req) : This call just polls the

LiIMIC completion queueoncefor incoming sends/receies.

As descrited in Section 4.1.2, we can obsene that the interface provided by
LiMIC doesnot include any speci ¢ information on a user-le\el protocol or inter-
connect. The interface only de nes the MPI related information and has an MPI

standard similar format.
4.2.2 Memory Mapping Mechanism

To achieve one-copy intra-node messagepassing, a processshould be able to
accesgshe other processesVirtual addressspaceso that the processcan copy the
messagéo/from the other's addressspacedirectly. This canbe achieved by memory
mapping medanismthat mapsa part of the other processesaddressspaceinto its
own addressspace.After the memory mapping the processcan accessnapped area
asits own.

For memory mapping, we usekiobuf provided by the Linux kernel. The kiobuf
structure supports the abstraction that hidesthe complexity of the virtual memory
systemfrom devicedrivers. The kiobuf structure consistsof sewral elds that store
user bu er information sud as page descriptorscorrespnding to the userbu er,
o set to valid data inside the rst page,and total length of the bu er. The Linux
kernelexposedfunctions to allocate kiobuf structuresand make a mapping between
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kiobuf and pagedescriptorsof userbu er. In addition, sincekiobuf internally takes
careof pinning down the memory area, we can easily guarartee that the userbu er

is presen in the physicalmemorywhenanother procesdries to accesst. Therefore,
we can take advantage of kiobuf asa simple and safeway of memory mapping and
pagelocking.

Although the kiobuf provides many features,there are seweral issueswe must
addressn our implemenation. The kiobuf functions provide a way to map between
kiobuf and pagedescriptorsof target userbu er only. Therefore, we still needto
map the physical memory into the addressspaceof the process,which wants to
accessthe target bu er. To do so, we use the kmap() kernel function. Another
issueis a large allocation overhead of kiobuf structures. We performed tests on
kiobuf allocation time on our cluster (Cluster A in Section4.3) and found that it
takesaround 60 sto allocate onekiobuf . To remove this overheadfrom the critical
path, LIMIC kernel module preallocatessomeamourt of kiobuf structures during

the module loading phaseand managesthis kiobuf pool.

Process A Process B
1. Request (ioctl) 4. Request (ioctl)
| : \ A User
I I I
¢ ! ! 2. Map Yo kiobuf ¢ 7. Copy Kernel
I ' (map_user_kiobuf) (copy_from_user or
. L Yy copy_to_user)
-==-2=- == Kemel Memory

6. Map to Kernel Memory (kmap)

XE@ 5. Search
3. Post Request D><|:|><

Linked List of Posted Requests

Figure 4.2: Memory Mapping Mechanism
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Figure 4.2 shows the internal memory mapping operation performedby LiMIC.
When either of the messagexdangingprocessesrrives,it issuesa requestthrough
ioctl()  (Step1). If thereis no postedrequestthat can be matched with the issued
request,the kernel module simply savesinformation of pagedescriptorsfor the user
bu er and pins down it by calling mapuser _kiobuf() (Step 2). Then, the kernel
module puts this requestinto the requestqueue(Step 3). After that whenthe other
messag@artner issuesarequest(Step 4), the kernelmodule nds the postedrequest
(Step 5) and mapsthe userbu er to the kernelmemory by calling kmap() (Step 6).
Finally, if the processis the receier, the kernel module copiesthe data from kernel
memory to user bu er using copy_to _user() , otherwise the data is copied from
userbu er to kernel memory by copy_from_user() (Step 7). The data structures
in the kernel module are sharedbetweendi erent instancesof the kernel executing
on the sendingand receivingprocessesTo guarartee consistency LIMIC takescare

of locking the shareddata structures.

4.2.3 Copy Mechanism

Sincethe copy needsCPU resourcesand needsto accesspinned memory, we
have to carefully decidethe timing of the messagecopy. The messagecopy could
be donein either of the three ways: copy on function calls of receiver, copy on wait
function call, and copy on sendand receie calls.

We suggestthe designwhere the copy operation is performedby sendand re-
ceiwe functions (i.e., LIMIC_Isend and LiMIC_Irecv ) sothat we can provide better
progressand lessresourceusage. In addition, this approad is not prone to skew

between processes.The actual copy operation is performed by the processwhich
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arriveslater at the communication call. So,regardlessof the senderor receier, the
operation can be completedas soon asboth the processe$ave arrived. In addition,

only the rst processis requiredto pin down the userbu er.
4.2.4 MPI Message Matc hing

There are separatemessageajueuesfor messagesert or received through the
kernel module. This is doneto allow portability to various other MPI like message
gueues.So,in generalthe LIMIC doesnot assumeany speci ¢ message&ueuestruc-
ture. MPI messagesre matched basedon Source, Tag and Context ID. Message
matching canalsobe doneby usingwild cardslike MPLANYSOURGCE MPLANYTAG

LiIMIC implemerts MPI messagematching in the following manner:

Source in the same node: In this casethe receiwe requestis directly posted
into the queuemaintained by LIMIC. On the arrival of the messagethe kernel
instanceat the receiwer sidematchesthe messagdasedon the source,tag and

context id information and then it passeghe bu er into userspace.

Source in a dieren t node: In this case,LIMIC is no longerresponsiblefor
matching the message.The interface hooks provided in the MPI should take

care of not posting the receiwe requestinto the kernel messagejueue.

Source in the same node and MPLANYTAGASs in the rst casethe receiwe
requestis not postedin the genericMPI messagejueue,but directly into the
LIMIC messageaqueue. Now, the matching is done only by the sourceand

cortext id.
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MPLANYSOURCE&Nd MPLANYTAG In this case,the sourceof the message
might be on the samephysical node but alsoit canbe someother node which
is commnunicating via the network. So the receive requestis postedin the
MPI queue. Then the MPI internal function that sensesn arrival of message
cheds the sendqueuein the kernel module as well by using a LIMIC inter-
face,LIMIC_lprobe , and performsmessagenatching with requestsin the MPI
gueue.If the function nds a messageavhich matchesthe request,the function

performsthe receiwe operation by calling the LIMIC receie interface.

Somespecialized MPI implemenations o oad seweral MPI functions into the
NIC. For example,Quadrics performs MPI messagenatching at the NIC-level [64].
The LIMIC might needan extendedinterface for sudy MPI implemenations while

most of MPI implemerntations can easily employ LiMIC.

4.3 Performance Evaluation

In this section we ewaluate various performance characteristics of LIMIC and
LiIMIC2 ondi erent platforms. We alsopreset the performancempact on MPI+Op enMP
model.

4.3.1 Performance Evaluation of LIMIC on a Single-core
Cluster

As descriked in section 1.2, there are various designalternativesto implemert
e cient intra-node messaggassing. MVAPICH [15] version0.9.4implemerts a hy-
brid medanism of User-spacesharedmemoryand NIC-level loopbadk. The message
sizethreshold usedby MVAPICH-0.9.4 to switch from User-spacesharedmemoryto
NIC-level loopbad is 256KB. In this section,we usea hybrid approad for LiMIC,
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in which User-spacesharedmemoryis usedfor short messagegup to 4KB) andthen
Kernel-basedmemory mapping is usedto perform an one copy transfer for larger
messagesThe choiceof this thresholdis explainedbelow in section4.3.1. Howe\er,
eadt application canseta di erent threshold. Hereon, all referenceso MVAPICH-
0.9.4and LIMIC refer to the hybrid designsmenrtioned above. In addition, we also
provide performanceresults for ead of the individual designalternatives, namely,
User-spacesharedmemory, NIC loopbadk, and Kernel module.

We conductedexperimerts on two 8-node clusterswith the following con gura-

tions:

Cluster A: SuperMicro SUPER X5DL8-GG nodeswith dual Intel Xeon 3.0

GHz processors512KB L2 cade, PCI-X 64-bit 133MHz bus

Cluster B: SuperMicro SUPER P4DL6 nodeswith dual Intel Xeon 2.4 GHz

processorsb12KB L2 cade, PCI-X 64-bit 133MHz bus

The Linux kernel versionusedwas 2.4.22smpfrom kernel.org. All the nodesare
equipped with Mellanox In niHost MT23108HCAs. The nodesare connectedusing
Mellanax MTS 240024-port switch. Testcon gurations are named(2x1), (2x2), etc.
to denotetwo processe®n one node, four processe®n two nodes,and soon.

First, we ewaluate our designsat microbendmarks level. Second,we preser
experimertal results on messagdransfer and descriptor post breakdovn. Then we
evaluate the scalability of performanceo ered by LIMIC for larger clusters. Finally,

we evaluate the impact of LIMIC on NAS Integer Sort application kernel.
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Microb enchmarks

In this section,we descrile our tests for microbendimarks sud aspoint-to-p oint
latency and bandwidth. The tests were conductedon Cluster A.

The latency test is carried out in a standard ping-pong fashion. The latency
microbendimark is available from [15]. The results for one-way latency is shovn
in Figures 4.3(a) and 4.3(b). We obsene an improvemen of 71% for latency as
comparedto MVAPICH-0.9.4 for 64KB messagesize. The results clearly show
that on this experimertal platform, it is most expensiwe to use NIC-level loopbadk
for large messages. The User-spaceshared memory implemertation is good for
small messages.This avoids extra overheadsof polling the network or trapping
into the kernel. Howewer, as the messagesize increases,the application bu ers
and the intermediate shared memory bu er no longer t into the cade and the
copy overheadincreases. The Kernel module on the other hand can reduce one
copy, hencemaximizing the cade e ect. As can be noted from the latency gure,
after the messagesizeof 4KB, it becomegnore bene cial to usethe Kernel module
than User-spacesharedmemory Therefore, LIMIC hybrid usesUser-spaceshared
memory for messagesmallerthan 4KB and the Kernel module for larger messages.

For measuringthe point-to-p oint bandwidth, a simplewindow basedcommunica-
tion approat wasused. The bandwidth microbendmark is available from [15]. The
bandwidth graphsare shovn in Figures4.3(c) and 4.3(d). We obsene an improve-
mert of 405%for bandwidth for 64KB messagesizeascomparedio MVAPICH-0.9.4.
We alsoobsene that the bandwidth o ered by LIMIC dropsat 256KB messagesize.
This is due to the fact that the cade size on the nodesin Cluster A is 512KB.

Both senderand receiver bu ers and someadditional data cannot t into the cadhe
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beyond this messagesize. Howewer, the bandwidth o ered by LiMIC is still greater

than MVAPICH-0.9.4.
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LiIMIC Cost Breakdo wn

In order to ewaluate the cost of various operations which LIMIC hasto perform

for messagéransfer, we pro led the time spent by LIMIC during a ping-ponglatency
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Figure 4.4: LIMIC Cost Breakdovn (Percerage of Overall Overhead)

test. In this section, we preser results on the various relative cost breakdavns on
Cluster A.

The overheadbreakdovn for messagdransfer in perceniagesis shovn in Fig-
ure4.4(a). Weobsenethat the messageopy time dominatesthe overall send/receie
operation asthe messagesizeincreases.For shorter messagesye seethat a consid-
erableamourt of time is spert in the kerneltrap (around 3 s) and around 0.5 sin
gueueingand locking overheads(indicated as\rest"), which are shovn as55% and
12% of the overall messagédransfer overheadfor 4KB messagen Figure 4.4(a). We
alsoobsene that the time to map the userbu er to the kernel addressspace(using
kmap()) increasesasthe number of pagesin the userbu er increases.

The overheadbreakdavn for descriptor posting in percenagesis shown in Fig-
ure 4.4(b). We obsenethat the time to map the kiobuf with the pagedescriptorsof

the userbu er forms a large portion of the time to post a descriptor. It is because
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the kiobuf mapping overheadincreasesin proportional to the number of pages.
This step also involves the pinning of the userbu er into physical memory The

column labeled\rest" indicates again the queuingand locking overheads.

HPCC E ectiv e Bandwidth

To ewaluate the impact of the improvemern of intra-node bandwidth on a larger
cluster of dual SMP systems,we conducted e ective bandwidth test on Clusters
A and B. For measuringthe e ective bandwidth of the clusters,we usedb_e [66]
bendimark. This bendimark measuresthe accunulated bandwidth of the com-
munication network of parallel and distributed computing systems. This bend-
mark is featured in the High PerformanceComputing Challengebendmark suite
(HPCC) [47].

Table 4.1 shows the performanceresults of LIMIC comparedwith MVAPICH-
0.9.4. 1t is obsened that whenboth processesre on the samephysical node (2x1),
LiIMIC improvese ective bandwidth by 61% on Cluster A. It is alsoobsened that
even for a 16 processexperimert (2x8) the cluster can achieve 12%improved band-
width.

The table also shaws the performanceresults on Cluster B. The results follow
the sametrend asthat of Cluster A. It is to be noted that the messagdatency on
User-spacesharedmemory and Kernel module dependson the speedof CPU while
the NIC-level loopbak messagdatency dependson the speed of I/O bus. Since
the I/O bus speedremainsthe samebetweenClusters A and B, and only the CPU
speedreduces,the improvemer o ered by LIMIC reducesin Cluster B.

In our next experimert, weincreasedhe number of processessto include nodes

in both ClustersA and B. The motivation wasto seethe scalingof the improvemern

70



in e ective bandwidth asthe number of processess increased.It isto be noted that
the improvemern perceriage remains constant (5%) as the number of processess

increased.

Table4.1: b_e ResultsComparisons(MB/s)

Cluster | Cong. | MVAPICH | LiMIC | Improv.
A 2x1 152 244 61%
2X2 317 378 19%

2x4 619 694 12%

2x8 1222| 1373 12%

B 2x1 139 183 31%
2x2 282 308 9%

2x4 545 572 5%

2x8 1052 1108 5%

A& B | 2x16 2114 2223 5%

[ ~
L

VAPICH-0.9.4
iMIC

Time (seconds,

o B N (AJ( B )U'\
I L L I I L

Figure 4.5: IS Total Execution Time Comparisons: (a) ClassA, (b) ClassB, and
(c) ClassC

2x1 2x2 2x4 2x8 2x2 2x4 2x8

Number of Processes Number of Processes
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NAS Integer Sort

We conducted performanceewaluation of LIMIC on IS in NAS Parallel Benth-
mark suite [38 on Cluster A. IS is an integersort bendimark kernelthat stresseshe
commnunication aspect of the network. We conducted experimerts with classesA,
B and C on con gurations (2x1), (2x2), (2x4), and (2x8). The results are shown in
Figure 4.5. Sincethe classC is a large problem size,we could run it on the system
sizeslarger than (2x2). We can obsene that LIMIC can achieve 10%, 8%, and 5%
improvemen of executiontime running classesA, B, and C respectively, on (2x8)
con guration. The improvemers are shovn in Figure 4.6.

To understand the insights behind the performanceimprovemen, we pro led
the number of intra-node messagesarger than 1KB and their sizesbeing usedby
IS within a node. The results with classA are shaovn in Table 4.2. We can see
that asthe systemsizeincreases,the size of the messageseduces. The trend is
the sameon classesB and C while the messagesize becomedarger than classA.
Since LIMIC performs better for medium and larger messagesizes,we seeoverall
lessimpact of LIMIC on IS performanceas the systemsizeincreases. Also, it is
to be noted that sincethe messagesize reducesas the system size increases,the
messagesizeewertually ts in the cade sizeon (2x8) con guration. This resultsin
maximizing the bene t of LIMIC and raising the improvemen at the (2x8) system

sizeasshown in Figure 4.6.
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Table 4.2: Intra-Node MessageSize Distribution for IS ClassA

MessageSize (Bytes) | 2x1 | 2x2 | 2x4 | 2x8

1K-8K 44 | 44 | 44 | 44

32K-256K 0 0 0 | 22
256K-1M 0 0 |22 0
1M-4M 0| 22| 0 0
4M-16M 221 0 0 0
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Figure 4.7: Application Performanceof LiIMIC2 on an AMD BarcelonaSystem

4.3.2 Application Performance of LIMIC2 on an AMD
Barcelona System
In this section, we evaluate the performanceof LIMIC2 on an AMD Barcelona
systemusing IS classA in NAS, and comparewith the sharedmemory approad.
The results are showvn in Figure 4.7. The systemhas four quad-coreOpteron chips
(16 coreson a node) running at 2GHz. Ead core has a 512KB L2 cade. The
operating systemis Linux 2.6.18. From Figure 4.7 we can seethat LIMIC2 improves

IS performanceby up to 18%.
4.3.3 Performance Impact on MPI+Op enMP Mo del

MPI1+Op enMP [46]model explorestwo levelsof parallelism. It usesOpenMP [39]
for multipro cessingwithin a node and MPI for comnunication acrossnodes.
MPI1+Op enMP wasproposedbecausehe communication overheadin MPI washigh
and it wasmore e cient to useOpenMP, essetially the threads and sharedmem-

ory model, within a node. Our work on MPI intra-node commnunication haslargely
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reducedthe communication overheadand it is interesting to re-examinethe relative
performanceof pure MPI versusMPI+Op enMP. In this section,we evaluate the per-
formanceof thesetwo modelsusing LU-MZ and SP-MZ [35], the multi-zone version
of LU and SP in NAS bendmarks, which are implemerted with MPI+Op enMP.
The results are shavn in Figure 4.8.

In this experimert, we usetwo Intel Clovertown systems. Each node has two
guad-corelntel Clovertown processorsand two nodesare connectedby In niBand.
Ead sacket hastwo chips and two coreson the samechip sharea 4MB L2 cade.
In the legend, 2x8 meansthere are 2 processesead running on one node with 8
OpenMP threads, which is the traditional MP1+Op enMP model. 16x1 meansthere
are 16 MPI processesnd eah processonly hasonethread, which is essetially the
pure MPI model. Similarly, 4x4 means4 processewith 4 threads per processand
8x2 means8 processewith 2 threads per process. It is to be noted that in the
4x4 mode, eath MPI processruns a socket, and in the 8x2 mode, eady MPI process
runs on a chip. We have two obsenations from Figure 4.8. First, if we compare
the performanceof the traditional MPI+Op enMP with pure MPI, i.e. compare2x8
with 16x1,we canseethat they perform almostthe same,actually pure MPI is even
slightly better. Secondwe nd that 4x4 and 8x2 perform better than both 2x8 and
16x1. Theseindicate that with e cient MPI intra-node comnunication, pure MPI
can perform as well as the traditional OpenMP+MPI model for someapplications
and OpenMP+MPI needsto changeto smaller granularity for better performance.
When OpenMP+MPI usessocket or chip granularity, the improvemen on MPI

intra-node communication performancewill bene t the OpenMP+MPI model. The
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Figure 4.8: Performancelmpact on MPI+Op enMP Model

relative performanceof MPI and MPI1+Op enMP also dependson application pat-

terns and problem sizesand will needto be thoroughly studied in the future.

4.4 Summary

In this chapter we have designedand implemerted a high performanceLinux
kernel module (called LIMIC) for MPI intra-node messagepassing. LIMIC is able
to provide MPI friendly interfaceand independencdrom proprietary communication
libraries and interconnects.

To measurethe performanceof LIMIC, we have integrated it with MVAPICH.
Through the bendimark results, we could obsene that LIMIC improved the point-
to-point latency and bandwidth up to 71% and 405%, respectively. In addition,
we obsened that employing LIMIC in an 8-node In niBand cluster, increasedthe
HPCC e ective bandwidth by 12%. Also, our experimerts on a larger 16-nade clus-

ter revealedthat the improvemer in HPCC e ective bandwidth remainsconstart
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asthe number of processesncreased.Further, LIMIC improved the NAS IS bend-
mark executiontime by 10%, 8%, and 5% for classesA, B, and C respectively, on
an 8-node cluster. Similarly, we obsene that LIMIC2 hasimproved IS performance
on an AMD Barcelonasystemby up to 18%. We have also conducted preliminary
study on the MPI1+Op enMP model and nd that MPI+Op enMP can also bene t

from our work.
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CHAPTER 5

DMA BASED KERNEL ASSISTED DIRECT COPY

Direct Memory Access(DMA) has beentraditionally usedto transfer the data
directly from the host memory to any input/output devicewithout the host CPU
intervertion. Networks sud as In niBand [6] provide a zero-coy data transfer
support. Howewer, sud solutions are mainly used for transferring data from one
node to another [54]. Researbersin the past have attempted to useDMA engines
to acceleratebulk data movemen within a node[33]. Many of theseapproateshave
not ertirely succeededlueto hugeDMA startup costs,completionnoti cation costs
and other performance-relatedssues.Recetly, Intel's I/O AccelerationTednology
(IO AT) [44,57, 68]introducedan asyntcironousDMA copy enginewithin the chip
that has direct accessto main memory to improve performanceand reduce the
overheadsmertioned above. In this chapter, we presen our DMA basedkernel
assisteddirect copy approad for MPI intra-node communication.

The restof the chapter is organizedasthe follows: Weintro ducethree schhemeswe
have designedfor IPC in Section5.1 and descrike the integration of thesesthemein
MPI in Section5.2. We presen the MPI level performanceealuation in Section5.3

and nally summarizein Section5.4.
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5.1 Design of the DMA Based Schemes

We have designedthree sdhemes,namely SCI, MCI, and MCNI. In this section

we descrike the detailed designof thesesdhemes.

5.1.1 SCI (Single-Core with /O AT)

The SCI schemeo o adsthe memory copy operation to the I/O AT's hardware
copy engineand usesthe kernelmodule to exposethe featuresof the hardware copy
engineto userapplications in order to perform asyndronous memory copy opera-
tions. We have extendedthe support of asyndironous memory copy operations for
both single processasan o o adal memcpyand IPC. User applications cortact the
kernel module (referred to as memory copy module in Figure 5.1(b)) for o oading
the copy operation. The kernelmodule takeshelp from the underlying DMA module
in initiating the memory copy operation acrossead of the DMA channels. On a
completion noti cation request,the kernel module cheds the progressof memory
copy operation and informs the application accordingly In addition, tasks sud as
pinning the application bu ers, posting the descriptors, releasingthe bu ers are
also handled by the kernel module. The SCI stheme also supports page cading
medanism to avoid pinning of application bu ers while performing memory copy
operations. In this medanism, the kernelmodule cadesthe virtual to physical page
mappings after locking the application bu ers. Once the memory copy operation
nishes, the kernel module doesnot unlock the application bu ers in order to avoid
the pinning cost if the sameapplication bu er is reusedfor another memory copy

operation.
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For single processoperations, we provide memcpy like interfacesas shavn in
Table5.1. And for IPC, we provide sacket like interfaceswhich are illustrated later

in Table5.2in Section5.2.

Table 5.1: Basic Interfacesfor Using I/O AT Copy Engine

Operation Description

ioat_copy(src, dst, len) | Blocking copy routine
ioat_icopy(src, dst, len) | Non-blocking copy routine
ioat_ched_copy(cookie) | (Non-blocking) ched for
completion
ioat_wait_copy(cookie) | (Blocking) wait for
completion

5.1.2 MCI (Mult-Core with /O AT)

While the SCIl sthemehelpsuserapplicationsto o 0 ad memorycopy operations,
se\eral critical operationsstill remainin the critical path, causingoverheadssud as
copy engineinitiation overheads,pagelocking overheads,cortext switch overheads,
syndironization overheadsetc. In this section,we descrike the MCI schemewhich is
designedto alleviate theseoverheadsto achieve maximum overlap betweenmemory
copy operation and computation.

The main idea of MCl sthemeis to o 0 ad the copy operation to the hardware
copy engineand onload the tasks that fall in the critical path to another core or
a processorso that applications can exploit complete overlap of memory operation

with computation.
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Figure 5.2ashavsthe variouscomponerts of the proposedsdieme. Sincethe copy
engineis accessibleonly in the kernel space,we dedicatea kernel thread to handle
all copy enginerelated tasks and allow user applications to commnunicate with the
kernelthread to perform the copy operation. The kernelthread alsomaintains a list
of incomplete requestsand attempts to make progressfor theseinitiated requests.
Apart from servicing multiple user applications, the dedicated kernel thread also
handlestasks sud as locking the application bu ers, posting the descriptors for
eat userrequeston appropriate channels,cheking for devicecompletions,releasing
the locked bu ers after completion evernts. Sincethe critical tasks are onloadedto
this kernelthread, the userapplication is freeto executeother computation or even
executeother memory copy operations while the copy operation is still in progress

thus allowing almost total overlap of memory copy operation and computation.
5.1.3 MCNI (Multi-Core with No /O AT)

In order to provide asyndironous memory copy operations for systemswithout
the copy engine support, we have proposeda MCNI sdieme (Multi-Core systems
with No I/O AT) that onloadsthe memory copy operation to another processoror
a corein the system. This schemeis similar to the MCI schemedescribed above.
In this scheme,we dedicatea kernel thread to handle all memory copy operations,

thus relieving the main application thread to perform computation.
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5.2 Integration with MV APICH

In this section, we describe our MPI intra-node commnunication implemertation
to take advantage of the kernel module assistedmemory copy operations. Speci -
cally we discusshow we integrate the kernel module that supports the SCI, MCI,
and MCNI approatesdescriked in Section1.2and 1.2in MVAPICH.

The kernelmodule exposeghe following userinterface,asshaovn in Table5.2,for
applicationsto exchangemessageacrossdi erent processesioat_read and ioat_write
operations read and write data onto another process. ioat_iread and ioat_iwrite

operationsinitiate the data transfer.

Table 5.2: Kernel Module Interfacesfor IPC

Operation Description

ioat_iread(fd, addr, len) | Non-blocking read routine
ioat_iwrite(fd, addr, len) | Non-blocking write routine
ioat_read(fd, addr, len) | Blocking read routine
ioat_write(fd, addr, len) | Blocking write routine

ioat_ched(cookie) (Non-blocking) ched for
read/write completion
ioat_wait(cookie) (Blocking) Wait for

read/write completion

Becauseof the initiation overhead,it is only bene cial to useasyndironousmem-
ory copy operationsfor large messageslin our design,small messageare still trans-
ferred eagerlythrough the userspacesharedmemory area. For large messagesye
use the shared memory area for handshale messagesand asyndironous memory

copy operationsfor transferring the data. The protocol is descrited as below:
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Step 1. The sendersendsa requestto_send message.

Step 2: The senderthen postsits sendrequestby initiating a non-blocking
IPC write requestto the kernel for performing asyndéronous memory copy

operations, and puts this requestinto a pending sendqueue

Step 3: Upon receiving the requestto_send the receiwer postsits receiwe re-
guest by initiating a non-blocking IPC read requestto the kernel for per-
forming asyndronous memory copy operations, and puts this requestinto a

pendingrecv_queue

Step 4: When the MPI program tries to make progress,the senderand the
receiver chek the completion of the pending operations by initiating a non-
blocking IPC ched requestto the kernelto ched for completion and inform

the upper layer about the completion of the operations.

The threshold to switch from Eager protocol to Rendezvousprotocol is a run
time parameterwhich should be tuned basedon the systemperformance.

The potertial bene ts of using asyndéronous memory copy operations for MPI
intra-node communication comefrom seeral aspects. First, it reducesthe number
of memory copies. Secondthe SCl and MCI approatescanacdieve communication
and computation overlap, sincethe memory copy is doneby the DMA engine. And
third, sincethe memorycopy in the SCland MCI approadhesdoesnot involve cade,

communication bu ers will not disturb the cade cortent.
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5.3 Performance Evaluation

In this sectionwe presen the MPI level evaluation of kernel basedapproades.
We rst presem microbendimark performance,followed by application level perfor-
mance.

Figure 5.3 shows the MPI level intra-node latency and bandwidth. The Ren-
dezvousthreshold is 32KB, which meansmessagesmallerthan 32K are transferred
through sharedmemory in all the schemes. Therefore, we only shav results larger
than 32KB. From Figure 5.3(a) we can seethat all the kernel basedasyndronous
memory copy sthemesare able to achieve better performancethan sharedmemory
stheme, e.g. the MCI sthemeimproves latency by up to 72% comparedto shared
memory sheme(SCNI). Among the three asyndironousmemory copy schemes,the
MCI schemeperformsthe best. The reasonsare: comparedwith the SCI scheme,
the MCI sdhemeonloadsthe operationsin the critical path to another thread; and
comparedwith the MCNI stheme, the MCI sheme usesthe DMA engine which
copiesmemory more e ciently for large blocks. The bandwidth result showvn in
Figure 5.3(b) revealsthe sametrend. Comparedwith the sharedmemory (SCNI)
sheme,the MCI sdhemeimprovesbandwidth by up to 170%. It is to be noted that
the bandwidth of both the sharedmemory shhemeand the MCNI schemedrops at
2MB. This is becauseboth of these schemesinvolve cade for memory operations
and the L2 cade sizeis 2MB in our testbed. Therefore,whenthe messages larger
than the cade size,there is an expected bandwidth drop.

WeuselSin NAS parallel bendymarks[38 and PSTSWM [20]for our application
level performanceevaluation. The normalizedexecutiontime is shovn in Figure 5.4.

The results were taken on a single node. Sincethe MCI and the MCNI schemes
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Figure 5.3: MPI-level Latency and Bandwidth

needan additional thread to handle someof the operations, it is not appropriate to
useall the processordor MPI tasks, that is why we only shav the performanceof
sharedmemory (SCNI) and SCI sthemesfor 4 processes.From Figure 5.4 we can
seethat the improvemern in microbendymarks have beentranslated into application
performance. The asyndironous memory copy operations have improved IS perfor-
manceby up to 12%,and PSTSWM performanceby up to 7%. The improvemert is
expected becauseboth IS and PSTSWM usea lot of large messagesThe message
sizedistribution is showvn in Table 5.3, which is pro led in terms of number of mes-
sages.Further, we obsene that although large messagedominatein PSTSWM, the
improvemen seenis not signi cant. This is becausePSTSWM is a computation
intensive bendhmark, e.g. when running the medium problem size on 4 processes,
only 6.6% of the total time is spert in MPI. From Figure 5.4 and Table 5.3 we can
seethat the asyndironous memory operations proposedin this paper will bene t

MPI applications which have bulk data transfer.

86



Normalized Execution Time

12

0.8

0.6

0.4 4

0.2 4

Eshared memory BSCI(DMA) OMCI (DMA+core)

COMCNI(core) ‘

small
Benchmarks

(a) 2 Processes

IS-A IS-B IS-C PSTSWM-

PSTSWM-
medium

Eshared memory

B SCI (DMA)

1.2

0.8 +—

0.6 +—

0.4 +—

Normalized Execution Time

IS-A IS-B

IS-C PSTSWM- PSTSWM-

small
Benchmarks

(b) 4 Processes

Figure 5.4: MPI Application Performance

Table 5.3: MessageSizeDistribution of MPI bendimarks

MessageSize 0-32KB | 32KB - 1MB | 1MB - 64MB
IS.A.2 68.1% 0 31.9%
IS.A.4 70.6% 0 29.4%
IS.B.2 68.1% 0 31.9%
IS.B.4 70.6% 0 29.4%
IS.C.2 68.1% 0 31.9%
IS.C.4 70.6% 0 29.4%
PSTSWM.small.2 4.0% 0.4% 95.6%
PSTSWM.small.4 3.6% 96.4% 0
PSTSWM.medium.2 | 4.0% 0 96.0%
PSTSWM.medium.4 | 3.0% 0.5% 96.5%
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5.4 Summary

In this chapter, we have proposedthree sdhemesto provide overlap of mem-
ory copy operation with computation. In the rst sdieme, SCI (Single-Corewith
I/O AT), we o0 o ad the memory copy operationsto the Intel on-chip DMA engines.
In the secondscheme,MCI (Multi-Core with 1/0 AT), we not only o oad the mem-
ory copy operation, but alsoonload the startup overheadsasseiated with the copy
engineto a dedicatedcore. For systemswithout any hardware copy enginesupport,
we have proposeda third scheme,MCNI (Multi-Core with No I/O AT) that onloads
the memory copy operation to a dedicate core. We have integrated the sthemes
with MPI library, and done MPI level performanceevaluation. Our results shav
that MPI latency and bandwidth canbe improved signi cantly and the performance
of applications suc asNAS and PSTSWM can be improved by up to 12%and 7%,

respectively, comparedto the traditional implemenations.
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CHAPTER 6

EFFICIENT KERNEL-LEVEL AND USER-LEVEL
HYBRID APPR OACH

Traditionally there have beenthree approadiesfor MPI intra-node commnunica-
tion: network loopbadk, user-leel sharedmemory, and kernel assisteddirect copy,
asdescrikedin Section1.2. In order to obtain optimized MPI intra-node comnuni-
cation performance,it is important to have a comprehensie understanding of the
approadiesand improve upon them. Sincenetwork loopbad is not commonly used
in modern MPI implemertations due to its higher latency, in this chapter we only
considerthe sharedmemory and kernel-assistecapproadies. To achieve high perfor-
mance,in this chapter we designand dewelop a set of experimerts and optimization

sthemes,and aim to answer the following questions:
What are the performance characteristics of thesetwo approaches?
What are the advantagesand limitations of thesetwo approaches?
Can we designa hybrid schemethat takesadvantagesof both approaches?
Can applications bene t from the hybrid scheme?

We have carried out this study on an Intel quad-core(Clovertown) cluster and
usea three-stepmethodology. The rest of the chapter is organizedas the follows:
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In Section 6.1 we introduce LIMIC2, the kernel basedapproad usedin the study.
We present the initial performancestudy using micro-bendimarksin Section6.2 and
proposean e cien t hybrid approad in Section6.3. We evaluate the hybrid approadh
using collective operations and applicationsin Section6.4and nally summarizein

Section6.5.

6.1 Intro duction of LiMIC2

As descrited in Chapter 4, LIMIC is a Linux kernel module that directly copies
message$rom the userbu er of one processto another. It improves performance
by eliminating the intermediate copy to sharedmemorybu er. The rst generation
of LIMIC [49] is a stand-alonelibrary that provides MPI-lik e interfaces, sud as
LiMIC _sendand LiMIC _recv. The secondgeneration,LIMIC2 [5(], providesa set of
lightweight primitiv esthat enablesMPI libraries to do memory mapping and direct
copy, and relieson the MPI library for messagematching and queueing. Therefore,
comparedwith LIMIC, LIMIC2 provides lower overheadand implemenation com-
plexity. In this chapter, we use MVAPICH-LIMIC2, which integrates MVAPICH
with LiMIC2 for intra-node comnunication.

MVAPICH-LIMIC2 usesa rendezwus protocol for communication. The sender
rst sendsa requestto_send messagdo the receiwer together with the sendbu er
information. Upon receiving the request,the receiver mapsthe sendbu er to the
kernel spaceand copy the messagedo its receive bu er. When the copy nishes, the

receiver sendsa complete messageo the sender.
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Figure 6.1: lllustration of Intel Clovertown Processor

6.2 Initial Performance Evaluation and Analysis: Micro-
Benchmarks

In this section we study the performanceof shared-memory(MVAPICH) and
LiIMIC2 (MVAPICH-LIMIC2) approatesusing micro-bendimarks.

Testbed: We usean Intel Clovertown cluster. Each node is equipped with dual
guad-core Xeon processor,i.e. 8 coresper node, running at 2.0GHz. Eadc node
has 4GB main memory The nodesare connectedby In niBand DDR cards. The
nodesrun Linux 2.6.18. We conduct the micro-bendimark experimerts on a single
node. As shown in Figure 6.1, there are three casesof intra-node comnunication:

shared-cahe, intra-socket, and inter-socket.
6.2.1 Impact of Pro cessor Topology

As descrilked above, there are three casesof intra-node commnunication on our
system: shared cade, intra-socket, and inter-socket. In this section we examine
the bandwidth of MVAPICH and MVAPICH-LIMIC2 in thesethree cases.We use
multi-pair bendymarks [15 instead of single-pair becauseusually all the coresare

activated when applications are running. On our systemthere are 8 coresper node,
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Figure 6.2: Multi-pair Bandwidth

sowe create4 pairs of comnmunication. The bendmark reports the total bandwidth
for the 4 pairs.

The multi-pair bandwidth results are shovn in Figure 6.2. In this bendymark,
eat sendersends64 messagedo the receiver. Ead messages sert from and
received to a di erent buer. The sendbu ers are written at the beginning of the
bendmark. When the receiwer getsall the messagest sendsan adknowledgemenh
We measurethe bandwidth achieved in this process.

From Figure 6.2(a), we seethat MVAPICH performs better than MVAPICH-
LiIMIC2 up to 32KB for the sharedcade case. In this case,becausethe two cores
sharethe L2 cate, memory copiesonly involve intra-cache transactionsaslong as
the data can t in the cade. Therefore,although there is onemore copy involved in
MVAPICH, the costof the extra copy is sosmallthat it hardly impacts performance.
On the other hand, MVAPICH-LIMIC2 usesoperations sud as trapping to the
kerneland mappingmemory This overheadis su cien tly largeto negatethe bene t

of having only one copy. Therefore,only for large messageshat cannot totally t
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in the cade we can seethe bene t with MVAPICH-LIMIC2. We note that the L2
cade on our systemis 4MB and sharedbetweentwo cores;essetially eat corehas
about 2MB cade space. Sincein this experimert the window sizeis 64, for 32KB
messageshe total bu er is already larger than the available cate space(32KB x
64 = 2MB).

In comparison,if the coresdo not sharecade, then MVAPICH-LIMIC2 shaows
bene ts for a much larger range of messagesizes, starting from 2KB for intra-
socket and 1KB for inter-socket (seeFigures 6.2(b) and 6.2(c)). This is because
in thesetwo casesmemory copiesinvolve either cade-to-cate transaction or main
memory accesswhich is relatively expensiwe. Therefore,saving a copy canimprove
performancesigni cantly. We obsene that with MVAPICH-LIMIC2, bandwidth is

improved by up to 70% and 98%for intra-socket and inter-socket, respectively.
6.2.2 Impact of Buer Reuse

Figure 6.2 clearly shovs that comrmunication is moree cient if the bu ers arein
the cade. Bu er reuseis oneof the most commonlyusedstrategiesto improve cathe
utilization. In this sectionwe examinethe impact of bu er reuseon MVAPICH and
MVAPICH-LIMIC2. Thereisnobu er reusein the bendimark usedin Section6.2.1
sinceead messages sert from and received to a di erent bu er. To simulate the
bu er reusee ect in applications, we modify the bendimark to run for multiple
iterations sothat starting from the seconditeration the bu ers are reused. In the

beginning of ead iteration we rewrite the sendbu ers with new cortent.
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The intra-socket results are shovn in Figure 6.3. The sharedcade and inter-
socket results follow the sametrend. From Figure 6.3 we can seethat the perfor-
manceof both MVAPICH and MVAPICH-LIMIC2 improveswith bu er reuse.This
is mainly due to cade e ect: starting from the seconditeration, the bu ers may
already residein the cade. For messages$arger than 32KB, bu er reusedoesnot
a ect the performanceof either MVAPICH or MVAPICH-LIMIC2 becausehe total
bu er sizeis already larger than the cade size(32KB x 64 = 2MB).

Comparingthe performanceof MVAPICH and MVAPICH-LIMIC2 in the bu er
reusesituation, we seethat the bene t of using MVAPICH-LIMIC2 is larger than
that in the no bu er-reuse casefor mediummessagesThe reasonis that MVAPICH-
LiMIC2 doesnot usethe intermediate bu er for data transfer, and thus has better
cade utilization. We analyzecade utilization in detail in Section6.2.3. From the
results shown in this section we concludethat applications that have more bu er
reusepotentially bene t more from MVAPICH-LIMIC2.

A similar trend can be obsened with multi-pair latency test too. The results

are not shavn hereto avoid redundancy
6.2.3 L2 Cache Utilization

In this section,we analyzethe cade e ect in the bu er reuseexperimen.

We usethe samebendimark asin Section6.2.2,and useOPro le [19]to pro le
the L2 cathe missesduring the experimert. We showv the number of L2 catde misses
as well as the improvemer in cade utilization acdiieved by MVAPICH-LIMIC2
over MVAPICH in Figure 6.4. We start from 1KB sinceMVAPICH-LIMIC2 shaws

better performancestarting from 1KB in Figure 6.3. As expected,we seethat cade
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missesincreasewith increasein messagesize. For the whole range of messagesizes,
MVAPICH-LIMIC2 has fewer cate missesthan MVAPICH, showving a constart
improvemen of about 7% when the messages larger than 16KB. This is because
MVAPICH-LIMIC2 doesnot involve anintermediatebu er like MVAPICH. Another
interesting obsenation is that the improvemert percenage presets almostthe same
trend asthe performancecomparisonin Figure 6.3. This further explainsthe bene ts

obtained by MVAPICH-LIMIC2 and demonstratesour conclusionin Section6.2.2.
6.2.4 Impact of Pro cess Skew

Processskew can potentially degradeapplication performance. In this section,
we want to examinethe ability of MVAPICH and MVAPICH-LIMIC2 to overcome
processskew e ect.

As descriked in Section 6.1, MVAPICH-LIMIC2 copiesmessageslirectly from
the sender'suserbu er to the receiver's userbu er with the help of the OS kernel.

Therefore,a sendoperation cannot completeuntil the matching receive completes.
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This meansthat the MVAPICH-LIMIC2 performancemight potertially be in u-
encedby processskew. On the other hand, MVAPICH usesan intermediate bu er
and eagerprotocol for small and medium messagesThis meansthat for small and
medium messagesa send operation simply involves copying messageo the inter-
mediate bu er without interaction with the receiwe process. Therefore, MVAPICH
is potenrtially more skew-tolerart.

We have designeda bendimark that simulates the processskew e ect. Fig-
ure 6.5 illustrates the algorithm. There are two processesnvolved, a producer and
a consumer. The producer computesfor c1 amourt of time, and then sendsthe in-
termediateresult to the consumerusingthe non-blocking MPI _Isend The consumer
receivesthis messagausing the blocking MPI _Recv, and doesfurther processingon
it for c2 amourt of time. This processrepeatsfor window size iterations, and then
the producer calls MPI Waitall to make sure all the MPI _Isend's have beencom-
pleted. This kind of scenariois commonly usedin many applications. We setc2 to

be much largerthan cl sothat the two MPI processesire skewed. We measurethe
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Figure 6.5: ProcessSkew Bendimark

total amount of time that the producer needsto complete this process,shovn as
c3 in Figure 6.5. This is essehally the latency on the producer side beforeit can
cortinue with other computation work.

Basedon the characteristicsof MVAPICH and MVAPICH-LIMIC2, theoretically
we expect them to perform asfollows:

c3(MVAPICH) = (cl + t(MPI _Isend)) * window.size+ t(MPI _Waitall)

c3(MVAPICH-LIMIC2) = (t(MPI _Recv) + c2) * window.size+ t(MPI Waitall)

Sincec?2 is much larger than c1, we can expect c3(MVAPICH-LIMIC2) to be
much larger than c3(MVAPICH) .

We show the experimertal resultsin Figure 6.6. In this experimert, we set the
messagesize as 16KB, c1=1us and windowsize=64, and record the producer la-
tency (c3) with di erent consumercomputation time (c2). From Figure 6.6, we
can seethat the experimertal result conformsto the theoretical expectation that
c3(MVAPICH) is much lower than c3(MVAPICH-LIMIC2) . Further, c3(MVAPICH)

does not increaseas c2 increases,indicating that MVAPICH is more resiliert to
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Figure 6.6: Impact of ProcessSkew

processskew. On the other hand, c3(MVAPICH-LIMIC2) grows linearly as c2
increaseswhich could be a potertial limitation of MVAPICH-LIMIC2. We will de-
scribe optimizations to best conbine sharedmemory and LIMIC2 in Section6.3.2

to alleviate processskew e ect.

6.3 Designing the Hybrid Approac h

From the micro-bendymark results and analysis, we have seenthat MVAPICH
and MVAPICH-LIMIC2 both have advantagesand limitations in di erent situations
and for di erent messagsizes.In this section,we proposetwo optimization sthemes,
topology-avare thresholds and skew-awvare thresholds,that e ciently conbine the

sharedmemory approad in MVAPICH with LiMIC2.
6.3.1 Topology Aw are Thresholds

We needto carefully decide the threshold to switch from shared memory to

LIMIC2 in order to e ciently combine these two approades. From the results
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showvn in Section6.2.1,we know that the performancecharacteristicsof MVAPICH
and MVAPICH-LIMIC2 are di erent for di erent intra-node comnunication cases
(shared cade, intra-socket, and inter-socket). Therefore, a single threshold may
not su ce for all the cases.In this section,we illustrate our designof the topology
aware thresholds.

The latest Linux kernels have the ability to detect the topology of multi-core
processors.The information is exported in \sysfs" le system[70. The following
elds exported under /sys/devices/system/cpu/cpuX/topology/ provide the topol-

ogy information that we need(X in cpuX is the CPU number):

physical padkageid: Physical sacket id of the logical CPU

coreid: Coreid of the logical CPU on the socket

By parsingthis information, every processhasthe knowledgeabout the topology:.
If the cate architecture is alsoknown (Figure 6.1), for a given connection,a process
knows which caseit belongsto - sharedcade, intra-socket, or inter-socket. It is
thus ableto usedi erent thresholdsfor di erent cases.Of course,to make surethat
the processdoesnot migrate to other processorswe usethe CPU anity feature
provided by MVAPICH [15].

Basedon the resultsin Figure 6.2, we use32KB asthe threshold for the shared
cade case,2KB for intra-socket, and 1KB for inter-socket. After we apply these
thresholds,we have the optimized resultsfor all the cases.The resultsare presened

in Figure 6.7.

99



The topology detection method discussedn this section can be usedon other
Linux basedplatforms too, sudh asAMD multi-core systems.Also, di erent kinds of

optimizations can be applied basedon topology information and platform features.
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Figure 6.7: Multi-pair Bandwidth with Topology Aware Thresholds

6.3.2 Skew Aw are Thresholds

We have seenfrom Section 6.2.4 that the shared memory approat used in
MVAPICH is more resiliert to processskew for medium messages.On the other
hand, MVAPICH-LIMIC2 provides higher performancefor medium messages.To
take advantagesof both methods, we have designedan adaptive schemethat uses
sharedmemory when there is processskew, and LIMIC2 otherwise.

We detect processskew by keepingtrack of the length of the unexpected queueat
the receiwer side. Messageshat are received beforethe matching receiwe operations
have beenposted are called unexpected messages Sud requestsare queuedin an

unexpectedqueue. When the matching receiw is posted,the correspnding request
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is removed from the unexpected queue. Therefore, the length of the unexpected
gueuere ects the extent of processskew. If the length is larger than the threshold
for a long period of time, then the receiver determinesthat processskew has oc-
curred, and sendsa cortrol messagdo the senderto indicate the situation. Upon
receiving this messagethe senderincreaseshe threshold to switch to LIMIC2 for
this connectionsothat medium messagesvill go through sharedmemoryto allevi-
ate the processskew e ect. Later if the receiver detects processskew has gone, it
can sendanother control messagesothat the senderwill changebad the threshold
to useLiMIC2 for higher performance.

We show the results of the skew-avare thresholdsin Figure 6.8. We usedthe
samebendmark with the sameset of parametersasdescrited in Section6.2.4. We
seethat the sendingprocesscan quickly notice the processskew situation and adapt
the threshold to it. As a result, the skew-avare MVAPICH-LIMIC2 achieves much

lower producer latency, closeto that of MVAPICH.
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6.4 Performance Evaluation with Collectiv es and Applica-
tions

In this sectionwe study the impact of the hybrid approad on MPI collective op-
erations and applications. We refer to the hybrid approad as MVAPICH-LIMIC2-
opt becauseit is essetially an optimized version of MVAPICH-LIMIC2. We use
Intel MPI Bendimark (IMB) [8] for collectives, and NAS [38, PSTSWM [20] and
HPL from HPCC bendmark suite [47] for applications. To better understandthe
application behaviors and relationship with MPI implemertations we have alsodone

pro ling to the applications.
6.4.1 Impact on Collectiv es

We shaw the results of three typical collective operations, MPI _Alltoall,

MPI _Allgather, and MPI _Allreduce, in Figure 6.9. MPI collective operations can
be implemerted either on top of point-to-p oint communication or directly in the
messagepassinglayer using optimized algorithms. Currently MVAPICH-LIMIC2-

opt usespoint-to-p oint basedcollectivesand MVAPICH usesoptimized algorithms
for MPI _Allreduce for messagesip to 32KB [58]. From the gures we seethat

MPI collective operationscanbene t from using MVAPICH-LIMIC2-opt, especially
for large messages.The performanceimproves by up to 60%, 28%, and 21% for
MPI _Alltoall, MPI _Allgather, and MPI _Allreduce, respectively. We note that for
messagedetween 1KB and 8KB, MVAPICH performs better for MPI _Allreduce
due to the use of the optimized algorithms. This indicates that the performance
of LIMIC2 basedcollectives can be further optimized by using specially designed

algorithms.
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Figure 6.9: Collective Results (Single Node 1x8)

6.4.2 Impact on Applications

In this section we ewaluate the impact of the hybrid approad on application
performance. The single-nale results are shavn in Figures 6.10and 6.11 (Class
B for NAS and small problem sizefor PSTSWM). The correspnding messagesize
distribution is shavn in Table6.1. The cluster-made resultsare shavn in Figure 6.12
(ClassC for NAS and medium problem sizefor PSTSWM), in which we use8 nodes
and 8 processeper node (8x8).

From Figure 6.10(a) we seethat MVAPICH-LIMIC2-opt can improve the per-
formanceof FT, PSTSWM, and IS signi cantly. The improvemen is 8% for FT,
14% for PSTSWM, and 17% for IS, respectively. If we look at Figure 6.11(a) we
nd that MVAPICH-LIMIC2-opt hasbetter cade utilization for thesebendimarks.
Most messagessedin thesebendmarksarelargeasshavn in Table6.1. This means
that applications that uselarge messagesvill potertially benet from MVAPICH-

LiMIC2-opt.
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Figure 6.10: Application Performance(Single Node 1x8)

The improvemert is under 5% for other bendimarks mostly becausahesebend-
marks do not use many large messagesFor BT and SP, although most messages
are large, sincethe fraction of time spert on commnunication is not signi cant we do
not obsene large performanceimprovemen.

From Figure 6.12we seethat in cluster mode wherethere is a mix of intra-node
and inter-node communication, applicationscanstill bene t from using MVAPICH-
LiMIC2-opt, e.g. PSTSWM performanceimproves by 6%, which suggeststhat

MVAPICH-LIMIC2-opt is a promising approad for cluster computing.

6.5 Summary

In this chapter, we use a three-step methodology to designa hybrid approat
for MPI intra-node communication using two popular approades, sharedmemory

(MVAPICH) and OS kernel assisteddirect copy (MVAPICH-LIMIC2). The study
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Figure 6.11: L2 Cade Missesin Applications (Single Node 1x8)

has beendone on an Intel quad-core(Clovertown) cluster. We have evaluated the
impacts of processoitopology, comnunication bu er reuse,and processskew e ects
on thesetwo approadies, and pro led the L2 cade utilization. From the results
we nd that MVAPICH-LIMIC2 in generalprovidesbetter performancethan MVA-
PICH for medium and large messageslue to fewer number of copiesand e cien t
cade utilization, but the relative performancevariesin di erent situations. For ex-
ample, depending on the physical topology of the sendingand receiving processes,
the thresholdsto switch from sharedmemoryto LIMIC2 can be di erent. In addi-
tion, if the application hashigher bu er reuserate, it can potentially benet more
from MVAPICH-LIMIC2. We alsoobsene that MVAPICH-LIMIC2 hasa potertial
limitation that it is not as skew-tolerart as MVAPICH. Basedon the results and
the analysis,we have proposedtopology-avare and skew-avare thresholdsto build

an e cient hybrid approad. We have ewaluated the hybrid approad using MPI
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Table 6.1: MessageSizeDistribution (Single Node 1x8)

| Apps | < 1K |1K-32K | 32K-1M | > 1M |

CG 62% 0 38% 0
MG 52% 28% 20% 0

FT 17% 0 0| 83%
PSTSWM 2% 1% 97% 0
IS 44% 15% 0| 41%

LU 30% 69% 1% 0
HPL 58% 37% 3% 2%
BT 1% 0% 99% 0

SP 1% 0% 99% 0

collective and application level bendimarks. We obsene that the hybrid approadh
can improve the performanceof MPI _Alltoall, MPI1 _Allgather, and MPI _Allreduce
by up to 60%,28%,and 21%, respectively. And for applications, it canimprove the

performanceof FT, PSTSWM, and IS by 8%, 14%, and 17%, respectively.
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CHAPTER 7

ANAL YSIS OF DESIGN CONSIDERA TIONS FOR
MUL TI-CHANNEL  MPI

To optimize commnunication performance,many MPI implemertations sud as
MVAPICH [15 provide multiple communication channels. Thesechannelsmay be
usedeither for intra- or inter-node comnunication. E cien t polling of thesecommu-
nication channelsfor discovering new messagess often consideredto be one of the
key designissuesn implemerting MPI over any network layer. In addition, basedon
characteristics of ead channel, we can utilize seeral channelsfor intra-node com-
munication. In order to e ciently designand implemert thesechannel interfaces,
we needa certralized policy. Sincecomrmnunication patterns aswell asthe needfor
overlap of comnmunication and computation vary widely over di erent applications,
it becomeshard to designa generalpurposepolicy. We needto carefully consider
the overheadsand bene ts o ered by eadh channel.

In this chapter, we try to bring forward important factorsthat shouldbe consid-
eredto e ciently utilize seweral MPI channelsthrough in-depth measuremets and
analysis. The rest of this chapter is organizedasthe follows: In Section7.1, we study
the polling shhemesamongmultiple channelsand their overheads.Then, we explore

methodologiesto decidethe thresholds between multiple channelsin Section 7.2.
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We considerlatency, bandwidth, and CPU resourcerequiremen of ead channelto
decidethe thresholds. We presen our performanceewaluation in Section 7.3 and

nally summarizein Section7.4.

7.1 Channel polling

In this sectionwe discussabout channel polling overheadand sthemes.

7.1.1 Channel polling overheads

Di erent channelshave di erent polling overheads. In this sectionwe analyze
the polling overheadfor eat channel.

Network Channel Overhead: The network channel consistsof RDMA and
Send/Receie channels. Since RDMA is usedfor the RDMA channel, there is no
software involvemern at the receiwer side. Therefore,the only way to ched for in-
coming messagess by polling memory locations. The overheadinvolved in polling
memory locations is around 0.03 s per connection. The overall polling overhead
increasesas the number of RDMA connectionsincreases.The other network com-
munication channelusesln niBand send/recei\e primitiv es,which generatemessage
completion events. The receier polls the completion queueto chedk new incoming
messages.The overheadassaiated with polling the completion queueis constart
regardlessof the number of processedecausehe samecompletion queueis shared
amongall connections.Howe\er, it takesaround 0.3 sto poll an empty completion
gueue,which is relatively high. In this section, we considerthe polling overheads

for RDMA and send/receie channelsasthe network channel polling overhead.
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Shared Memory Channel Overhead: The shared memory channel usesa
FIFO queuefor eadh sharedmemory connection. In addition, the channel main-
tains a courter which indicates whether a new messages available for this connec-
tion. The polling overhead of this channelis around 0.06 s and increasesas the
number of processegunning on the samenode increases. It is to be noted that
sincemost SMP nodesin clustersare 2-way to 16-way, this polling overheadis not
signi cant. To comparesharedmemory channel polling overheadwith the network
channeloverhead,we measuredhem on various systemsizesasshown in Figure 7.1.
We can obsene that network channel polling overheadincreasedaster than shared
memory channelasthe systemsizeincreases.t is becausdhe number of inter-node
connectionsper processincreasesn proportion to (P N), whereP is the number
of processorson one node and N is the number of nodes. On the other hand, the
number of connectionsfor intra-node communication increasesn proportion to only

P. It isto be noted that most of clustershave a much larger N value than P.

LLLL

] 0

Figure 7.1: Polling overheadof network channel and sharedmemory channel
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Kernel Mo dule Channel Overhead: The kernel module channel [48] copies
messageslirectly from the senderbu er to the receiwver bu er. However, polling of
the kernel module channelis expensiwe asit requiresa cortext-switch to the kernel-
space,which takesaround 3 s. We can considerfollowing two ways to poll on the

kernel module channel:

Busy polling of the kernel module in the blocking MPI send, receiw, or wait
functions. In this case,we poll the kernelmodule channelexplicitly only when

a messages expectedto arrive from that channel.

The kernel module can provide somesignaling bit to indicate the arrival of
new messageso the MPI layer. Although it canreducethe number of cortext
switches, still we needto trap into the kernelto match MPI headers.In the
worst case,if someunexpectedmessagarrivesin the kernel,the MPI layer still
needsto poll that messageéecausethe signal bit doesnot have information

about the MPI header.

In orderto avoid multiple context switchesand overheadto poll the kernel module,
we placethe polling of the kernelmodule outside the main MPI progressengine. So,
if any messageare not expectedfrom the kernel module channel, then that channel
is not polled at all. All unexpected messagesrriving through the kernel module
channel are kept queuedby the kernel module. The messagesre copiedwhen the

receier poststhe matching receiwe.
7.1.2 Channel polling schemes

As describted in section 7.1.1 there are di erent costs assaiated with polling
of ead channel. In this sectionwe designdi erent polling schemesto reducethe
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overheadassaiated with polling network and sharedmemory channelsand enable
faster messageliscovery. As we have descrilkedin section7.1.1, polling of the kernel
module is placed outside the main progressengine. So the kernel module is not
polled if no messagesre expected from it. Therefore, we exclude kernel module
from the study of thesepolling schemes.

Static channel polling scheme: Static polling scheme decidesthe polling
policy at the start of the MPI application. This schemecanassigndi erent priorities
(or weights) to di erent channels. The intuitiv e ideabehind this schemeis that some
channelsmay be usedmore frequerily or faster than others. To decidethe priority,

we needto considerthe following factors:

Polling Overhead: If a channel has a signi cantly lesspolling overheadthan
others, we can considerto poll this channel more frequerily. In this way we
canreducethe messagaliscovery time for the channelwithout adding a large

overheadto poll other channels.

Messaged.atency: If a channel haslower messageassinglatency and higher
bandwidth than others, it may receiwe relatively more messagesn a short

period of time. Accordingly, we can assignhigher priority to this channel.

In this section,we considerboth factors. As we have discussedn section7.1.1,the
overheadof polling the sharedmemory channelis the least. Also we notice that this
channel hasthe lower latency than the network channel as shovn in Section7.3.2.
Therefore,we give most priority to the sharedmemory channel. In this scheme,we
decidethe frequencyof polling betweenchannelsbasedon the priority ratio assigned

statically at the application startup phase.
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Dynamic channel polling scheme: Dynamic polling sthemescan change
polling priority over the courseof the executionof the MPI application. There are

various factors to be consideredwhile designingsud a dynamic scheme:

Update Rate: This factor determineshow often the priority ratios are updated.
A very high update rate would imply increasedoverheadsfor short messages,
whereasa low update rate would miss smaller bursts of message$rom other

channels.

MessageHistory: This factor determinesthe number of messagesecorded
for computing the new priority ratio. The more messagesre considered,
the slower the priority ratio will change. This might miss smaller bursts of
messageswhereaswhen lower number of messagesre considereda lot of

uctuation may occur even with small bursts of message$rom a channel.

In this section, we usethe following schemeto compute priority ratio: Supposein
the last h messageseceived, m of which are from sharedmemory channel, and n
of which are from network channel, then priority ratio = m=n+ 1. Wheneer h
messagesre received, we update the priority ratio, and reseth to zero. So the
messagehistory length here is the samewith update rate. Also, for the reasons
we stated in static polling sdheme section, the polling priority of shared memory

channelis always higher than or equalto that of network channel.

7.2 Channel thresholds

Network, sharedmemory, and kernel module can all be usedfor intra-node com-
munication. Thesechannelshave di erent performancecharacteristics. Somechan-
nelshave low startup latency and somechannelshave high bandwidth. In addition,
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somechannelsdo not requirethe involvemen of host CPU. In this section,we study

on selectingappropriate thresholdsfor e cien t intra-node messageassing.

7.2.1 Comm unication startup and message transmission
overheads

In the network channel, messagedor intra-node communication are DMAed
into the network interface card and looped badk to the host memory Therefore,
there exist two DMA operations. Although 1/0O busesare getting faster, the DMA
overheadis still high. Further, the DMA startup overheadis as high as se\eral
microseconds.

We note that the sharedmemory channel involvesthe minimal setup overhead
(lessthan 1.2 s) for every messagexdange. However, there are at leasttwo copies
involved in the messageextange. This approad might tie down the CPU with
memory copy time. In addition, asthe messagesizegrows, the performanceof the
copy operation becomeseven worse becausevigorous copy-in and copy-out destroy
the cade cortents.

The kernel module channel involvesonly one copy and is able to maximize the
catee ect. Howeer, there areother overheadssud astrap, memorymapping, and
locking of data structures. The trap and locking overheadsare involved for every
messageassingand larger than 3 s. The memory mapping overheadincreasesas
the number of pagesfor the userbu er increaseswhich takesaround0.7 sper page.
In addition, although the number of copy operationsis reduced,the CPU resource

is still requiredto perform the copy operation.
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7.2.2 Threshold decision metho dology

To decidethe thresholds,we considerseweral important factors, sud aslatency,
bandwidth, and CPU utilization, which can largely a ect application performance.
Howewer, di erent thresholds might be required by di erent applications because
eadt of them hasdi erent communication characteristicsand programmingassump-
tions. In this section, we discusstwo di erent approadesfor choosing appropriate
thresholds.

Microb enchmark based decision: In general,it is very dicult to decide
the threshold of commnunication channel for all applications. However, it is widely
acceptedthat sud decisionscan be basedon latency and bandwidth measuremets.
Thereforewe canlook at MPI microbendimarksto seethe basicperformanceof eadt
channel.

CPU utilization based decision: In this approath we measurethe over-
lapping of computation and comnunication. Although somechannelsmight have
higher messagdatency, they may e ectively overlap computation and commnunica-
tion. This is bene cial for applications that are e cien tly programmedto overlap
them. Sincemany MPI implemertations usethe rendezwus protocol for large mes-
sagesand make a comnunication progresswithin MPI calls, applicationsare usually
required to call an MPI function sud as MPI _Iprobe to make an e cient overlap
between computation and commnunication. Howeer, this is quite application de-
penden. For applications which mostly use blocking operations, simply selecting

the channelwith lowest latency would be enough.
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7.3 Performance Evaluation

In this sectionwe presei our results on designconsiderationsfor multi-channel

MPI, speci cally results on polling sdhemesand threshold determination.
7.3.1 Evaluation of Polling Schemes

We conductedexperimerts on an 8-node clusterwith the following con guration:
Super Micro SUPER X5DL8-GG nodeswith dual Intel Xeon 3.0 GHz processors,
512 KB L2 cade, 2 GB memory PCI-X 64-bit 133 MHz bus. The Linux kernel
versionusedwas 2.4.22smpfrom kernel.org. All nodesare equipped with Mellanax
In niHost MT23108 HCAs and installed the Mellanax In niBand stadk [60]. The
versionof VAPI was3.2and rm ware version3.2. The nodesare connectedthrough
Mellanax MTS 240024-port switch.

One crucial factor to determinefor static polling sdhemeis \how much priority
shouldbe givento the shared memory channel?" Obviously, if we give more priority
to sharedmemory channel, then the sharedmemory latency will reduce. But at the
sametime the latency of messagesomingover the network will alsoincrease.

To nd out the optimal priority ratio, we conducted the standard ping-pong
latency test with dierent priority ratios. Figure 2 shows variation of ping-pong
latency with various priority ratios for 4B and 2KB messagesizes.\We can obsene
from these gures that if we give shared memory channel a priority ratio of 50,
then we can get a reasonablybalancedimprovemen of intra-node latency - 12%
improvemern for 4B messagend 9% improvemen for 2KB message without hurt-
ing network latency. For 4B messageour experimerts indicate that we can achieve

up to 37%improvemert in intra-node latency using the static polling priority 100Q
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but it hurts the network channel latency signi cantly. As messagesize increases,
the bene t of polling stheme reducesbecausethe messagdransmission overhead

becomedarger than the polling overhead.

[m] O
T T T T T T
] O

Figure 7.2: Latency of static polling scheme

In order to evaluate the dynamic polling shhemewe needto devisea new MPI
microbendimark that appropriately capturesthe messageliscovery time at the MPI
layer. There are three processesn the bendimark. Two processesre on the same
node, whereasone processis on a separatenode. This processsendsmessages
over the network, whereasthe processon the samenode sendsmessagesgxclusiely
through sharedmemory channel. On the receipt of eaty messagéehe \r cot" process

replieswith an ACK. The processsendingthe \burst® number of messageso the
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Figure 7.3: Messagaliscovery microbendmark

root is alternately selectedbetweenthe network peerand the sharedmemory peer.
This test capturesthe messagealiscovery time by the root processbeforeit cansend
an ACK to the peerprocess.Figure 7.3 illustrates this microbendimark where we

are trying to measuretime T.
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Figure 7.4: Messagaliscovery time of dynamic polling scheme

Figure 4 shaws the performanceresults of this microbendimark with the burst
sizesof 100and 200 for 4B message.We obsene that with the increaseof update

rate, the messagealiscovery time actually decreases.The update rate of 8 or 10is
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enoughnot to introduce too much overheadand also sustain fairly small burst of
messages.Our experimerts indicate that we can achieve up to 45% improvemern
rate of messagaliscovery time with burst size of 200. Howewer, when the update
rate becomeshigher, the overheadcauseghe discovery time to rise. We alsoobsene
that when the burst sizeis equal to the update rate, the discovery time increases

signi cantly due to cortinuouswrong predictions.
7.3.2 Evaluation of Thresholds

In this section,we run the above mertioned decisionapproateson the cluster
descriked in section7.3.1. We usethe standard ping-pong latency and bandwidth
to ewvaluate the threshold points for the three channels.

Figure 5 shows the experimertal results of the latency and bandwidth tests.
We nd that for messagesmallerthan 4KB, it is bene cial to usesharedmemory
channel. This is becauseshared memory channel avoids a high commnunication
startup time sud askerneltrap and DMA initialization. For messagegreaterthan
4KB, it is useful to have the kernel module channel. This is mainly becausethe
number of copieshasbeenreducedto one. Also, we can obsene that the bandwidth
for the kernel module channel drops signi cantly from 256KB messagesize. It is
becausethe cade size on the node usedis 512KB. Both the senderand receiwer
bu ers and someadditional data structures cannot t into the cade beyond this
messagesize. Howeer, the bandwidth o ered by the kernel module channelis still
greaterthan others.

To analyzedi erent channels' capability of overlapping computation and com-

munication, we conducted experimerts as follows: Two processesunning on the
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samenode call MPI _Isend and MPI _Irecv. Then they executea computation loop
for a given computation time (i.e., valuesin x-axis of Figure 7.6). Within the
computation loop, processe<sall MPI _Iprobe to make a commnunication progress
for every 100 s. After the computation time, they call MPI _Waitall and calculate
(Total_Time=Computation_Time), where Total_Time includes both computation
and comnunication time. A value closerto 1 meansmore overlapping between
computation and communication.

Figure 7.6 shows experimertal resultsfor 4B and 128KB messagesiespectively.
For small messageshe comnunication startup time is the dominart overheadwhile
messagdransmissiontime is very small. Sincethe sharedmemory channel hasthe
lowestcommunication startup time, this channelshows closervaluesto 1 than others
with small computation time. It is to be noted that the network channel shows
better overlapping than the kernel module channel for small messages.Although
the network channel has a larger startup time than the kernel module, the DMA
initialization time, which is the dominart startup overheadfor the network channel,
does not require CPU resourceat all. Thus most of startup time of the network
channelcanbe overlapped with computation, which resultsin the better overlapping
than the kernel module channel. Sincecommnunication overheadbecomegelatively
smallerasthe computation time grows, there is no di erence amongthree channels
with large computation time values.

For large messageswe obsene that the network channel can make the compu-
tation and comrmrunication fully overlap. It is becausehe network channeldoesnot
needany CPU resourceto move intra-node messagesHoweer, the shared mem-

ory and kernel module channelsrequire the CPU to copy messages.Therefore, it
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is di cult

to expect them to achieve a good overlapping. Sincethe kernel module

channel needsonly onecopy, this channel showvs better overlapping than the shared

memory channel. As the computation time increasesall three channelsagain shov

the sameoverlapping capability. It is becausethe computation time is too large

comparing with communication time. Overall, to maximize the computation and

commnunication overlapping, the sharedmemoryand network channelsare bene cial

for small and large messages,espectively.
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Figure 7.6: Computation/communication overlap

7.4 Summary

In this chapter, we have studied important factors to optimize multi-channel
MPI. We have proposedse\eral di erent sdhemesfor polling comnunication chan-
nelsand decidingthresholdsfor the hybrid of them in MVAPICH. To comeup with
an e cient static polling scheme,we have taken into accoun polling overheadand
messagdatency. In addition, we have suggesteda dynamic polling scheme, which
updates the priority ratio basedon update rate and messagehistory. The exper-
imental results shav that the factors we have considereda ect sensitively on the
messagaliscovery time. We note that the static polling scheme can reduceintra-
node latency by 12% without hurting inter-node latency. By using the adaptive
polling sihemewe can reducethe messagaliscovery overheadby 45%.

In addition, we have ewaluated thresholdsfor eat channel both basedon raw
MPI latenciesand bandwidths and alsoCPU utilization. We have obsenedthat ker-
nel module channel can achieve a very low latency and high bandwidth for medium

and large messages.On the other hand, for this messageange, network channel
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can overlap computation and comnunication very well although this channelhasa
high latency and low bandwidth. For small messagesthe sharedmemory channel

shows better performancethan others.
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CHAPTER 8

OPEN SOUR CE SOFTW ARE RELEASE AND ITS
IMP ACT

The work descriked in this dissertation has beenincorporated into our MVA-
PICH/MV APICH2 software padkage and is distributed in an open-sourcemanner.
The duration of this work has spannedse\eral releaseversions of this padage,
including the latest versionsMVAPICH-1.1 and MVAPICH2-1.4. The results pre-
serted in this dissertation have reducedintra-node memory usagesigni cantly and
enabledMVAPICH/MV APICH2 to run e cien tly on large multi-core systems.

MVAPICH/MV APICH2 supports marny software interfaces,including OpenFab-
rics [18], uDAPL [34], and In niP ath-PSM interface from QLogic [22. The work
presered in this dissertationis availablein all theseinterfaces,andis portable across
a wide variety of target architectures, like IA32, EM64T, X86_64 and |1A64.

Sinceits releasein 2002, more than 855 computing sitesand organizationshave
downloaded this software. More than 27000downloads have taken place. In ad-
dition, nearly ewery In niBand vendor and the Open Source OpenFabrics stadk
includesthis software in their padkages.Our software has beenusedon someof the
most powerful computers,as ranked by Top500[24]. Examplesfrom the November

2008 rankings include 6th, 62976-coreSun Blade System (Ranger) with Opteron
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Quad Core 2.0 GHz at Texas Advanced Computing Center (TACC), 58h, 5848-
coreDell PowerEdgelntel EM64T 2.66 GHz cluster at TexasAdvancedComputing
Center/Univ. of Texas,and 73rd, 9216-coreAppro Quad Opteron dual Core 2.4

GHz at LawrenceLivermore National Laboratory.
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CHAPTER 9

CONCLUSIONS AND FUTURE RESEAR CH
DIRECTIONS

The researa in this dissertationhasdemonstratedthe feasibility of running MPI
applications e cien tly on large multi-core systemswith the aid of employing high
performanceand scalableintra-node comrmnunication techniquesinside the MPI li-
brary. We have described how we cantake advantage of sharedmemory, kernelmod-
ules,and on-chip DMASs to designe cient MPI intra-node comnunication schemes.
We have also investigated multi-core aware and multi-channel MPI optimizations.
In addition, our work has analyzed application characteristics on multi-core sys-
tems, potential bottleneds, how next-generationMPI applications can be modi ed

to obtain optimal performance,and scalability of multi-core clusters.
9.1 Summary of Research Contributions

The work proposedin this thesisaims towards designinghigh-performanceand
scalableMPI intra-node comnunication middleware, especially for contemporary
multi-core systems. The advanced shared memory based approad descriked in
this proposalhas already beenintegrated into MVAPICH software padkage. MVA-

PICH is very widely used,including the 6th fastestsupercomputerin the world: a
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62976-coreSun Blade System(Ranger) with Opteron Quad Core 2.0 GHz at Texas
Advanced Computing Center (TACC). The designenablesapplications to execute
within a node in a high-performanceand scalablemanner. The kernelmodule based
approad LIMIC2 hasalsobeenintegrated into MVAPICH2 distribution.

We note that the ideasproposedand deweloped in this thesisare independen of
any networks and portable acrossdi erent operating systems.They can essetially
be integrated into any MPI library. Thus, we foreseethat the cortribution of this
thesiswill be signi cant for the HPC comnmunity, especially as multi-core becomes
main stream. Following is a more detailed summary of the researb presetted in
this dissertation.

9.1.1 High Performance and Scalable MPI Intra-no de Com-
munication Designs

In Chapters 3, 4, and 5, we have preserted seeral designsfor MPI intra-node
comnunication. The sharedmemory baseddesignhas the minimum startup time
and administrative requiremen, and is portable acrossdi erent operating systems
and platforms. It hasshown very good latency and bandwidth. The kernel assisted
direct copy approad takes help from the operating systemand eliminates the in-
termediate copiesand further improves performance. The 1/0O AT basedapproat
doesnot only remove the extra copiesbut alsohasbetter commnunication and com-
putation overlap. From our experimertal results, we have obsened that with these

advanceddesignsMPI applications canrun e cien tly on large multi-core systems.
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9.1.2 Multi-core Aw are Optimizations

In Chapter 6, we have presetied a hybrid approad to get optimized performance
on multi-core systems. The approad e cien tly combinesthe sharedmemory and
the kernel assisteddirect copy approadesin a topology-avare and skew-avare way.
Our performanceevaluation shows that the hybrid approad has optimized perfor-
mancefor all intra-node communication cases,namely shared-cahe, intra-socket,
and inter-socket. It alsoimprovesthe performanceof MPI collective operationsand
applications.

9.1.3 Comprehensiv e Analysis of Considerations for Multi-
channel MPI

Sincemost MPI implemenations usemultiple channelsfor communication, sud
as shared memory channel, network channel, kernel module channel etc, it is im-
portant to understand and optimize on the factors that a ect multi-channel MPI
performance. In Chapter 7, we have done this study. We have shavn that chan-
nel polling and threshold selectionare two important factors and proposede cien t
channel polling algorithms and threshold selectionmethods. Our experimertal re-
sults show that our optimization canimprove MPI performancesigni cantly.
9.1.4 In-depth Understanding of Application Behaviors on

Multi-core Clusters

In Chapter 2, we have donea comprehensie performanceevaluation and analysis
on application behaviors on multi-core clusters. Through our study we have found
that MPI intra-node comnunication is very important for the overall performance.

We have also obsened that cadhe and memory cortention is a potential bottlened
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in multi-core systems,and applications should use techniques sud as data tiling
to avoid cadhe and memory cortention as much as possible. Our scalability study
shows that the scalability of multi-core clusters depends on the applications. For
applicationsthat are not memory intensive, multi-core clustershave the samescala-
bility assingle-coreclusters. Our study givesinsights to parallel application writers
and MPI middleware deelopers and facilitates them to write code more e cien tly

for multi-core clusters.

9.2 Future Research Directions

In this dissertation, we have showvn the methods to optimize MPI intra-node
commnunication. Howeer, there are se\eral interesting researt topics that are still

left to be explored.

Topology Aw are Dynamic Pro cess Distribution - As descriled in Sec-
tion 6, there are multiple levels of communication existing in MPI intra-node
communication. For example,there are three levels of commnunication in Intel
Clovertown systems. The rst level includestwo coreson the samechip and
sharethe L2 cade. The secondlevel includestwo coreson the samechip but
do not sharethe L2 cade. And the third level includestwo coreson di erent
chips. Thesedi erent levels of comnunication have di erent characteristics,
e.g. the latency of the rst level communication is the lowestbecausat just in-
volvescade transactions. Basedon the topology information and application
characteristics, we can explore the feasibility of dynamic processesnigration

among physical coreswithin a node. This may have the potertial benet of
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minimizing comnunication overhead. This may be especially important for

next-generationmany-core systems,suc as Intel 80-coresystem.

Ecien t MPI Collectiv e Operations - MPI collective operations are fre-
quently usedin many applications, and their performanceis critical to the
overall performance. This thesis mostly focuseson point-to-p oint operations
and in the future we would like to exploreon collective operationstoo. There
are di erent collective algorithms and they should be chosenbasedon vari-
ous factors, suth as messagesize, systemsize, platforms, etc. With our new
designsof point-to-p oint communication, sud as kernel assisteddirect copy
and I/0 AT baseddesign,we needto reconsiderthe collective algorithms and
nd out the optimal solution. We might also needto proposenew collective
algorithms to e ciently utilize the intra-node point-to-p oint comrmunication

sdhemes.

E cien t MPI One-sided Comm unication - MPI de nes one-sidedcom-
munication operations that allow usersto directly read from or write to the
memory of a remote process[61]. One-sidedcomnunication both is corve-
nient to useand hasthe potertial to deliver higher performancethan regular
point-to-p oint (two-sided) comnunication. The semaric of one-sidedcom-
munication matcheswell with the kernel assisteddirect copy approad sud
as LIMIC/LIMIC2 in the sensethat one processcan accessthe memory of
another process.In the future, we would like to exploree cien t algorithmsto

useLiMIC/LIMIC2 for MPI one-sidedcommnunication operations.
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Comprehensiv e Analysis of Intra-no de Comm unication over AMD
Barcelona System - Asmertionedin Sectionl.1, AMD Barcelonaprocessor
is an emerginginnovative quad-corearchitecture. A Barcelonachip includes
four coresthat have separateL2 cade but sharethe samel3 cade. The
L3 cade is not a traditional inclusive cade, it is acting as a spill-over cade
for items evicted by the L2 cade. And when L1 cade loads data from L3
cade (L2 cade is always bypassed)the data can be removed or retained in
the L3 cade, dependingon whether other coresare likely to accesghe data in
the future. All thesefeaturesmake Barcelonavery di erent from the systems
we have studied on. We would like to carry out comprehensie and in-depth
performanceevaluation on AMD Barcelonasystems,and nd waysto optimize

MPI intra-node comnunication performanceon sud systems.

Study and Optimizations on Future Multi-core Arc hitectures - Multi-

coretechnoogy is advancingrapidly. Both Intel and AMD are planning to ship
6/8/12/16-core systemsin the nearfuture. In thesesystemsnewarchitectures
are being prososedfor better performanceand scalability. We will needto
carefully study the intra-socket topology and communication characteristics

of thesenew processorsaand optimize commnunication performanceon them.
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