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Abstract

Virtual machine (VM) technologies provide the
benefit of running multiple OS instances in a sin-
gle physical machine, as well as other advantages
such as performance isolation and the ease of
management. Meanwhile, InfiniBand is becom-
ing a strong player in the area of data center and
High Performance Computing (HPC) due to its
high performance and the features such as Re-
mote Direct Memory Access (RDMA) and user
space communication. Thus, supporting Infini-
Band in a virtualized environment has become in-
creasingly important. However, current device
virtualization models require the involvement of
a hypervisor and/or a privileged virtual machine
(device domain), which may turn out to be a bot-
tleneck for high performance communications.

In this paper, we present a novel design of Xen-
IB, an InfiniBand device driver for a popular vir-
tual machine monitor, Xen. We use a device do-
main bypass approach to avoid the involvement
of the hypervisor and the device domain for time
critical operations. Xen-IB has been implemented
for Xeno-Linux 2.6.12 in Xen 3.0. Our perfor-
mance measurements show that the Xen-IB was
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able to achieve nearly the same raw performance
as OpenlB Genz2 driver running in native Linux.

1 Introduction

With modern computers becoming increas-
ingly powerful, virtual machine (VM) technolo-
gies are becoming more and more attractive to
both the industry and the research communities.
VM technologies allow many different virtual
machines running in a single physical box, with
each virtual machine possibly running a different
operating system. VMs can also provide secure
and portable environments to meet the demand-
ing requirements of computing resources in mod-
ern computing systems [2].

Device /O is handled in different ways in var-
ious VM technologies. For instance, in VMware
Workstation [14], which provides full virtualiza-
tion of the x86 architecture, device I/O relies on
user level emulation or switching back to the host
operating system. VMware ESX Server makes
direct accesses to high performance I/O devices
from the hypervisor [15]. In Xen [4], a high per-
formance virtual machine monitor originally de-
veloped at the University of Cambridge, device
I/0O follows a split-driver model. Only an isolated
device domain (IDD) has access to the hardware
using native device drivers. All other virtual ma-
chines (guest domains) need to pass the I/O re-



quests to the IDD to access those devices. This
control transfer between domains needs the in-
volvement of the hypervisor and therefore has a
performance penalty compared to native device
operations.

The InfiniBand Architecture (IBA) [6] defines
a System Area Network (SAN) for interconnect-
ing processing nodes and I/O nodes. It provides
memory semantics (RDMA) as well as chan-
nel semantics (send/receive). InfiniBand pro-
vides OS-bypass communication schemes. Many
time critical communication operations can be
performed directly from the user space without
the overhead of going through operating systems.
InfiniBand provides very low latency and high
bandwidth, making it a strong player in the field
of high performance cluster computing and 1I/O.

Supporting high performance communication
devices such as InfiniBand in VMs is important
in many aspects. First, VMs like Xen are becom-
ing increasingly popular on modern servers and
workstations. Many of these powerful comput-
ers are equipped with high speed interconnects
like InfiniBand. As a result, providing efficient
VM communication and I/O using these high
speed interconnects is critical to fully achieve
the benefit of virtualization. Further, InfiniBand
is widely used in High Performance Computing
(HPC) [13]. VM technologies may provide many
valuable features for HPC, such as better check-
pointing support, QoS and better cluster manage-
ment. Although VMs currently are not widely
used in HPC because of the overhead caused
by virtualization, recently introduced high perfor-
mance VMs like Xen, combined with a highly ef-
ficient InfiniBand support as demonstrated in this
paper, can make VM based HPC a viable solution.

In this paper, we present a novel design of Xen-
IB, an InfiniBand driver in the Xen virtual ma-
chine environment. Virtualizing an InfiniBand de-
vice poses unique challenges compared to other
devices. Current device virtualization models in
VMs require the involvement of either the hyper-
visor (VMware ESX) or the privileged domain

(Xen and VMware workstation), making it diffi-
cult to support OS-bypass features of InfiniBand.
To address this issue, we expanded the split de-
vice driver model used in Xen by adding IDD-
bypass features, which allow time critical oper-
ations to be carried out directly within guest do-
mains. With this optimization, we remove the bot-
tleneck of going through the device domain and
greatly improve the performance.
The main contributions of our work are:

e We designed and implemented an InfiniBand
driver for Xen guest operating systems based
on OpenlB Gen2 stack [10]. We keep the
same interfaces as provided by Gen2, so ex-
isting programs written using the Gen2 verbs
interface are transparently supported.

e We enhanced our driver with the device do-
main (IDD) bypass approach. For time crit-
ical operations, Xen guest applications are
able to bypass the device domain and directly
communicate with the IB adapters without
violating the Xen security model.

e We evaluated the performance of our solu-
tion with a set of micro-benchmarks. The
evaluation showed that our Xen-IB im-
plementation provides similar performance
compared to OpenlB driver running on na-
tive Linux systems.

The rest of the paper is organized as follows:
In Section 2, we present background information
of the Xen virtual machine monitor and the In-
finiBand architecture. In Section 3, we discuss
detailed design and implementation issues for the
Xen-IB driver. Performance evaluation results are
given in Section 4. We discuss related work in
Section 5 and conclude the paper in Section 6.

2 Background
2.1 Overview of the Xen Virtual Machine Monitor

In this section we give a brief overview of the
Xen virtual machine monitor (hypervisor). We



also describe Xen inter-domain communication
and its split device driver model.

Xen uses paravirtualization [18], in which host
operating systems need to be explicitly ported to
the Xen architecture. This architecture is similar
to native hardware such as x86 architecture, with
only slight modifications to support efficient vir-
tualization. Since Xen does not require changes
to the application binary interface (ABI), existing
applications can run without any modifications.
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Figure 1. The structure of the Xen hypervisor,
hosting three xenoLinux operating systems
(courtesy [11])

Figure 1 illustrates the architecture of a phys-
ical machine running the Xen hypervisor. The
Xen hypervisor is at the lowest level and has di-
rect access to the hardware. Xen needs to en-
sure that the hypervisor, instead of the guest op-
erating systems, is running in the most privileged
processor-level. The x86 privilege levels are de-
scribed by “rings”, from ring O (the most privi-
leged) to ring 3 (the least privileged). The hyper-
visor is running in ring 0. It provides basic con-
trol interfaces needed to perform complex policy
decisions in Xen architecture. Above the hyper-
visor are the Xen domains. There can be many
domains running simultaneously. Each domain

hosts a guest operating system. Instead of run-
ning in ring 0, Guest OSes are modified to run in
ring 1, which prevents them from directly execut-
ing the privileged processor instructions. Guest
applications, like on normal x86 machines, run
in ring 3 (the least privileged level). Only do-
main0, which is created at the boot time, is al-
lowed to access the control interface provided by
the hypervisor. The guest OS on domain( hosts
the application-level management software and
perform the tasks to create, terminate or migrate
other domains through the control interface pro-
vided by hypervisor.

There is no guarantee that a domain will get a
continuous stretch of physical memory to run a
guest OS. So Xen makes a distinction between
machine memory and pseudo-physical memory.
Machine memory refers to the physical memory
installed in the machine. On the other hand,
pseudo-physical memory is a per-domain abstrac-
tion, allowing a guest OS to treat its memory
as consisting of a contiguous range of physical
pages. Xen maintains the mapping between the
machine memory and the pseudo physical mem-
ory. Only a certain specialized parts of the op-
erating system needs to understand the difference
between these two abstractions. Guest OSes allo-
cate and manage their own hardware page tables,
with minimal involvement of the Xen hypervisor
to ensure safety and isolation.

In Xen, domains communicate with each other
through event channels. Event channels provide
an asynchronous notification mechanism between
Xen domains. Each domain has a set of end-
points (or ports) which may be bounded to an
event source (e.g. a physical IRQ, a virtual IRQ,
or a port in another domain) [17]. When a pair of
end-points in two different domains are bound to-
gether, a “send” operation on one side will cause
an event to be received by the destination domain.
Event channels are only intended for sending noti-
fications between domains. So if a domain wants
to send data to another, the typical scheme is for
a source domain to grant access to local mem-



ory pages to the destination domain. Then, these
shared pages are used to transfer data.

Virtual machines in Xen usually do not have di-
rect access to hardware. Since most existing de-
vice drivers assume they have complete control of
the device, there cannot be multiple instantiations
of such drivers in different domains for a single
device. To ensure manageability and safe access,
device virtualization in Xen follows a split device
driver model [5]. Each device driver is expected
to run in an isolated device domain (IDD), which
also hosts a back-end driver, running as a dae-
mon and serving the access requests from guest
domains. Each guest OS uses a front-end driver
to communicate with the back-end. The front-
end and back-end drivers communicate through
the shared memory page and the event channel
mechanism described above. The split driver or-
ganization provides security: misbehaving code
in a guest domain will not result in failure of
other guest domains. To improve the throughput
for devices that need large data transfer such as
network I/0, only the request descriptors can be
passed to the IDD. The actual data payload may
be directly DM Aed from the guest domain to the
device. Since the split device driver model re-
quires the development of front-end and back-end
drivers for each individual device, not all devices
are supported in guest domains right now.

2.2 InfiniBand Architecture

The InfiniBand communication stack consists
of many layers. The interface presented by Chan-
nel adapters to consumers belongs to the trans-
port layer. A queue-based model is used in this
interface. A Queue Pair (QP) in InfiniBand Ar-
chitecture consists of a send queue and a re-
ceive queue. The send queue holds instructions
to transmit data and the receive queue holds in-
structions that describe where received data is to
be placed. Communication instructions are de-
scribed in Work Queue Requests (WQR), or de-
scriptors, and are submitted to the work queue.

Once submitted, a Work Queue Request becomes
a Work Queue Element (WQE), and are executed
by Channel Adapters. The completion of work
queue elements is reported through Completion
Queues (CQ). Once a work queue element is fin-
ished, a Completion Queue Entry (CQE) is placed
in the associated completion queue. A kernel
application can subscribe for notifications from
HCA and register a callback handler with CQ.
Completion queue can also be accessed through
polling to reduce latency.

Initiating data transfer (posting work requests)
and completion of work requests notification (poll
for completion) are time-critical tasks that need
to be performed by the application. In the Mel-
lanox [8] approach, which represents a typical
implementation of InfiniBand specification, these
operations are done by ringing a doorbell. Door-
bells are rung by writing to the registers that form
the User Access Region (UAR). UAR is memory-
mapped directly from a physical address space
that is provided by HCA. It allows access to HCA
resources from privileged as well as unprivileged
mode. Each UAR is a 4k page. Mellanox HCAs
replicate the UARs up to 16M times. Each pro-
cess using the HCA, no matter in kernel or user
space, is allocated one UAR, which is remapped
to the process’s virtual address space. Posting
a work request includes putting the descriptors
(WQR) to QP buffer and writing the doorbell to
the UAR. This process can be completed without
the involvement of the operating system. There-
fore it is very fast. CQ buffers, where the CQEs
are located, can also be directly accessed from the
process virtual address space. These OS-bypass
features make it possible for InfiniBand to pro-
vide very low communication latency.

Mellanox HCAs require all buffers involved in
communication be registered before they can be
used in data transfers. The purpose of registration
is two- fold: first an HCA needs to keep an en-
try in the Translation and Protection Table (TPT)
so that it can perform virtual-to-physical transla-
tion and protection checks during data transfer;



second the memory buffer needs to be pinned in
memory so that HCA can DMA directly into the
target buffer. always target to the correct posi-
tion. Upon the success of registration, a local key
and a remote key are returned. They will be used
later for local and remote (RDMA) accesses. QP
and CQ buffers described above are just normal
buffers that are directly allocated from process
virtual memory space and registered with HCA.
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Figure 2. Architectural overview of OpenIB
Gen2 stack

There are two popular stacks for InfiniBand
drivers. VAPI [9] is the Mellanox implementa-
tion and OpenlIB Gen2 [10] recently comes out
as a new generation of IB stack provided by the
OpenlB community. In this paper we implement
InfiniBand drivers based on Gen2. Figure 2 rep-
resents the architecture of Gen?2 stack.

3 Design and Implementation

In this section we present the design and im-
plementation of Xen-IB, our InfiniBand driver for
Xen. First we introduce a design that follows the
traditional Xen split device driver model and the
details of its major functional modules. Then we
optimize the driver by directly accessing the HCA
from guest domains for time critical tasks.

3.1 Overview

Like many other device drivers, InfiniBand
drivers cannot have multiple instantiations for a
single HCA. Thus a split driver model approach
is required to share a single HCA among multiple
Xen domains.

Figure 3 illustrates a basic design of our Xen-
IB driver. The back-end runs as a daemon on top
of the native InfiniBand driver in the isolated de-
vice domain (IDD). It waits for incoming connec-
tions from the front-end drivers in the guest do-
mains. The front-end driver replaces the kernel
HCA driver in normal OpenlB Gen2 stack. Thus
the higher layer InfiniBand services can be sup-
ported smoothly in this design. Once the front-
end driver is loaded, it establishes two event chan-
nels with the back-end daemon. The first channel,
together with the shared memory page scheme
described in Section 2.1, forms a device chan-
nel [5] which is used to process the requests ini-
tiated from the guest domain. The second chan-
nel is used for sending InfiniBand CQ and asyn-
chronous events to the guest domain and will be
discussed in detail later.
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Figure 3. The Xen-IB driver structure with the
split driver model

The Xen-IB front-end driver provides the same
set of interfaces as normal Gen?2 stack for kernel
modules. It is a relatively thin layer whose tasks



include packing the command together with nec-
essary parameters and sending it to the back-end
through the device channel. The back-end driver
re-constructs the commands, performs the opera-
tions with the native kernel HCA driver on behalf
of the guest domain, and returns the result to the
front-end driver. The back-end manages all Infini-
Band resources on behalf of the guest domains.
So all resources including QP/CQ buffers are ac-
tually allocated within the device domain. Only
the handles to those resources are passed back to
the front-end driver for later references.

The split device driver model in Xen poses dif-
ficulties for user-level direct HCA access in Xen
guest domains. Since all resources are managed
inside the device domain, the user-level HCA
driver does not have direct access to the UARs as
well as the QP/CQ buffers. It has to be changed
so that the original OS-bypass operations should
now also go through the kernel. To achieve this,
we need to modify the user-level InfiniBand ser-
vice module and the user access control part of
the InfiniBand core modules.

3.2 Design Details

In the following, we first discuss in general
how we support all InfiniBand operations. Then
we explain in detail the implementation of ma-
jor functional modules, including queue pair ac-
cess, completion polling, memory registration
and event handling.

Before applications can send messages using
InfiniBand, it must finish several preparation steps
including opening HCA, creating CQ, creating
QP, and modifying QP status, etc. Those opera-
tions are usually not in the time critical path of the
applications and can be implemented in a straight-
forward way. Basically, the guest domains for-
ward these commands to the device domain (IDD)
and wait for the acknowledgments after the oper-
ations are completed in IDD. All the resources are
managed in IDD and the front-ends refer to these
resources by handles. Validation checks must be

conducted in IDD to ensure that all the references
are legal.

Next we look at some key functional modules
of our Xen-IB driver:

e QP Access. QP accesses (posting descrip-
tors) include writing the WQEs to the QP
buffer and ringing the doorbell to notify the
HCA. Then the HCA will use DMA to trans-
fer the WQEs to internal HCA memory and
perform the send/receive or RDMA opera-
tions. Since all resources are located in the
back-end driver, including the QP buffers
and the UARs, it is required that the doorbell
is rung at the device domain, and the WQEs
also have to be accessible by the back-end
only. Thus, once a post operation occurs,
the front-end driver will pack and send to the
back-end driver the content of work request
and the lists of the buffers that need to be
transferred. The back-end takes the respon-
sibility to reconstruct the work requests and
post them through the native HCA driver.
Note that in this process, we only send the
DMA addresses of the buffers. The actual
data in the guest domains will be directly ac-
cessed by the HCA using DMA.

The biggest problem for this approach, how-
ever, is its inefficiency. Involving the de-
vice domain can be very costly in terms of
performance. And the need to change user-
level access modules to support user-level
verbs also makes implementation quite com-
plicated.

Meanwhile there are advantages of this ap-
proach. In Xen, all the guest domains share
the same HCA in the physical box. So it
will be beneficial if we can have global in-
formation of how the HCA is being used. By
forcing every post to go into the device do-
main, the back-end driver may put the work
requests from the guest domains into differ-
ent request queues, which can be used to



build different kinds of scheduling schemes
for better QoS.

CQ Poalling: Once the work request is com-
pleted, HCA will put a completion entry
(CQE) in the CQ buffer. However, since CQ
buffers are allocated in the device domain,
the front-end driver cannot directly poll the
CQ buffer in the guest domains. Therefore,
every time the application tries to poll a CQ,
The front-end driver has to send a request to
the back-end driver. The back-end driver will
poll the CQ. And if there is any CQE newly
generated, it sends the CQE content back to
the the front-end driver.

Polling CQ is a quite frequently used verbs
operation and usually lies in the critical path
of the communication. Since it is not effi-
cient to go to the back-end in every polling,
we should optimize it as much as possible.
One optimization to improve the efficiency
is CQE buffering. Even though the front-
end driver may only ask for a few number
of WQEs in a poll CQ request, the back-
end driver returns all the CQEs currently in
the CQ buffer. The front-end then returns to
the application the needed CQEs and buffers
the rest of them. The next time the applica-
tion polls CQ, the front-end driver does not
need to communicate with the back-end if
the needed CQEs have already been buffered
locally. In this way we can amortize the cost
of visiting the back-end driver.

Memory Registration: The InfiniBand
specification requires that all the memory
regions involved in data transfers be reg-
istered with HCA. With Xen’s paravirtual-
ization approach, all domains see the same
DMA address as the real machine address.
So there will be no extra address transla-
tion needed here. The information needed
by memory registration is a list of DMA ad-
dresses that describes the physical locations

of the buffers, access flags and the virtual ad-
dress that the application will use when ac-
cessing the buffer. Again, the registration
happens at the device domain. The front-end
driver simply needs to send above informa-
tion to the back-end driver and get back the
local and remote keys. Note that since the
Translation and Protection Table (TPT) on
HCA is indexed by keys, we don’t need to
worry if multiple guest domains try to regis-
ter with the same virtual address.

For security reasons, the back-end driver
can verify if the front-end driver offers valid
DMA addresses belonging to the specific do-
main that it is running in. This check will
make sure that all later communication ac-
tivities of guest domains are within the valid
address spaces.

Event Handling: InfiniBand supports sev-
eral kinds of CQ and QP events. The most
commonly used is the completion event,
which is described in section 2.2. Event
handlers are associated with CQs or QPs
when they are created. The application can
subscribe for event notification by writing
the appropriate command to the UAR page.
When those subscribed events happen, the
HCA driver will first get notified from HCA
and then dispatch the event to different CQs
or QPs according to the event type. Then the
application that owns the CQ/QP will get a
callback on their event handlers.

For Xen-IB driver, event handling is a bit
more complicated than other operations.
Events are generated for the device domain,
since all QPs and CQs are actually created
there. But the device domain cannot directly
give a callback on the event handlers in the
guest domains. To address this issue, we
create a dedicated event channel between the
front-end and the back-end driver. The back-
end driver associates a special event han-
dler to each CQ/QP created due to requests



from guest domains. Each time the HCA
generates an event to these CQs/QPs, this
special event handler gets executed and for-
wards the information such as the event type
and the CQ/QP identifier to the guest domain
through the event channel.

The front-end driver binds an event dis-
patcher as a callback handler to one end of
the event channel after the channel is created.
The event handlers given by the applications
are associated to the CQs or QPs after they
are successfully created. Once the event dis-
patcher gets an event notification from the
back-end driver, it checks the identifier and
gives the corresponding CQ/QP a callback
on the associated handler. In this process, the
front-end driver has to maintain a translation
table between the identifiers and the actual

CQ/QPs.

3.3 An IDD-Bypass Approach for Improving Per-
formance

The Xen-IB driver follows a traditional Xen
split device driver model. Every HCA resource
including QP buffers, CQ buffers, and User Ac-
cess Regions (UAR), is allocated in the isolated
device domain (IDD). So every operation includ-
ing time critical ones have to go to IDD. As a
result, there can be significant performance loss
due to the context switch and inter-domain com-
munication. For example, in the native IB drivers,
applications can directly post or poll completion
even from the user space. But now as shown in
Fig. 4, since all access to UARs have to go to
the device domain, all those operations have to go
through the kernel of the guest domain, the kernel
of the device domain, and comes all the way back,
which adds large overhead to the latency.

Similar to the OS-bypass concept in InfiniBand
user level access, we enhanced our driver by an
IDD-bypass scheme that allows the time critical
operations to be directly issued from guest do-
mains. This poses two requirements on our design
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of Xen-IB driver: first, the UAR page must be ac-
cessible from the guest domain; second, both the
QP and CQ buffers should be directly visible in
the guest domain. Thus we changed the design of
the front-end and the back-end drivers as follows:

e When a front-end driver is loaded, the back-
end driver allocates a UAR and returns its
page frame number (machine address) to the
front-end. The front-end driver then remaps
this page to its own address space so that it
can directly access the UAR in the guest do-
main to serve requests from the kernel appli-
cations. In the same way, when a user appli-
cation starts, the front-end driver also applies
a UAR page from the back-end and remaps
the page to the application’s virtual memory
space, which can be later accessed directly
from the user space. Since all UARs are
managed in a centralized manner in the IDD,
there will be no conflicts between UARSs in
different guest domains.

e Creating CQs/QPs is no longer simply send-
ing the commands to the back-end. Instead,
it is divided into two stages. In the first
stage, QP or CQ buffers are allocated in
the guest domains and registered through the
IDD. During the second stage, the front-end
sends the CQ/QP creation commands to the
IDD along with the keys returned from the
registration stage to complete the creation
process. Address translations are indexed by
keys, so in later operations the HCA can di-
rectly read WQRs from and write the CQEs
back to the buffers located in the guest do-
mains.

Since we also allocate UARSs to user space ap-
plications in guest domains, the user level Infini-
Band library now keeps its OS-bypass feature. As
shown in Fig. 5, the IDD-bypass scheme greatly
reduces the communication latency.

The strategies for memory registration and
event handling still fit in this IDD-bypass model.

All other operations, such as creating and destroy-
ing QPs, still have to go through the device do-
main. But since usually these are not in critical
path of communication, it has almost no impact
on performance. We show the new stack of our
Xen-IB driver in Figure 6.
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Figure 6. IDD bypass design of Xen-IB driver

Note that allowing the front-end driver to di-
rectly post requests does not mean that we are
violating Xen rules to make validation checks.
All QP/CQ creations and buffer registrations go
through the back-end driver, which basically
means all parts involved in the communication
can be verified with the device domain.

4 Performance Evaluation

In this section, we evaluate the performance of
our Xen-IB driver using a set of OpenlB Gen2
micro-benchmarks. We illustrate that the IDD-
bypass scheme shows significant performance
improvements over the basic design by using
kernel-level RDMA latency and throughput tests.
And with user-level micro-benchmarks, we show
that the improved Xen-IB driver provides perfor-
mance very close to native hardware, with only
slight performance degradation for event handling
and memory registration.



4.1 Testing Setup

We use two IBM xSeries 360 servers as our
testbed. Each of them is equipped with an Intel
Xeon 3.2GHz CPU, 1 GB memory and a Mel-
lanox MHXL-CF128-T PCI-X InfiniBand HCA.
The servers are connected with no switches in
between. One of the servers (server A) is run-
ning Xen hypervisor with 2.6 kernel. RedHat
AS4 are running both in domain0 and guest do-
mains. OpenlB Gen2 stack is installed in do-
main0 as the native IB driver. The other server
(server B) is running RedHat AS4 with 2.6.13
kernel. The same version of OpenlB Gen?2 is in-
stalled on server B. Test environment settings on
server B is fixed. Server A may have different
settings to evaluate different schemes.

This asymmetric testing setup represents a sce-
nario where servers in Xen guest domains use In-
finiBand as an 1/0 transport to access remote de-
vices which are hosted on a remote node that runs
an unhypervised OS.

4.2 Benefits of the IDD-Bypass Driver

In this subsection, we compare the perfor-
mance of the basic split driver design with the
IDD-bypass design using kernel Gen2 micro-
benchmarks. We use kernel level RDMA latency
and throughput tests to evaluate our designs.

In RDMA latency test, server A writes to server
B using RDMA, while server B polls for the ar-
rival of the data and replies back with a RDMA
write of the same size. Since our test setup is
asymmetric, we measure the round trip time of
this rendezvous process instead of the one way
latency. In RDMA throughput test, server A,
which is running Xen, issues RDMA writes back
to back to server B. And we measure the maxi-
mum throughput we can achieve. However, we
do not measure the throughput from server B to
server A because there is only DMA operations
at the target side of RDMA, in which our Xen-IB
driver is not involved.

Fig. 7 and Fig. 8 show the results for the
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Figure 7. Kernel-level round-trip time for
RDMA write operation
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RDMA latency and throughput tests. While the
server B is always running native Linux, we com-
pare the performance of kernel level RDMA write
latency/throughput between the following four
environments in server A: the basic Xen-IB driver
in the guest domain (Xen-IB-basic), the IDD-
bypass Xen-IB driver in the guest domain (Xen-
IB-bypass), the native Gen2 driver in the device
domain (gen2-IDD), and the native Gen2 driver
on native Linux (gen2-native).

Note that the latency we show is the round-trip
time. We can see that the basic Xen-IB driver
has significantly higher latency than other drivers.
The IDD-bypass driver, native driver in the device
domain, and native driver on native Linux per-
form almost the same. We also show the one way
latency of inter-domain communication on server
A in Fig. 9, which explains the difference between
the performance numbers. Going through the de-
vice domain adversely affect the throughput we
can achieve. As shown in Fig. 8, the peak value
with the basic Xen-IB driver is only 770 Million
Bytes/s at 128 KB while we can achieve around
830 MB/s with all other drivers. With each post
costing at least 10 S (one way latency of inter-
domain communication) to go to the device do-
main, it is almost impossible to post back-to-back
sends to saturate the link unless the messages are
sufficiently large.

4.3 Latency and Throughput

With kernel level benchmarks, we have already
shown that involving the device domain in time
critical operation adversely affects performance.
So in the rest of this section, we focus on our IDD-
bypass approach.

Fig. 10 and Fig. 11 show the latency and
throughput for user-level micro-benchmarks. As
in the kernel-level tests, the throughput test mea-
sures the uni-directional bandwidth from server A
to server B.

As clearly shown in the figures, in both RDMA
(indicated as rdma in figures) and send/receive
(sr) tests, the IDD-bypass driver shows nearly the
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same performance as the native Gen2 driver in the
device domain and the native Linux. This is not
surprising because the critical path of these tests,
posting descriptors and polling completions, is
executed entirely in the guest domain, which can
achieve performance close to native hardware. In
the tests, we achieved 7.8 uS round-trip latency
(3.9 us one way) for 1 byte message and 830
MB/s throughput for 256k bytes message.
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Figure 10. User-level round-trip communica-
tion time
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Figure 11. User-level Uni-directional through-
put from server A to server B

4.4 Event Handling

The latency numbers we showed above are all
based on polling schemes. In this section we show
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Figure 12. User-level send/recv round-trip
time using blocking verbs

the send/receive latency using blocking IB user-
level verbs functions. This will reflect the effi-
ciency of our event handling schemes.

Fig. 12 shows the send/receive round-trip la-
tency using blocking verbs. The test is almost the
same as send/receive ping pong test using polling.
The only difference is that the process will block
and wait for a completion event instead of busy
polling on the completion queue. We show the re-
sults for server A running the IDD-bypass Xen-IB
driver in the guest domain, the native IB driver in
the device domain, and the native IB driver on na-
tive Linux. (Server B is running native Linux all
the time.) Since Xen hypervisor is involved in the
handling of device interrupts, round-trip latency
is higher on Xen than native Linux, even with the
native Gen2 driver. The extra cost of passing the
event from the device domain to the guest domain
adds another 2 to 10 s to latency.

4.5 Memory Registration

Memory registration is generally a costly op-
eration. Fig. 13 shows the registration time of
the IDD-bypass driver, the native Gen2 driver in
the device domain and the native Gen2 driver on
native Linux. The benchmark allocates a trunk
of user buffers, then registers and unregisters the
buffers multiple times and measures the average
time for each registration.
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Figure 13. Memory registration time with re-
spect to number of pages

As we can see from the graph, Xen adds con-
sistently around 25%-35% overhead to the regis-
tration cost no matter how many pages we regis-
ter. The Xen-IB driver in the guest domain adds
more overhead, which increases with the number
of pages involved in registration. This is because
the more pages we register, the bigger the size of
scatter gather list we need to send to the device
domain through the inter-domain device channel.
The performance drop is hard to avoid because
every single page registered with the HCA should
be verified by the device domain.

This observation indicates that if the registra-
tion is a time critical operation of an applica-
tion, an efficient implementation of registration
cache [16] becomes important.

5 Reated Work

The concept of virtual machines was first in-
troduced by IBM in 1960s to provide a time-
sharing access environment to mainframe hard-
ware [3]. It has been applied to operating systems
for more than 30 years. Today there are num-
bers of solutions to virtualize x86 architecture.
Denali [18] [19] uses para-virtualization as Xen
does. VMware and Microsoft Virtual PC provide
full x86 virtualization, which supports unmodi-
fied guest operating systems. Device accesses on
full virtualization usually require that the hypervi-



sor intercept all I/O operations issued by the guest
OS.

Recently both Intel and AMD provide hard-
ware assistance to ease the full virtualization of
x86 processor architecture. Intel VT-x technol-
ogy [7] consists of a set of virtual-machine exten-
sions (VMX) that support virtualization of pro-
cessor hardware for multiple software environ-
ments used by virtual machines. It will be sup-
ported in the next release of Xen [12]. Pacifica [1]
is the AMD equivalent, which is claimed to be
a functional superset of Intel VT. Though those
hardware extensions make virtualization easier,
the hypervisors still bear the responsibility for de-
vice I/O management.

There has been consistent effort to support high
performance I/O devices in virtualized environ-
ment. Approaches used in Xen are discussed in
Section 2. VMware workstation understands the
semantics of I/O operations. Any accesses that
actually interact with the physical hardware must
go to the the VM App that runs in the host domain.
Otherwise, the operations can be handled directly
in the hypervisor. In VMware ESX Server, I/O
devices are accessed from the hypervisor with the
help of a global component that recognizes each
individual virtual machine [15]. In either models,
the I/0 accesses need to involve the hypervisor,
thus make it hard to support the OS-bypass fea-
tures of InfiniBand.

6 Conclusions and Future Work

In this paper, we presented the design and im-
plementation of Xen-IB, an InfiniBand driver for
Xen virtual machine environment. We illustrated
the general design of the driver and explained in
detail all the key functional components. Our de-
sign bypasses the device domain for time crit-
ical tasks but still keeps every resource under
the control of Xen. Our performance evaluations
showed that the Xen-IB driver can provide perfor-
mance close to native hardware under most cir-
cumstances, with expected degradation on event
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handling and memory registration.

In the future, we plan to support the full
set of InfiniBand services in Xen-IB, including
management datagram (MAD) services. Mean-
while, since Xen is a fast developing open source
project, we are continuously following Xen’s
newest features and integrate them into our work.
We also plan to study the possibility to introduce
VMs into high performance computing area. We
will explore how to take advantages of Xen to pro-
vide better support of check-pointing, QoS and
cluster management with minimum loss of com-
puting power.
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